首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Zoonotic infections, which transmit from animals to humans, form the majority of new human pathogens. Following zoonotic transmission, the pathogen may already have, or may acquire, the ability to transmit from human to human. With infections such as Lassa fever (LF), an often fatal, rodent-borne, hemorrhagic fever common in areas of West Africa, rodent-to-rodent, rodent-to-human, human-to-human and even human-to-rodent transmission patterns are possible. Indeed, large hospital-related outbreaks have been reported. Estimating the proportion of transmission due to human-to-human routes and related patterns (e.g. existence of super-spreaders), in these scenarios is challenging, but essential for planned interventions.

Methodology/Principal Findings

Here, we make use of an innovative modeling approach to analyze data from published outbreaks and the number of LF hospitalized patients to Kenema Government Hospital in Sierra Leone to estimate the likely contribution of human-to-human transmission. The analyses show that almost of the cases at KGH are secondary cases arising from human-to-human transmission. However, we found much of this transmission is associated with a disproportionally large impact of a few individuals (‘super-spreaders’), as we found only of human cases result in an effective reproduction number (i.e. the average number of secondary cases per infectious case) , with a maximum value up to .

Conclusions/Significance

This work explains the discrepancy between the sizes of reported LF outbreaks and a clinical perception that human-to-human transmission is low. Future assessment of risks of LF and infection control guidelines should take into account the potentially large impact of super-spreaders in human-to-human transmission. Our work highlights several neglected topics in LF research, the occurrence and nature of super-spreading events and aspects of social behavior in transmission and detection.  相似文献   

2.
Entero‐haemorrhagic Escherichia coli O157:H7 is a zoonotic pathogen, responsible for a relatively small number of food poisoning and illness outbreaks each year, when compared with other food‐borne bacteria capable of causing infections in the population. Nevertheless, E. coli O157:H7 is a bacterial pathogen associated with severe human illnesses including bloody diarrhoea and haemolytic uremic syndrome occurring in both outbreak and sporadic settings. In England and Wales approximately 1% of all laboratory‐confirmed cases of food poisoning are the result of E. coli O157:H7; however, in Scotland this figure increases to 3%. When the size of the population is taken into account and the rate of E. coli O157:H7 confirmed cases per 100 000 population is examined, the rate of E. coli 0157:H7 infections in Scotland is much greater than England and Wales. The routes of transmission have changed over time, with new routes of transmission such as farm visits emerging. The prevalence of E. coli O157:H7 has a seasonal dependency, with greater faecal shedding of the organism in the warmer months; this is directly mirrored in the increased reporting of E. coli O157:H7 infection among hospitalized patients. This review attempts to suggest why this phenomenon occurs, paying particular attention to weather, animal movement and private water supplies.  相似文献   

3.
Mycobacterium ulcerans is the causative agent of Buruli ulcer, a rare but chronic debilitating skin and soft tissue disease found predominantly in West Africa and Southeast Australia. While a moderate body of research has examined the distribution of M. ulcerans, the specific route(s) of transmission of this bacterium remain unknown, hindering control efforts. M. ulcerans is considered an environmental pathogen given it is associated with lentic ecosystems and human-to-human spread is negligible. However, the pathogen is also carried by various mammals and invertebrates, which may serve as key reservoirs and mechanical vectors, respectively. Here, we examine and review recent evidence from these endemic regions on potential transmission pathways, noting differences in findings between Africa and Australia, and summarising the risk and protective factors associated with Buruli ulcer transmission. We also discuss evidence suggesting that environmental disturbance and human population changes precede outbreaks. We note five key research priorities, including adoption of One Health frameworks, to resolve transmission pathways and inform control strategies to reduce the spread of Buruli ulcer.  相似文献   

