首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Arctic is experiencing rapid vegetation changes, such as shrub and tree line expansion, due to climate warming, as well as increased wetland variability due to hydrological changes associated with permafrost thawing. These changes are of global concern because changes in vegetation may increase tundra soil biogeochemical processes that would significantly enhance atmospheric CO2 concentrations. Predicting the latter will at least partly depend on knowing the structure, functional activities, and distributions of soil microbes among the vegetation types across Arctic landscapes. Here we investigated the bacterial and microeukaryotic community structures in soils from the four principal low Arctic tundra vegetation types: wet sedge, birch hummock, tall birch, and dry heath. Sequencing of rRNA gene fragments indicated that the wet sedge and tall birch communities differed significantly from each other and from those associated with the other two dominant vegetation types. Distinct microbial communities were associated with soil pH, ammonium concentration, carbon/nitrogen (C/N) ratio, and moisture content. In soils with similar moisture contents and pHs (excluding wet sedge), bacterial, fungal, and total eukaryotic communities were correlated with the ammonium concentration, dissolved organic nitrogen (DON) content, and C/N ratio. Operational taxonomic unit (OTU) richness, Faith''s phylogenetic diversity, and the Shannon species-level index (H′) were generally lower in the tall birch soil than in soil from the other vegetation types, with pH being strongly correlated with bacterial richness and Faith''s phylogenetic diversity. Together, these results suggest that Arctic soil feedback responses to climate change will be vegetation specific not just because of distinctive substrates and environmental characteristics but also, potentially, because of inherent differences in microbial community structure.  相似文献   

2.
The down-slope movement of water and nutrients should link plant and soil processes along hill slopes. This linkage ought to be particularly strong in Arctic ecosystems where permafrost confines flowing water near the surface. We examined whether these hill-slope processes are important in assessments of the responses of Arctic tundra to changes in CO2 and climate using the Marine Biological Laboratory–General Ecosystem Model. Because higher rates of water flow decrease the distance over which nutrients must diffuse to the roots, down-slope vegetation is more productive under current conditions. In response to elevated CO2 and a warmer, wetter climate, the relative increase in carbon stored in vegetation and soils was higher uphill, but the absolute increase was higher downhill. Very little of the increase in carbon anywhere on the hill slope resulted from an increase in total ecosystem nitrogen. Instead, the increases were associated with increases in vegetation C:N ratio (woodiness) and with the redistribution of nitrogen from soils (low C:N) to vegetation (high C:N). Because these changes are fueled by nitrogen already in place, the down-slope movement of nitrogen does not appear to be a major determinant of the responses of Arctic tundra to changes in CO2 and climate.  相似文献   

3.
Increases in the long‐range aerial transport of reactive N species from low to high latitudes will lead to increased accumulation in the Arctic snowpack, followed by release during the early summer thaw. We followed the release of simulated snowpack N, and its subsequent fate over three growing seasons, on two contrasting high Arctic tundra types on Spitsbergen (79°N). Applications of 15N (99 atom%) at 0.1 and 0.5 g N m?2 were made immediately after snowmelt in 2001 as either Na15NO3 or 15NH4Cl. These applications are approximately 1 × and 5 × the yearly atmospheric deposition rates. The vegetation at the principal experimental site was dominated by bryophytes and Salix polaris while at the second site, vegetation included bryophytes, graminoids and lichens. Audits of the applied 15N were undertaken, over two or three growing seasons, by determining the amounts of labeled N in the soil (0–3 and 3–10 cm), soil microbial biomass and different vegetation fractions. Initial partitioning of the 15N at the first sampling time showed that ~60% of the applied 15N was recovered in soil, litter and plants, regardless of N form or application rate, indicating that rapid immobilization into organic forms had occurred at both sites. Substantial incorporation of the 15N was found in the microbial biomass in the humus layer and in the bryophyte and lichen fractions. After initial partitioning there appeared to be little change in the total 15N recovered over the following two or three seasons in each of the sampled fractions, indicating highly conservative N retention. The most obvious transfer of 15N, following assimilation, was from the microbial biomass into stable forms of humus, with an apparent half‐life of just over 1 year. At the principal site the microbial biomass and vascular plants were found to immobilize the greatest proportion of 15N compared with their total N concentration. In the more diverse tundra of the second site, lichen species and graminoids competed effectively for 15NH4‐N and 15NO3‐N, respectively. Results suggest that Arctic tundra habitats have a considerable capacity to immobilize additional inorganic N released from the snow pack. However, with 40% of the applied 15N apparently lost there is potential for N enrichment in the surrounding fjordal systems during the spring thaw.  相似文献   

