首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To uncover signaling system differences between T cell stimuli and T cell subsets, phosphorylation status of 18 signaling proteins at six different time points following TCR triggering and CD28/CD2 costimulation was examined in human T cell subsets by phospho-epitope-specific flow cytometry of fluorescent cell barcoded samples, thereby providing a high-resolution signaling map. Compared with effector/memory T cells, naive T cells displayed stronger activation of proximal signaling molecules after TCR triggering alone. Conversely, distal phosphorylation events, like pErk and pS6-ribosomal protein, were stronger in effector/memory subsets. CD28 costimulation specifically induced signaling necessary for proper NF-κB activation, whereas CD2 signaled more strongly to S6-ribosomal protein. Analysis of resting regulatory T cells (rTregs; CD4(+)CD45RA(+)FOXP3(+)) and activated regulatory T cells (actTregs; CD4(+)CD45RA(-)FOXP3(++)) revealed that, although rTregs had low basal, but inducible, Erk activity, actTregs displayed high basal Erk phosphorylation and little or no Akt activation. Interestingly, the use of Mek inhibitors to block Erk activation inhibited activation-dependent FOXP3 upregulation in rTregs, their transition to actTregs, and the resulting increase in suppressive capacity. In summary, our systems approach unraveled distinct differences in signaling elicited by CD28 and CD2 costimulation and between rTregs and actTregs. Blocking rTreg transition to highly suppressive actTregs by Mek inhibitors might have future therapeutic applications.  相似文献   

2.

Background

Although radiotherapy is one of the mainstream approaches for the treatment of head and neck squamous cell carcinoma (HNSCC), this cancer is always associated with resistance to radiation. In this study, the mechanism of action of isoalantolactone as well as its radiosensitizing effect was investigated in UMSCC-10A cells.

Methods

The radiosensitization of UMSCC-10A cells treated with isoalantolactone was analyzed by colony formation assay. The radiosensitization effects of isoalantolactone on cell proliferation, cell cycle and apoptosis regulation were examined by BrdU incorporation assay, DNA content assay and flow cytometry, respectively. Western blotting was performed to determine the effects of isoalantolactone combined with radiation on the protein expression of Mek, extracellular signal-regulated kinase (Erk1/2) as well as phosphorylated Mek and Erk1/2. Erk1/2 knockdown by siRNA was used to confirm that isoalantolactone specifically inhibited the activation of Erk1/2 signaling pathway in UMSCC-10A cells.

Results

Isoalantolactone enhanced the radiosensitivity of UMSCC-10A cells; the sensitivity enhanced ratios (SERs) were 1.44 and 1.63, respectively, for 2.5 and 5 μM. Moreover, isoalantolactone enhanced radiation-induced cell proliferation and apoptosis and cell cycle arrested at G2/M phase. Furthermore, no marked changes were observed in the expression of total Erk1/2 and Mek protein after radiation treatment. However, isoalantolactone was significantly reduced radiation-induced the phosphorylation of Erk1/2, whereas it altered the phosphorylation of Mek to a lesser extent. In addition, the radiosensitivity of UMSCC-10A cells with Erk1/2 knockdown was increased. Isoalantolactone cannot further prevent the proliferation of UMSCC-10A cells with Erk1/2 knockdown which other mechanism regulated cell proliferation.

Conclusion

Our results suggested that isoalantolactone enhanced radiation-induced apoptosis, cell cycle arrested and reduced the cell proliferation of UMSCC-10A cells via specifically inhibited the phosphorylation of Erk1/2. Thus a low concentration of isoalantolactone may be used to overcome the resistance of UMSCC-10A cells to radiation and may be a promising radiosensitizer in cancer therapy.  相似文献   