4.
Salmonella Typhimurium is a causative agent of nontyphoidal salmonellosis, for which there is a lack of a clinically approved vaccine in humans. As an intracellular pathogen, Salmonella impacts many cellular pathways. However, the intercellular communication mechanism facilitated by host-derived small extracellular vesicles (EVs), such as exosomes, is an overlooked aspect of the host responses to this infection. We used a comprehensive proteome-based network analysis of exosomes derived from Salmonella-infected macrophages to identify host molecules that are trafficked via these EVs. This analysis predicted that the host-derived small EVs generated during macrophage infection stimulate macrophages and promote activation of T helper 1 (Th1) cells. We identified that exosomes generated during infection contain Salmonella proteins, including unique antigens previously shown to stimulate protective immune responses against Salmonella in murine studies. Furthermore, we showed that host EVs formed upon infection stimulate a mucosal immune response against Salmonella infection when delivered intranasally to BALB/c mice, a route of antigen administration known to initiate mucosal immunity. Specifically, the administration of these vesicles to animals stimulated the production of anti-Salmonella IgG antibodies, such as anti-OmpA antibodies. Exosomes also stimulated antigen-specific cell-mediated immunity. In particular, splenic mononuclear cells isolated from mice administered with exosomes derived from Salmonella-infected antigen-presenting cells increased CD4+ T cells secreting Th1-type cytokines in response to Salmonella antigens. These results demonstrate that small EVs, formed during infection, contribute to Th1 cell bias in the anti-Salmonella responses. Collectively, this study helps to unravel the role of host-derived small EVs as vehicles transmitting antigens to induce Th1-type immunity against Gram-negative bacteria. Understanding the EV-mediated defense mechanisms will allow the development of future approaches to combat bacterial infections.  相似文献   

5.
Pathogen access to host nutrients in infected tissues is fundamental for pathogen growth and virulence, disease progression, and infection control. However, our understanding of this crucial process is still rather limited because of experimental and conceptual challenges. Here, we used proteomics, microbial genetics, competitive infections, and computational approaches to obtain a comprehensive overview of Salmonella nutrition and growth in a mouse typhoid fever model. The data revealed that Salmonella accessed an unexpectedly diverse set of at least 31 different host nutrients in infected tissues but the individual nutrients were available in only scarce amounts. Salmonella adapted to this situation by expressing versatile catabolic pathways to simultaneously exploit multiple host nutrients. A genome-scale computational model of Salmonella in vivo metabolism based on these data was fully consistent with independent large-scale experimental data on Salmonella enzyme quantities, and correctly predicted 92% of 738 reported experimental mutant virulence phenotypes, suggesting that our analysis provided a comprehensive overview of host nutrient supply, Salmonella metabolism, and Salmonella growth during infection. Comparison of metabolic networks of other pathogens suggested that complex host/pathogen nutritional interfaces are a common feature underlying many infectious diseases.  相似文献   

6.
Salmonella spp are a major foodborne zoonotic cause of human illness. Consumption of pork products is believed to be a major source of human salmonellosis and Salmonella control throughout the food-chain is recommended. A number of on-farm interventions have been proposed, and some have been implemented in order to try to achieve Salmonella control. In this study we utilize previously developed models describing Salmonella dynamics to investigate the potential effects of a range of these on-farm interventions. As the models indicated that the number of bacteria shed in the faeces of an infectious animal was a key factor, interventions applied within a high-shedding scenario were also analysed. From simulation of the model, the probability of infection after Salmonella exposure was found to be a key driver of Salmonella transmission. The model also highlighted that minimising physiological stress can have a large effect but only when shedding levels are not excessive. When shedding was high, weekly cleaning and disinfection was not effective in Salmonella control. However it is possible that cleaning may have an effect if conducted more often. Furthermore, separating infectious animals, shedding bacteria at a high rate, from the rest of the population was found to be able to minimise the spread of Salmonella.  相似文献   