4.
The high-latitude terrestrial carbon sink: a model analysis   总被引:7,自引:1,他引:6  
A dynamic, global vegetation model, hybrid v4.1 ( Friend et al. 1997 ), was driven by transient climate output from the UK Hadley Centre GCM (HadCM2) with the IS92a scenario of increasing atmospheric CO2 equivalent, sulphate aerosols and predicted patterns of atmospheric N deposition. Changes in areas of vegetation types and carbon storage in biomass and soils were predicted for areas north of 50°N from 1860 to 2100. Hybrid is a combined biogeochemical, biophysical and biogeographical model of natural, potential ecosystems. The effect of periodic boreal forest fires was assessed by adding a simple stochastic fire model. Hybrid represents plant physiological and soil processes regulating the carbon, water and N cycles and competition between individuals of parameterized generalized plant types. The latter were combined to represent tundra, temperate grassland, temperate/mixed forest and coniferous forest. The model simulated the current areas and estimated carbon stocks in the four vegetation types. It was predicted that land areas above 50°N (about 23% of the vegetated global land area) are currently accumulating about 0.4 PgC y?1 (about 30% of the estimated global terrestrial sink) and that this sink could grow to 0.8–1.0 PgC y?1 by the second half of the next century and persist undiminished until 2100. This sink was due mainly to an increase in forest productivity and biomass in response to increasing atmospheric CO2, temperature and N deposition, and includes an estimate of the effect of boreal forest fire, which was estimated to diminish the sink approximately by the amount of carbon emitted to the atmosphere during fires. Averaged over the region, N deposition contributed about 18% to the sink by the 2080 s. As expected, climate change (temperature, precipitation, solar radiation and saturation pressure deficit) and N deposition without increasing atmospheric CO2 produced a carbon source. Forest areas expanded both south and north, halving the current tundra area by 2100. This expansion contributed about 30% to the sink by the 2090 s. Tundra areas which were not invaded by forest fluctuated from sink to source. It was concluded that a high latitude carbon sink exists at present and, even assuming little effect of N deposition, no forest expansion and continued boreal forest fires, the sink is likely to persist at its current level for a century.  相似文献   

5.
Articulating the consequences of global climate change on terrestrial ecosystem biogeochemistry is a critical component of Arctic system studies. Leaf mineral nutrition responses of tundra plants is an important measure of changes in organismic and ecosystem attributes because leaf nitrogen and carbon contents effect photosynthesis, primary production, carbon budgets, leaf litter, and soil organic matter decomposition as well as herbivore forage quality. In this study, we used a longterm experiment where snow depth and summer temperatures were increased independently and together to articulate how a series of climate change scenarios would affect leaf N, leaf C, and leaf C:N for vegetation in dry and moist tussock tundra in northern Alaska, USA. Our findings were: 1) moist tundra vegetation is much more responsive to this suite of climate change scenarios than dry tundra with up to a 25% increase in leaf N; 2) life forms exhibit divergence in leaf C, N, and C:N with deciduous shrubs and graminoids having almost identical leaf N contents; 3) for some species, leaf mineral nutrition responses to these climate change scenarios are tundra type dependent ( Betula ), but for others ( Vaccinium vitis-idaea ), strong responses are exhibited regardless of tundra type; and 4) the seasonal patterns and magnitudes of leaf C and leaf N in deciduous and evergreen shrubs were responsive to conditions of deeper snow in winter. Leaf N is was generally higher immediately after emergence from the deep snow experimental treatments and leaf N was higher during the subsequent summer and fall, and the leaf C:N were lower, especially in deciduous shrubs. These findings indicate that coupled increases in snow depth and warmer summer temperatures will alter the magnitudes and patterns of leaf mineral nutrition and that the long term consequences of these changes may feed-forward and affect ecosystem processes.  相似文献   