3.
The p42/p44 mitogen-activated protein kinase (MAPK) cascade includes Ras, Raf, Mek, and Erk MAPK. To determine the effect of a full knockout at a single level of this signaling pathway in mammals, and to investigate functional redundancy between Mek1 and Mek2, we disrupted these genes in murine and human epidermis. Loss of either protein alone produced no phenotype, whereas combined Mek1/2 deletion in development or adulthood abolished Erk1/2 phosphorylation and led to hypoproliferation, apoptosis, skin barrier defects, and death. Conversely, a single copy of either allele was sufficient for normal development. Combined Mek1/2 loss also abolished Raf-induced hyperproliferation. Human tissue deficient in either Mek isoform was normal, whereas loss of both proteins led to hypoplasia, which was rescued by active Erk2 expression. These data indicate that Mek1/2 are functionally redundant in the epidermis, where they act as a linear relay in the MAPK pathway to mediate development and homeostasis.  相似文献   

4.
Oncogenic mutations in the mitogen activated protein kinase (MAPK) pathway are prevalent in human tumors, making this pathway a target of drug development efforts. Recently, ATP-competitive Raf inhibitors were shown to cause MAPK pathway activation via Raf kinase priming in wild-type BRaf cells and tumors, highlighting the need for a thorough understanding of signaling in the context of small molecule kinase inhibitors. Here, we present critical improvements in cell-line engineering and image analysis coupled with automated image acquisition that allow for the simultaneous identification of cellular localization of multiple MAPK pathway components (KRas, CRaf, Mek1 and Erk2). We use these assays in a systematic study of the effect of small molecule inhibitors across the MAPK cascade either as single agents or in combination. Both Raf inhibitor priming as well as the release from negative feedback induced by Mek and Erk inhibitors cause translocation of CRaf to the plasma membrane via mechanisms that are additive in pathway activation. Analysis of Erk activation and sub-cellular localization upon inhibitor treatments reveals differential inhibition and activation with the Raf inhibitors AZD628 and GDC0879 respectively. Since both single agent and combination studies of Raf and Mek inhibitors are currently in the clinic, our assays provide valuable insight into their effects on MAPK signaling in live cells.  相似文献   

5.
6.
Mek is a dual-specificity kinase that activates the extracellular-signal-regulated (Erk) mitogen-activated protein (MAP) kinases upon agonist binding to receptors. The Erk MAP kinase cascade is involved in cell-fate determination in many organisms. In mammals, this pathway is proposed to regulate cell growth and differentiation. Genetic studies have shown that although a single mek gene is present in Caenorhabditis elegans, Drosophila and Xenopus, two mek homologs, Mek1 and Mek2, are present in the mammalian cascade. In the present study, we describe a mutant mouse line in which the mek1 gene has been disrupted by insertional mutagenesis. The null mutation was recessive lethal, as the homozygous mutant embryos died at 10.5 days of gestation. Histopathological analyses revealed a reduction in vascularization of the placenta that was due to a marked decrease of vascular endothelial cells in the labyrinthine region. The failure to establish a functional placenta probably explains the death of the mek1-/- embryos. Cell-migration assays indicated that mek1-/- fibroblasts could not be induced to migrate by fibronectin, although the levels of Mek2 protein and Erk activation were normal. Re-expression of Mek1 in the mutant mouse embryonic fibroblasts (MEFs) restored their ability to migrate. Our findings provide genetic evidence that establishes the unique role played by Mek1 in signal transduction. They also suggest that mek1 function is required for normal response to angiogenic signals that might promote vascularization of the labyrinthine region of the placenta.  相似文献   