7.
Leptospirosis is a zoonosis found worldwide that is caused by a spirochete. The main reservoirs of Leptospira, which presents an asymptomatic infection, are wild rodents, including the brown rat (Rattus norvegicus). Experimental studies of the mechanisms of its renal colonization in rats have previously used an intraperitoneal inoculation route. However, knowledge of rat-rat transmission requires the use of a natural route of inoculation, such as a mucosal or subcutaneous route. We investigated for the first time the effects of subcutaneous and mucosal inoculation routes compared to the reference intraperitoneal route during Leptospira infection in adult rats. Infection characteristics were studied using Leptospira renal isolation, serology, and molecular and histological analyses. Leptospira infection was asymptomatic using each inoculation route, and caused similar antibody production regardless of renal colonization. The observed renal colonization rates were 8 out of 8 rats, 5 out of 8 rats and 1 out of 8 rats for the intraperitoneal, mucosal and subcutaneous inoculation routes, respectively. Thus, among the natural infection routes studied, mucosal inoculation was more efficient for renal colonization associated with urinary excretion than the subcutaneous route and induced a slower-progressing infection than the intraperitoneal route. These results can facilitate understanding of the infection modalities in rats, unlike the epidemiological studies conducted in wild rats. Future studies of other natural inoculation routes in rat models will increase our knowledge of rat-rat disease transmission and allow the investigation of infection kinetics.  相似文献   

8.
Seasonal patterns in pathogen transmission can influence the impact of disease on populations and the speed of spatial spread. Increases in host contact rates or births drive seasonal epidemics in some systems, but other factors may occasionally override these influences. White-nose syndrome, caused by the emerging fungal pathogen Pseudogymnoascus destructans, is spreading across North America and threatens several bat species with extinction. We examined patterns and drivers of seasonal transmission of P. destructans by measuring infection prevalence and pathogen loads in six bat species at 30 sites across the eastern United States. Bats became transiently infected in autumn, and transmission spiked in early winter when bats began hibernating. Nearly all bats in six species became infected by late winter when infection intensity peaked. In summer, despite high contact rates and a birth pulse, most bats cleared infections and prevalence dropped to zero. These data suggest the dominant driver of seasonal transmission dynamics was a change in host physiology, specifically hibernation. Our study is the first, to the best of our knowledge, to describe the seasonality of transmission in this emerging wildlife disease. The timing of infection and fungal growth resulted in maximal population impacts, but only moderate rates of spatial spread.  相似文献   

9.
Downy mildew on sweet basil (Ocimum basilicum L.) occurs worldwide. Contaminated seeds are considered as the primary inoculum source. So far no strategy to control the disease is available. Hence, the use of pathogen-free seeds is the only alternative to prevent disease outbreaks. Therefore, a rapid diagnostic method for seed testing is urgently needed. The sensitivity of a specific PCR method for direct detection of the downy mildew pathogen Peronospora belbahrii on basil samples, particularly on seeds, was evaluated. The applied PCR method proved to be very sensitive for direct detection of the pathogen on seeds and plant samples. The PCR detection limit of P. belbahrii in artificially infested seeds corresponded to the DNA amount of a single spore per seed. Additionally, the systemic spread of the pathogen from naturally infected seeds was investigated. The experiments showed that outgrowing basil plants were latently infected with the downy mildew pathogen, and the infection continued within the plant. Contaminated seeds were harvested from symptomless latently infected plants. These results support the implementation of PCR-based detection in a seed certification scheme and the necessity to control the pathogen on seeds. The PCR method can also be used for evaluation of pathogen control on seeds based on detection of the pathogen in outgrowing plants.  相似文献   

10.
Prevalence of Salmonella enterica on a Danish pig farm presenting recurrent infections was investigated. A comparison of the pulsed-field gel electrophoresis patterns of fecal isolates from piggeries, waste slurry, and agricultural soil amended with Salmonella-contaminated animal waste (slurry) and subclinical isolates from the same farm (collected in 1996 and later) showed identical patterns, indicating long-term persistence of the Salmonella enterica serovar Typhimurium DT12 clone in the herd environment. Furthermore, when Salmonella-contaminated slurry was disposed of on the agricultural soil (a common waste disposal practice), the pathogen was isolated up to 14 days after the spread, indicating potentially high risks of transmission of the pathogen in the environment, animals, and humans.  相似文献   