6.
Plant contributions to the nitrogen (N) cycle from decomposition are likely to be altered by vegetation shifts associated with climate change. Roots account for the majority of soil organic matter input from vegetation, but little is known about differences between vegetation types in their root contributions to nutrient cycling. Here, we examine the potential contribution of fine roots to the N cycle in forest and tundra to gain insight into belowground consequences of the widely observed increase in woody vegetation that accompanies climate change in the Arctic. We combined measurements of root production from minirhizotron images with tissue analysis of roots from differing root diameter and color classes to obtain potential N input following decomposition. In addition, we tested for changes in N concentration of roots during early stages of decomposition, and investigated whether vegetation type (forest or tundra) affected changes in tissue N concentration during decomposition. For completeness, we also present respective measurements of leaves. The potential N input from roots was twofold greater in forest than in tundra, mainly due to greater root production in forest. Potential N input varied with root diameter and color, but this variation tended to be similar in forest and tundra. As for roots, the potential N input from leaves was significantly greater in forest than in tundra. Vegetation type had no effect on changes in root or leaf N concentration after 1 year of decomposition. Our results suggest that shifts in vegetation that accompany climate change in the Arctic will likely increase plant‐associated potential N input both belowground and aboveground. In contrast, shifts in vegetation might not alter changes in tissue N concentration during early stages of decomposition. Overall, differences between forest and tundra in potential contribution of decomposing roots to the N cycle reinforce differences between habitats that occur for leaves.  相似文献   

7.
Northern permafrost soils contain important carbon stocks. Here we report the long-term response of carbon stocks in high Arctic dwarf shrub tundra to short-term, low-level nutrient enrichment. Twenty years after experimental nitrogen addition, carbon stocks in vegetation and organic soil had almost halved. In contrast, where phosphorus was added with nitrogen, carbon storage increased by more than 50%. These responses were explained by changes in the depths of the moss and organic soil layers. Nitrogen apparently stimulated decomposition, reducing carbon stocks, whilst phosphorus and nitrogen co-stimulated moss productivity, increasing organic matter accumulation. The altered structure of moss and soil layers changed soil thermal regimes, which may further influence decomposition of soil carbon. If climate warming increases phosphorus availability, any increases in nitrogen enrichment from soil warming or expanding human activity in the Arctic may result in increased carbon sequestration. Where phosphorus is limiting in tundra areas, however, nitrogen enrichment may result in carbon loss.  相似文献   

8.

Questions

The rapid climate warming in tundra ecosystems can increase nutrient availability in the soil, which may initiate shifts in vegetation composition. The direction in which the vegetation shifts will co‐determine whether Arctic warming is mitigated or accelerated, making the understanding of successional trajectories urgent. One of the key factors influencing the competitive relationships between plant species is their access to nutrients, depending on the depth where they take up most nutrients. However, nutrient uptake at different soil depths by tundra plant species that differ in rooting depth is unclear.

Location

Kytalyk Nature Reserve, northeast Siberia, Russia.

Methods

We injected 15N to 5 cm, 15 cm and the thaw front of the soil in a moist tussock tundra. The absorption of 15N by grasses, sedges, deciduous shrubs and evergreen shrubs from the three depths was compared.

Results

The results clearly show a vertical differentiation of N uptake by these plant functional types, corresponding to their rooting strategy. Shallow‐rooting dwarf shrubs were more capable of absorbing nutrients from the upper soil than from deeper soil. Deep‐rooting grasses and sedges were more capable of absorbing nutrients from deeper soil than the dwarf shrubs. The natural 15N abundances in control plants also indicate that graminoids can absorb more nutrients from the deeper soil than dwarf shrubs.

Conclusions

Our results show that graminoids and shrubs in the Arctic differ in their N uptake strategies, with graminoids profiting from nutrients released at the thaw front, while shrubs mainly forage in upper soil layers. Our results suggest that tundra vegetation will become graminoid‐dominated as permafrost thaw progresses and nutrient availability increases in the deep soil.  相似文献   

9.
陆啸飞  郭洁芸  王斌  乐旭 《生态学报》2024,44(4):1313-1323
大气氮沉降水平持续升高导致的外源氮输入增加,强烈影响了陆地生态系统的碳循环。目前,已有大量报道证实了氮沉降升高对全球陆地植被固碳的积极影响。虽然之前大部分研究将这一结果归因于光合作用增强导致的地上生物量增加,但最近的研究发现长期氮添加对植物地下根系的影响也同样重要。归纳整理了181篇公开发表的我国野外模拟氮沉降试验结果,采用整合分析(Meta-analysis)方法,定量评估了氮添加对我国陆地植被地上-地下生物量分配的影响特征和不同生态系统类型及施氮方式之间的影响差异。通过分析地上-地下生物量分配对氮添加的响应差异来探究植被碳增益对长期大气氮沉降增加的潜在响应机制。结果表明,氮添加显著增强了我国陆地植被的光合作用及碳固存,且植物碳增益在不同生态系统类型及施氮制度间有所差异。植物叶片的氮含量显著增加,使得叶片碳氮比及凋落物碳氮比显著降低,但并未显著影响细根的碳氮比。氮添加总体上显著提高了植物的净光合速率,但降低了光合利用效率。地上生物量,凋落物产量和根生物量平均分别显著增加了38%,17%和18%,总体上植物地上部分对氮添加的响应程度比地下部分更高。然而,不同生态系统类型的地上-地下生物...  相似文献   