7.
8.
Shp2 has been known to mediate growth factor-stimulated cell proliferation, but its role in cell survival is less clear. Gain-of-function Shp2 mutants such as Shp2E76K are associated with myeloid leukemias. We found that Shp2E76K could transform cytokine-dependent human TF-1 myeloid cells into cytokine independence and further characterized the Shp2E76K-induced cell survival mechanism in this study. Expression of Shp2E76K suppressed the cytokine withdrawal-induced intrinsic/mitochondrial apoptosis pathway, which is controlled by the Bcl-2 family proteins. Analysis of Bcl-2 family proteins showed that Bcl-XL and Mcl-1 were up-regulated in Shp2E76K-transformed TF-1 (TF-1/Shp2E76K) cells. Knockdown of Bcl-XL but not Mcl-1 with short hairpin RNAs prevented Shp2E76K-induced cytokine-independent survival. Roscovitine, which down-regulated Mcl-1, also did not prevent cytokine-independent survival of TF-1/Shp2E76K cells, whereas the Bcl-XL inhibitor HA14-1 did. Ras and mitogen-activated protein kinases Erk1 and Erk2 (Erk1/2) were constitutively activated in TF-1/Shp2E76K cells, whereas little active Akt was detected under cytokine-free conditions. Shp2E76K-induced Bcl-XL expression was suppressed by Mek inhibitors and by a dominant-negative Mek1 mutant but not by the phosphoinositide 3-phosphate inhibitor LY294002 and the Akt inhibitor API-2. Inhibition of Erk1/2 blocked cytokine-independent survival of TF-1/Shp2E76K cells, whereas inhibition of Akt had a minimal effect on cytokine-independent survival of TF-1/Shp2E76K cells. These results show that Shp2E76K can evoke constitutive Erk1/2 activation in TF-1 cells. Furthermore, Shp2E76K induces cytokine-independent survival of TF-1 cells by a novel mechanism involving up-regulation of Bcl-XL through the Erk1/2 pathway.  相似文献   

9.
10.
How are phosphorylated kinases transported over long intracellular distances, such as in the case of axon to cell body signaling after nerve injury? Here, we show that the MAP kinases Erk1 and Erk2 are phosphorylated in sciatic nerve axoplasm upon nerve injury, concomitantly with the production of soluble forms of the intermediate filament vimentin by local translation and calpain cleavage in axoplasm. Vimentin binds phosphorylated Erks (pErk), thus linking pErk to the dynein retrograde motor via direct binding of vimentin to importin beta. Injury-induced Elk1 activation and neuronal regeneration are inhibited or delayed in dorsal root ganglion neurons from vimentin null mice, and in rats treated with a MEK inhibitor or with a peptide that prevents pErk-vimentin binding. Thus, soluble vimentin enables spatial translocation of pErk by importins and dynein in lesioned nerve.  相似文献   

11.
Copper (Cu) is essential for development and proliferation, yet the cellular requirements for Cu in these processes are not well defined. We report that Cu plays an unanticipated role in the mitogen-activated protein (MAP) kinase pathway. Ablation of the Ctr1 high-affinity Cu transporter in flies and mouse cells, mutation of Ctr1, and Cu chelators all reduce the ability of the MAP kinase kinase Mek1 to phosphorylate the MAP kinase Erk. Moreover, mice bearing a cardiac-tissue-specific knockout of Ctr1 are deficient in Erk phosphorylation in cardiac tissue. in vitro investigations reveal that recombinant Mek1 binds two Cu atoms with high affinity and that Cu enhances Mek1 phosphorylation of Erk in a dose-dependent fashion. Coimmunoprecipitation experiments suggest that Cu is important for promoting the Mek1-Erk physical interaction that precedes the phosphorylation of Erk by Mek1. These results demonstrate a role for Ctr1 and Cu in activating a pathway well known to play a key role in normal physiology and in cancer.  相似文献   

12.
Gab1-SHP2 association is required for Erk mitogen-activated protein kinase activation by several growth factors. Gab1-SHP2 interaction activates SHP2. However, an activated SHP2 still needs to associate with Gab1 to mediate Erk activation. It was unclear whether SHP2 is required to dephosphorylate a negative phosphorylation site on Gab1 or whether SHP2 needs the Gab1 pleckstrin homology (PH) domain to target it to the plasma membrane. We found that expression of a fusion protein consisting of the Gab1 PH domain and an active SHP2 (Gab1PH-SHP2DeltaN) induced constitutive Mek1 and Erk2 activation. Linking the active SHP2DeltaN to the PDK1 PH domain or the FRS2beta myristoylation sequence also induced Mek1 activation. Mek1 activation by Gab1PH-SHP2DeltaN was inhibited by an Src inhibitor and by Csk. Significantly, Gab1PH-SHP2DeltaN induced Src activation. Gab1PH-SHP2DeltaN expression activated Ras, and the Gab1PH-SHP2DeltaN-induced Mek1 activation was blocked by RasN17. These findings suggest that Gab1PH-SHP2DeltaN activated a signaling step upstream of Src and Ras. The SHP2 tyrosine phosphatase activity is essential for the function of the fusion protein. Together, these data show that the Gab1 sequence, besides the PH domain and SHP2 binding sites, is dispensable for Erk activation, suggesting that the primary role of Gab1 association with an activated SHP2 is to target it to the membrane.  相似文献   