11.
BackgroundThis study aimed to explore whether the transmission routes of severe fever with thrombocytopenia syndrome (SFTS) will be affected by tick density and meteorological factors, and to explore the factors that affect the transmission of SFTS. We used the transmission dynamics model to calculate the transmission rate coefficients of different transmission routes of SFTS, and used the generalized additive model to uncover how meteorological factors and tick density affect the spread of SFTS.MethodsIn this study, the time-varying infection rate coefficients of different transmission routes of SFTS in Jiangsu Province from 2017 to 2020 were calculated based on the previous multi-population multi-route dynamic model (MMDM) of SFTS. The changes in transmission routes were summarized by collecting questionnaires from 537 SFTS cases in 2018–2020 in Jiangsu Province. The incidence rate of SFTS and the infection rate coefficients of different transmission routes were dependent variables, and month, meteorological factors and tick density were independent variables to establish a generalized additive model (GAM). The optimal GAM was selected using the generalized cross-validation score (GCV), and the model was validated by the 2016 data of Zhejiang Province and 2020 data of Jiangsu Province. The validated GAMs were used to predict the incidence and infection rate coefficients of SFTS in Jiangsu province in 2021, and also to predict the effect of extreme weather on SFTS.ResultsThe number and proportion of infections by different transmission routes for each year and found that tick-to-human and human-to-human infections decreased yearly, but infections through animal and environmental transmission were gradually increasing. MMDM fitted well with the three-year SFTS incidence data (P<0.05). The best intervention to reduce the incidence of SFTS is to reduce the effective exposure of the population to the surroundings. Based on correlation tests, tick density was positively correlated with air temperature, wind speed, and sunshine duration. The best GAM was a model with tick transmissibility to humans as the dependent variable, without considering lagged effects (GCV = 5.9247E-22, R2 = 96%). Reported incidence increased when sunshine duration was higher than 11 h per day and decreased when temperatures were too high (>28°C). Sunshine duration and temperature had the greatest effect on transmission from host animals to humans. The effect of extreme weather conditions on SFTS was short-term, but there was no effect on SFTS after high temperature and sunshine hours.ConclusionsDifferent factors affect the infection rate coefficients of different transmission routes. Sunshine duration, relative humidity, temperature and tick density are important factors affecting the occurrence of SFTS. Hurricanes reduce the incidence of SFTS in the short term, but have little effect in the long term. The most effective intervention to reduce the incidence of SFTS is to reduce population exposure to high-risk environments.  相似文献   

12.
Rabbits have been increasingly linked to the persistence of paratuberculosis (Johne's disease) in domestic ruminants in the United Kingdom. The aims of this study were to determine the routes of intraspecies transmission of Mycobacterium avium subspecies paratuberculosis (MAP) in rabbits and to estimate the probability of transmission via each route, in order to gain understanding of the dynamics of MAP in this host. Rabbits were sampled from two sites where MAP had previously been isolated from the livestock and rabbit populations. No pathology was noted in any animals, but the overall prevalence of MAP in rabbits was high at both sites studied, 39.7% and 23.0%, respectively. MAP was isolated from the testes, uterus, placenta, fetuses, and milk. This is the first time that the bacterium has been isolated from any of these tissues in a nonruminant wildlife species. These results suggest that transmission may occur vertically, pseudovertically, and horizontally. Vertical, i.e., transplacental, and/or pseudo-vertical, i.e., through the ingestion of contaminated milk and/or feces, transmission occurred in 14% of offspring entering the population at 1 month of age. As infection via these routes is only possible from infected adult females, this equates to a probability of infection via this route of 0.326. Probability of infection via horizontal transmission (including interspecies transmission) occurred at up to 0.037 per month. The presence of these routes of transmission within natural rabbit populations will contribute to the maintenance of MAP infections within such populations and, therefore, the environment.  相似文献   