10.
Summary Natural cores of vegetation and soils of arctic tundra were collected in frozen condition in winter near Barrow, Alaska (71°20N). These cores were used as microcosms in a phytotron experiment to measure the interactions, if any, between increasing atmospheric CO2 concentration and fertilization by ammonium nitrate on net ecosystem CO2 exchange and net yield of tundra vegetation. Increased soil N significantly enhanced net ecosystem CO2 uptake. The effect of increased CO2 concentration had little or no effect on mean net ecosystem carbon balance of the tundra microcosms. Added N significantly increased leaf area and phytomass of vascular plants in the microcosms while increased atmospheric CO2 had no effect on these parameters. We conclude that atmospheric CO2 is not now limiting net ecosystem production in the tundra and that its direct effects will be slight even at double the present concentration. the most probable effects of carbon dioxide in the coastal tundra will be through its indirect effects on temperature, water table, peat decomposition, and the availability of soil nutrients.  相似文献   

11.
An 1800-km South to North transect (N 53°43′ to 69°43′) through Western Siberia was established to study the interaction of nitrogen and carbon cycles. The transect comprised all major vegetation zones from steppe, through taiga to tundra and corresponded to a natural temperature gradient of 9.5°C mean annual temperature (MAT). In order to elucidate changes in the control of C and N cycling along this transect, we analyzed physical and chemical properties of soils and microbial structure and activity in the organic and in the mineral horizons, respectively. The impact of vegetation and climate exerted major controls on soil C and N pools (e.g., soil organic matter, total C and dissolved inorganic nitrogen) and process rates (gross N mineralization and heterotrophic respiration) in the organic horizons. In the mineral horizons, however, the impact of climate and vegetation was less pronounced. Gross N mineralization rates decreased in the organic horizons from south to north, while remaining nearly constant in the mineral horizons. Especially, in the northern taiga and southern tundra gross nitrogen mineralization rates were higher in the mineral compared to organic horizons, pointing to strong N limitation in these biomes. Heterotrophic respiration rates did not exhibit a clear trend along the transect, but were generally higher in the organic horizon compared to mineral horizons. Therefore, C and N mineralization were spatially decoupled at the northern taiga and tundra. The climate change implications of these findings (specifically for the Arctic) are discussed.  相似文献   

12.
Effects of climate change are predicted to be greatest at high latitudes, with more pronounced warming in winter than summer. Extreme mid‐winter warm spells and heavy rain‐on‐snow events are already increasing in frequency in the Arctic, with implications for snow‐pack and ground‐ice formation. These may in turn affect key components of Arctic ecosystems. However, the fitness consequences of extreme winter weather events for tundra plants are not well understood, especially in the high Arctic. We simulated an extreme mid‐winter rain‐on‐snow event at a field site in high Arctic Svalbard (78°N) by experimentally encasing tundra vegetation in ice. After the subsequent growing season, we measured the effects of icing on growth and fitness indices in the common tundra plant, Arctic bell‐heather (Cassiope tetragona). The suitability of this species for retrospective growth analysis enabled us to compare shoot growth in pre and postmanipulation years in icing treatment and control plants, as well as shoot survival and flowering. Plants from icing treatment plots had higher shoot mortality and lower flowering success than controls. At the individual sample level, heavily flowering plants invested less in shoot growth than nonflowering plants, while shoot growth was positively related to the degree of shoot mortality. Therefore, contrary to expectation, undamaged shoots showed enhanced growth in ice treatment plants. This suggests that following damage, aboveground resources were allocated to the few remaining undamaged meristems. The enhanced shoot growth measured in our icing treatment plants has implications for climate studies based on retrospective analyses of Cassiope. As shoot growth in this species responds positively to summer warming, it also highlights a potentially complex interaction between summer and winter conditions. By documenting strong effects of icing on growth and reproduction of a widespread tundra plant, our study contributes to an understanding of Arctic plant responses to projected changes in winter climatic conditions.  相似文献   