13.
Integrin activation generates different signalings in a cell type-dependent manner and stimulates cell proliferation through the Ras/Raf-1/Mek/Erk pathway. In this study, we demonstrate that integrin stimulation by fibronectin (FN), besides activating the Ras/Erk pathway, generates an auxiliary calcium signal that activates calmodulin and the Ca2+/calmodulin-dependent protein kinase II (CaMKII). This signal regulates Raf-1 activation by Ras and modulates the FN-stimulated extracellular signal-regulated kinase (Erk-1/2). The binding of soluble FN to integrins induced increase of intracellular calcium concentration associated with phosphorylation and activation of CaMKII. In two different cell lines, inhibition of CaMKII activity by specific inhibitors inhibited Erk-1/2 phosphorylation. Whereas CaMK inhibition affected neither integrin-stimulated Akt phosphorylation nor p21Ras or Mek-1 activity, it was necessary for Raf-1 activity. FN-induced Raf-1 activity was abrogated by the CaMKII specific inhibitory peptide ant-CaNtide. Integrin activation by FN induced the formation of a Raf-1/CaMKII complex, abrogated by inhibition of CaMKII. Active CaMKII phosphorylated Raf-1 in vitro. This is the first demonstration that CaMKII interplays with Raf-1 and regulates Erk activation induced by Ras-stimulated Raf-1. These findings also provide evidence supporting the possible existence of cross-talk between other intracellular pathways involving CaMKII and Raf-1.  相似文献   

14.
While some studies report that estradiol (E2) activates extracellular-signal regulated kinase (Erk1/2) in MCF-7 breast cancer cells, others report E2 does not activate this signaling pathway. This study attempted to resolve the conflicting reports by investigating experimental variables that could impact Erk1/2 activation using a high through-put assay that quantitatively assessed Erk1/2 phosphorylation. Variables tested included: cell staging and dosing regimes with and without charcoal-stripped serum, different MCF-7 cell sublines and culture densities and several E2 formulations and solvents. Levels of phosphorylated Erk1/2 were normalized to cellular protein rather than to total Erk1/2 protein because an antibody purported to recognize total Erk1/2 preferentially reacted with non-phosphorylated Erk1/2, potentially exaggerating the apparent level of Erk1/2 activation. Dosing MCF-7 cells with E2 containing small amounts of stripped serum induced Erk1/2 phosphorylation; however, this induction was largely attributed to serum factors. E2 administered in serum-free medium did not significantly alter Erk1/2 phosphorylation under any condition tested; immunocytochemistry corroborated this conclusion. While phosphatase inhibitors generally increased Erk1/2 phosphorylation, they did not impact E2-altered Erk1/2 phosphorylation. It remains important to resolve the basis of conflicting reports regarding E2-induced Erk1/2 activation due to the potential importance of this pathway on breast cancer and other processes.  相似文献   