13.
Babesia spp. (Apicomplexa, Piroplasmida) are obligate parasites of many species of mammals, causing a malaria-like infection- babesiosis. Three routes of Babesia infection have been recognized to date. The main route is by a tick bite, the second is via blood transfusion. The third, vertical route of infection is poorly recognized and understood. Our study focused on vertical transmission of B. microti in a well-established mouse model. We assessed the success of this route of infection in BALB/c mice with acute and chronic infections of B. microti. In experimental groups, females were mated on the 1st day of Babesia infection (Group G0); on the 28th day post infection (dpi) in the post- acute phase of the parasite infection (G28); and on the 90th and 150th dpi (G90 and G150 group, respectively), in the chronic phase of the parasite infection. Pups were obtained from 58% of females mated in the post-acute phase (G28) and from 33% of females in groups G90 and G150. Mice mated in the pre-acute phase of infection (G0) did not deliver pups. Congenital B. microti infections were detected by PCR amplification of Babesia 18S rDNA in almost all pups (96%) from the experimental groups G28, G90 and G150. Parasitaemia in the F1 generation was low and varied between 0.01–0.001%. Vertical transmission of B. microti was demonstrated for the first time in BALB/c mice.  相似文献   

14.
New habitat-based models for spread of hantavirus are developed which account for interspecies interaction. Existing habitat-based models do not consider interspecies pathogen transmission, a primary route for emergence of new infectious diseases and reservoirs in wildlife and man. The modeling of interspecies transmission has the potential to provide more accurate predictions of disease persistence and emergence dynamics. The new models are motivated by our recent work on hantavirus in rodent communities in Paraguay. Our Paraguayan data illustrate the spatial and temporal overlaps among rodent species, one of which is the reservoir species for Jabora virus and others which are spillover species. Disease transmission occurs when their habitats overlap. Two mathematical models, a system of ordinary differential equations (ODE) and a continuous-time Markov chain (CTMC) model, are developed for spread of hantavirus between a reservoir and a spillover species. Analysis of a special case of the ODE model provides an explicit expression for the basic reproduction number, , such that if , then the pathogen does not persist in either population but if , pathogen outbreaks or persistence may occur. Numerical simulations of the CTMC model display sporadic disease incidence, a new behavior of our habitat-based model, not present in other models, but which is a prominent feature of the seroprevalence data from Paraguay. Environmental changes that result in greater habitat overlap result in more encounters among various species that may lead to pathogen outbreaks and pathogen establishment in a new host.  相似文献   

15.
Recent outbreaks of food-borne illness associated with the consumption of produce have increased concern over wildlife reservoirs of food-borne pathogens. Wild rodents are ubiquitous, and those living close to agricultural farms may pose a food safety risk should they shed zoonotic microorganisms in their feces near or on agricultural commodities. Fecal samples from wild rodents trapped on 13 agricultural farms (9 produce, 3 cow-calf operations, and 1 beef cattle feedlot) in Monterey and San Benito Counties, CA, were screened to determine the prevalence and risk factors for shedding of several food-borne pathogens. Deer mice (Peromyscus maniculatus) were the most abundant rodent species trapped (72.5%). Cryptosporidium species (26.0%) and Giardia species (24.2%) were the predominant isolates from rodent feces, followed by Salmonella enterica serovars (2.9%) and Escherichia coli O157:H7 (0.2%). Rodent trap success was significantly associated with detection of Salmonella in rodent feces, while farm type was associated with fecal shedding of Cryptosporidium and Giardia. Seasonal shedding patterns were evident, with rodents trapped during the spring and summer months being significantly less likely to be shedding Cryptosporidium oocysts than those trapped during autumn. Higher rodent species diversity tended to correlate with lower fecal microbial prevalence, and most spatiotemporal pathogen clusters involved deer mice. Rodents in the study area posed a minimal risk as environmental reservoirs of E. coli O157:H7, but they may play a role in environmental dissemination of Salmonella and protozoa. Rodent control efforts that potentially reduce biodiversity may increase pathogen shedding, possibly through promotion of intraspecific microbial transmission.  相似文献   