13.
Changes in atmospheric deposition, stream water chemistry, and solute fluxes were assessed across 15 small forested catchments. Dramatic changes in atmospheric deposition have occurred over the last three decades, including a 70% reduction in sulphur (S) deposition. These changes in atmospheric inputs have been associated with expected changes in levels of acidity, sulphate and base cations in streams. Soil retention of S appeared to partially explain rates of chemical recovery. In addition to these changes in acid–base chemistry we also observed unexpected changes in nitrogen (N) biogeochemistry and nutrient stoichiometry of stream water, including decreased stream N concentrations. Among all catchments the average flux of dissolved inorganic nitrogen (DIN) was best predicted by average runoff, soil chemistry (forest floor C/N) and levels of acid deposition (both S and N). The rate of change in stream DIN flux, however, was much more closely correlated with reductions in rates of S deposition rather than those of DIN. Unlike DIN fluxes, the average concentrations as well as the rates of decline in streamwater nitrate (NO3) concentration over time were tightly linked to stream dissolved organic carbon/dissolved organic nitrogen ratios DOC/DON and DON/TP rather than catchment characteristics. Declines in phosphorus adsorption with increasing soil pH appear to contribute to the relationship between C, N, and P in our study catchments. Our observations suggest that catchment P availability and its alteration due to environmental changes (e.g. acidification) might have profound effects on N cycling and catchment N retention that have been largely unrecognized.  相似文献   

14.
长白山苔原是我国乃至欧亚大陆东部独有的高山苔原,根据前人调查植被以灌木苔原为主要类型。在全球变暖背景下,近30年来,长白山岳桦林下的草本植物侵入苔原带,原生灌木苔原分化为灌木苔原、灌草苔原和草本苔原,形成了灌木、灌草混合和草本3种不同类型的凋落物,凋落物数量和质量发生显著改变。与此同时长白山苔原氮沉降量也在逐年增加,导致了土壤中氮的累积,势必影响凋落物的分解。凋落物作为连接植物和土壤的纽带,其分解过程中碳(C)、氮(N)、磷(P)等化学组分和化学计量比的变化直接和间接影响着土壤养分有效性和植物养分利用策略。为揭示氮沉降增加对长白山苔原带不同类型凋落物化学组分及生态化学计量特征早期变化的影响,开展了为期8个月的模拟氮沉降室内凋落物分解实验。在苔原带采集灌木优势种牛皮杜鹃和草本优势种小叶章的凋落物带回实验室,模拟灌木牛皮杜鹃群落、灌草混合的牛皮杜鹃-小叶章群落和草本小叶章群落的3种不同类型凋落物,设置三个施氮处理:对照(CK,0 g N m-2 a-1)、低氮(LN,10 g N m-2 a-1)、高氮(HN,20 g N m-2 a-1)。研究表明:(1)不施氮处理时,3种凋落物的C、P均呈释放状态,木质素(Li)呈先累积再略有降解趋势;牛皮杜鹃凋落物的N元素富集而其余两种凋落物N元素呈释放状态;灌草混合和草本凋落物比原生的灌木凋落物C和N元素释放快、Li累积少;而灌木凋落物的P释放略快于灌草和草本凋落物。3种植被类型凋落物的C/N、C/P、Li/N大小表现为:牛皮杜鹃凋落物>牛皮杜鹃-小叶章混生群落凋落物>小叶章凋落物;N/P表现为:小叶章凋落物>牛皮杜鹃凋落物>牛皮杜鹃-小叶章混生群落凋落物。(2)氮沉降促进3种类型凋落物分解过程中C、N和P化学组分的释放,且氮浓度越高促进作用越显著。在牛皮杜鹃凋落物分解过程中,氮素添加到达某一阈值后,其C/N、C/P、N/P、Li/N的降幅最大,后续若再增加氮素,其对化学计量比的影响均会减弱;本实验中的氮素添加量增加促进了小叶章凋落物的C/N、Li/N下降。(3)草本植物入侵引起凋落物类型的变化带来凋落物分解加快,将导致长白山苔原带养分循环的变化;氮沉降增加对小叶章凋落物化学组分的释放及C/N、Li/N的下降更为促进,小叶章凋落物内难分解化合物减少,分解受到促进。高氮沉降加快了小叶章凋落物与土壤、草本植物之间的养分循环。因此,随着未来苔原带氮沉降量的增加,将更有利于小叶章在与牛皮杜鹃的竞争中获胜,使苔原带呈现草甸化趋势。  相似文献   