15.
p21WAF1 is a well-characterized mediator of cell cycle arrest and may also modulate chemotherapy-induced cell death. The role of p21WAF1 in drug-induced cell cycle arrest and apoptosis of acute lymphoblastic leukemia (ALL) cells was investigated using p53-functional patient-derived xenografts (PDXs), in which p21WAF1 was epigenetically silenced in T-cell ALL (T-ALL), but not in B-cell precursor (BCP)-ALL PDXs. Upon exposure to diverse cytotoxic drugs, T-ALL PDX cells exhibited markedly increased caspase-3/7 activity and phosphatidylserine (PS) externalization on the plasma membrane compared with BCP-ALL cells. Despite dramatic differences in apoptotic characteristics between T-ALL and BCP-ALL PDXs, both ALL subtypes exhibited similar cell death kinetics and were equally sensitive to p53-inducing drugs in vitro, although T-ALL PDXs were significantly more sensitive to the histone deacetylase inhibitor vorinostat. Transient siRNA suppression of p21WAF1 in the BCP-ALL 697 cell line resulted in a moderate depletion of the cell fraction in G1 phase and marked increase in PS externalization following exposure to etoposide. Furthermore, stable lentiviral p21WAF1 silencing in the BCP-ALL Nalm-6 cell line accelerated PS externalization and cell death following exposure to etoposide and vorinostat, supporting previous findings. Finally, the Sp1 inhibitor, terameprocol, inhibited p21WAF1 expression in Nalm-6 cells exposed to vorinostat and also partially augmented vorinostat-induced cell death. Taken together, these findings demonstrate that p21WAF1 regulates the early stages of drug-induced apoptosis in ALL cells and significantly modulates their sensitivity to vorinostat.  相似文献   

16.
17.
The WW-domain containing protein KIBRA has recently been identified as a new member of the Salvador/Warts/Hippo (SWH) pathway in Drosophila and is shown to act as a tumor suppressor gene in Drosophila. This pathway is conserved in humans and members of the pathway have been shown to act as tumor suppressor genes in mammalian systems. We determined the methylation status of the 5′ CpG island associated with the KIBRA gene in human cancers. In a large panel of cancer cell lines representing common epithelial cancers KIBRA was unmethylated. But in pediatric acute lymphocytic leukemia (ALL) cell lines KIBRA showed frequent hypermethylation and silencing of gene expression, which could be reversed by treatment with 5-aza-2′-deoxycytidine. In ALL patient samples KIBRA was methylated in 70% B-ALL but was methylated in <20% T-ALL leukemia (p = 0.0019). In B-ALL KIBRA methylation was associated with ETV6/RUNX1 [t(12;21) (p13;q22)] chromosomal translocation (p = 0.0082) phenotype, suggesting that KIBRA may play an important role in t(12;21) leukemogenesis. In ALL paired samples at diagnosis and remission KIBRA methylation was seen in diagnostic but not in any of the remission samples accompanied by loss of KIBRA expression in disease state compared to patients in remission. Hence KIBRA methylation occurs frequently in B-cell acute lymphocytic leukemia but not in epithelial cancers and is linked to specific genetic event in B-ALL.Key words: KIBRA, methylation, ALL, SWH pathway, ETV6/RUNX1 translocation  相似文献   

18.
19.
20.
We have demonstrated previously that class I(A) phosphoinositide 3-kinases play a major role in regulation of interleukin-3 (IL)-3-dependent proliferation. Investigations into the downstream targets involved have identified the MAPK cascade as a target. Expression of Deltap85 and incubation with LY294002 both inhibited IL-3-induced activation of Mek, Erk1, and Erk2. This was most pronounced during the initial phase of Erk activation. The Mek inhibitor, PD98059, blocked IL-3-driven proliferation, an effect enhanced by Deltap85 expression, suggesting that inhibition of Mek and Erks by Deltap85 contributes to the decrease in IL-3-induced proliferation in these cells but that additional pathways may also be involved. To investigate the mechanism leading to decreased activation of Erks, we investigated effects on SHP2 and Gab2, both implicated in IL-3 regulation of Erk activation. Expression of Deltap85 led to a reduction in SHP2 tyrosine phosphorylation and its ability to interact with Grb2 and Gab2 but increased overall tyrosine phosphorylation of Gab2. LY294002 did not perturb SHP2 interactions, potentially related to differences in the effects of these inhibitors on levels of phosphoinositides. These results imply that the regulation of Erks by class I(A) phosphoinositide 3-kinase may contribute to IL-3-driven proliferation and that both SHP2 and Gab2 are possibly involved in this regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号