16.
Enteric illnesses remain the second largest source of communicable diseases worldwide, and wild birds are suspected sources for human infection. This has led to efforts to reduce pathogen spillover through deterrence of wildlife and removal of wildlife habitat, particularly within farming systems, which can compromise conservation efforts and the ecosystem services wild birds provide. Further, Salmonella spp. are a significant cause of avian mortality, leading to additional conservation concerns. Despite numerous studies of enteric bacteria in wild birds and policies to discourage birds from food systems, we lack a comprehensive understanding of wild bird involvement in transmission of enteric bacteria to humans. Here, we propose a framework for understanding spillover of enteric pathogens from wild birds to humans, which includes pathogen acquisition, reservoir competence and bacterial shedding, contact with people and food, and pathogen survival in the environment. We place the literature into this framework to identify important knowledge gaps. Second, we conduct a meta‐analysis of prevalence data for three human enteric pathogens, Campylobacter spp., E. coli, and Salmonella spp., in 431 North American breeding bird species. Our literature review revealed that only 3% of studies addressed the complete system of pathogen transmission. In our meta‐analysis, we found a Campylobacter spp. prevalence of 27% across wild birds, while prevalence estimates of pathogenic E. coli (20%) and Salmonella spp. (6.4%) were lower. There was significant bias in which bird species have been tested, with most studies focusing on a small number of taxa that are common near people (e.g. European starlings Sturnus vulgaris and rock pigeons Columba livia) or commonly in contact with human waste (e.g. gulls). No pathogen prevalence data were available for 65% of North American breeding bird species, including many commonly in contact with humans (e.g. black‐billed magpie Pica hudsonia and great blue heron Ardea herodias), and our metadata suggest that some under‐studied species, taxonomic groups, and guilds may represent equivalent or greater risk to human infection than heavily studied species. We conclude that current data do not provide sufficient information to determine the likelihood of enteric pathogen spillover from wild birds to humans and thus preclude management solutions. The primary focus in the literature on pathogen prevalence likely overestimates the probability of enteric pathogen spillover from wild birds to humans because a pathogen must survive long enough at an infectious dose and be a strain that is able to colonize humans to cause infection. We propose that future research should focus on the large number of under‐studied species commonly in contact with people and food production and demonstrate shedding of bacterial strains pathogenic to humans into the environment where people may contact them. Finally, studies assessing the duration and intensity of bacterial shedding and survival of bacteria in the environment in bird faeces will help provide crucial missing information necessary to calculate spillover probability. Addressing these essential knowledge gaps will support policy to reduce enteric pathogen spillover to humans and enhance bird conservation efforts that are currently undermined by unsupported fears of pathogen spillover from wild birds.  相似文献   

17.
Topological, chemical and immunological barriers are thought to limit infection by enteropathogenic bacteria. However, in many cases these barriers and their consequences for the infection process remain incompletely understood. Here, we employed a mouse model for Salmonella colitis and a mixed inoculum approach to identify barriers limiting the gut luminal pathogen population. Mice were infected via the oral route with wild type S. Typhimurium (S. Tm) and/or mixtures of phenotypically identical but differentially tagged S. Tm strains (“WITS”, wild-type isogenic tagged strains), which can be individually tracked by quantitative real-time PCR. WITS dilution experiments identified a substantial loss in tag/genetic diversity within the gut luminal S. Tm population by days 2–4 post infection. The diversity-loss was not attributable to overgrowth by S. Tm mutants, but required inflammation, Gr-1+ cells (mainly neutrophilic granulocytes) and most likely NADPH-oxidase-mediated defense, but not iNOS. Mathematical modelling indicated that inflammation inflicts a bottleneck transiently restricting the gut luminal S. Tm population to approximately 6000 cells and plating experiments verified a transient, inflammation- and Gr-1+ cell-dependent dip in the gut luminal S. Tm population at day 2 post infection. We conclude that granulocytes, an important clinical hallmark of S. Tm-induced inflammation, impose a drastic bottleneck upon the pathogen population. This extends the current view of inflammation-fuelled gut-luminal Salmonella growth by establishing the host response in the intestinal lumen as a double-edged sword, fostering and diminishing colonization in a dynamic equilibrium. Our work identifies a potent immune defense against gut infection and reveals a potential Achilles'' heel of the infection process which might be targeted for therapy.  相似文献   