15.
The phenology of arctic ecosystems is driven primarily by abiotic forces, with temperature acting as the main determinant of growing season onset and leaf budburst in the spring. However, while the plant species in arctic ecosystems require differing amounts of accumulated heat for leaf‐out, dynamic vegetation models simulated over regional to global scales typically assume some average leaf‐out for all of the species within an ecosystem. Here, we make use of air temperature records and observations of spring leaf phenology collected across dominant groupings of species (dwarf birch shrubs, willow shrubs, other deciduous shrubs, grasses, sedges, and forbs) in arctic and boreal ecosystems in Alaska. We then parameterize a dynamic vegetation model based on these data for four types of tundra ecosystems (heath tundra, shrub tundra, wet sedge tundra, and tussock tundra), as well as ecotonal boreal white spruce forest, and perform model simulations for the years 1970–2100. Over the course of the model simulations, we found changes in ecosystem composition under this new phenology algorithm compared with simulations with the previous phenology algorithm. These changes were the result of the differential timing of leaf‐out, as well as the ability for the groupings of species to compete for nitrogen and light availability. Regionally, there were differences in the trends of the carbon pools and fluxes between the new phenology algorithm and the previous phenology algorithm, although these differences depended on the future climate scenario. These findings indicate the importance of leaf phenology data collection by species and across the various ecosystem types within the highly heterogeneous Arctic landscape, and that dynamic vegetation models should consider variation in leaf‐out by groupings of species within these ecosystems to make more accurate projections of future plant distributions and carbon cycling in Arctic regions.  相似文献   

16.
This study explores the relationship between the normalized difference vegetation index (NDVI) and aboveground plant biomass for tussock tundra vegetation and compares it to a previously established NDVI–biomass relationship for wet sedge tundra vegetation. In addition, we explore inter-annual variation in NDVI in both these contrasting vegetation communities. All measurements were taken across long-term experimental treatments in wet sedge and tussock tundra communities at the Toolik Lake Long Term Ecological Research (LTER) site, in northern Alaska. Over 15 years (for wet sedge tundra) and 14 years (for tussock tundra), N and P were applied in factorial experiments (N, P and N+P), air temperature was increased using greenhouses with and without N+P fertilizer, and light intensity was reduced by 50% using shade cloth. during the peak growing seasons of 2001, 2002, and 2003, NDVI measurements were made in both the wet sedge and tussock tundra experimental treatment plots, creating a 3-year time series of inter-annual variation in NDVI. We found that: (1) across all tussock experimental tundra treatments, NDVI is correlated with aboveground plant biomass (r 2=0.59); (2) NDVI–biomass relationships for tussock and wet sedge tundra communities are community specific, and; (3) NDVI values for tussock tundra communities are typically, but not always, greater than for wet sedge tundra communities across all experimental treatments. We suggest that differences between the response of wet sedge and tussock tundra communities in the same experimental treatments result from the contrasting degree of heterogeneity in species and functional types that characterize each of these Arctic tundra vegetation communities.  相似文献   

17.
Biological nitrogen (N2) fixation performed by diazotrophs (N2 fixing bacteria) is thought to be one of the main sources of plant available N in pristine ecosystems like arctic tundra. However, direct evidence of a transfer of fixed N2 to non-diazotroph associated plants is lacking to date. Here, we present results from an in situ 15N–N2 labelling study in the High Arctic. Three dominant vegetation types (organic crust composed of free-living cyanobacteria, mosses, cotton grass) were subjected to acetylene reduction assays (ARA) performed regularly throughout the growing season, as well as 15N–N2 incubations. The 15N-label was followed into the dominant N2 fixer associations, soil, soil microbial biomass and non-diazotroph associated plants three days and three weeks after labelling. Mosses contributed most to habitat N2 fixation throughout the measuring campaigns, and N2 fixation activity was highest at the beginning of the growing season in all plots. Fixed 15N–N2 became quickly (within 3 days) available to non-diazotroph associated plants in all investigated vegetation types, proving that N2 fixation is an actual source of available N in pristine ecosystems.  相似文献   

18.
Deposition of reactive nitrogen (N) compounds has the potential to cause severe damage to sensitive soils and waters, but the process of ‘nitrogen saturation’ is difficult to demonstrate or predict. This study compares outputs from a simple carbon–nitrogen model with observations of (1) regional- and catchment-scale relationships between surface water nitrate and dissolved organic carbon (DOC), as an indicator of catchment carbon (C) pool; (2) inter-regional variations in soil C/N ratios; and (3) plot scale soil and leachate response to long-term N additions, for a range of UK moorlands. Results suggest that the simple model applied can effectively reproduce observed patterns, and that organic soil C stores provide a critical control on catchment susceptibility to enhanced N leaching, leading to high spatial variability in the extent and severity of current damage within regions of relatively uniform deposition. Results also support the hypothesis that the N richness of organic soils, expressed as C/N ratio, provides an effective indicator of soil susceptibility to enhanced N leaching. The extent to which current C/N is influenced by N deposition, as opposed to factors such as climate and vegetation type, cannot be unequivocally determined on the basis of spatial data. However, N addition experiments at moorland sites have shown a reduction in organic soil C/N. A full understanding of the mechanisms of N-enrichment of soils and waters is essential to the assessment of current sensitivity to, and prediction of future damage from, globally increasing reactive nitrogen deposition.  相似文献   

19.
为了了解青藏高原东缘高山森林-苔原交错带土壤微生物的特征和季节变化, 研究了米亚罗鹧鸪山原始针叶林、林线、树线、密灌丛、疏灌丛和高山草甸土壤微生物生物量碳(MBC)、氮(MBN)和可培养微生物数量的季节动态。结果表明, 植被类型和季节动态对MBCMBN和微生物数量都有显著影响。不同时期的微生物在各植被类型间分布有差异, 植物生长季初期和生长季中期, 树线以上群落的MBC高于树线下的群落, 而到生长季末期恰恰相反, 暗针叶林、林线和树线的MBC显著升高, 各植被之间MBC的差异减小; 微生物数量基本上也是以树线为界, 树线以下群落土壤微生物数量显著低于树线以上群落, 其中密灌丛的细菌数量最高; 可培养微生物数量为生长季末期>生长季初期>生长季中期。生长季末期真菌数量显著增加, 且MBC/MBN最高。统计分析表明, MBN与细菌、真菌、放线菌数量存在显著的相关关系, 而MBC仅与真菌数量存在显著相关关系( p < 0.05)。植物生长季末期大量的凋落物输入和雪被覆盖可能是微生物季节变异的外在因素, 而土壤微生物和高山植物对有效氮的竞争可能是微生物季节变异的内在因素。植物生长季初期对氮的吸收和土壤微生物在植物生长季末期对氮的固定加强了高山生态系统对氮的利用。气候变暖可能会延长高山植物的生长季, 增加高山土壤微生物生物量, 加速土壤有机质的分解, 进而改变高山土壤碳的固存速率。  相似文献   

20.
The expansion of shrubs into tundra areas is a key terrestrial change underway in the Arctic in response to elevated temperatures during the twentieth century. Repeat photography permits a glimpse into greening satellite pixels, and it shows that, since 1950, some shrub patches have increased rapidly (hereafter expanding), while others have increased little or not at all (hereafter stable). We characterized and compared adjacent expanding and stable shrub patches across Arctic Alaska by sampling a wide range of physical and chemical soil and vegetation properties, including shrub growth rings. Expanding patches of Alnus viridis ssp. fruticosa (Siberian alder) contained shrub stems with thicker growth rings than in stable patches. Alder growth in expanding patches also showed strong correlation with spring and summer warming, whereas alder growth in stable patches showed little correlation with temperature. Expanding patches had different vegetation composition, deeper thaw depth, higher mean annual ground temperature, higher mean growing season temperature, lower soil moisture, less carbon in mineral soil, and lower C:N values in soils and shrub leaves. Expanding patches—higher resource environments—were associated with floodplains, stream corridors, and outcrops. Stable patches—lower resource environments—were associated with poorly drained tussock tundra. Collectively, we interpret these differences as implying that preexisting soil conditions predispose parts of the landscape to a rapid response to climate change, and we therefore expect shrub expansion to continue penetrating the landscape via dendritic floodplains, streams, and scattered rock outcrops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号