18.
Since 1999 a lineage of the pathogen Cryptococcus gattii has been infecting humans and other animals in Canada and the Pacific Northwest of the USA. It is now the largest outbreak of a life-threatening fungal infection in a healthy population in recorded history. The high virulence of outbreak strains is closely linked to the ability of the pathogen to undergo rapid mitochondrial tubularisation and proliferation following engulfment by host phagocytes. Most outbreaks spread by geographic expansion across suitable niches, but it is known that genetic re-assortment and hybridisation can also lead to rapid range and host expansion. In the context of C. gattii, however, the likelihood of virulence traits associated with the outbreak lineages spreading to other lineages via genetic exchange is currently unknown. Here we address this question by conducting outgroup crosses between distantly related C. gattii lineages (VGII and VGIII) and ingroup crosses between isolates from the same molecular type (VGII). Systematic phenotypic characterisation shows that virulence traits are transmitted to outgroups infrequently, but readily inherited during ingroup crosses. In addition, we observed higher levels of biparental (as opposed to uniparental) mitochondrial inheritance during VGII ingroup sexual mating in this species and provide evidence for mitochondrial recombination following mating. Taken together, our data suggest that hypervirulence can spread among the C. gattii lineages VGII and VGIII, potentially creating novel hypervirulent genotypes, and that current models of uniparental mitochondrial inheritance in the Cryptococcus genus may not be universal.  相似文献   

19.
Salmonella, a Gram-negative facultative intracellular pathogen is capable of infecting vast array of hosts. The striking ability of Salmonella to overcome every hurdle encountered in the host proves that they are true survivors. In the host, Salmonella infects various cell types and needs to survive and replicate by countering the defense mechanism of the specific cell. In this review, we will summarize the recent insights into the cell biology of Salmonella infection. Here, we will focus on the findings that deal with the specific mechanism of various cell types to control Salmonella infection. Further, the survival strategies of the pathogen in response to the host immunity will also be discussed in detail. Better understanding of the mechanisms by which Salmonella evade the host defense system and establish pathogenesis will be critical in disease management.  相似文献   

20.

Background

The bacterial pathogen Salmonella causes worldwide disease. A major route of intestinal entry involves M cells, providing access to B cell-rich Peyer’s Patches. Primary human B cells phagocytose Salmonella typhimurium upon recognition by the specific surface Ig receptor (BCR). As it is unclear how Salmonella disseminates systemically, we studied whether Salmonella can use B cells as a transport device for spreading.

Methodology/Principal Findings

Human primary B cells or Ramos cell line were incubated with GFP-expressing Salmonella. Intracellular survival and escape was studied in vitro by live cell imaging, flow cytometry and flow imaging. HEL-specific B cells were transferred into C57BL/6 mice and HEL-expressing Salmonella spreading in vivo was analyzed investigating mesenteric lymph nodes, spleen and blood. After phagocytosis by B cells, Salmonella survives intracellularly in a non-replicative state which is actively maintained by the B cell. Salmonella is later excreted followed by reproductive infection of other cell types. Salmonella-specific B cells thus act both as a survival niche and a reservoir for reinfection. Adoptive transfer of antigen-specific B cells before oral infection of mice showed that these B cells mediate in vivo systemic spreading of Salmonella to spleen and blood.

Conclusions/Significance

This is a first example of a pathogenic bacterium that abuses the antigen-specific cells of the adaptive immune system for systemic spreading for dissemination of infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号