首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined how changes in wildland firefighters’ mood relate to cytokine and cortisol levels in response to simulated physical firefighting work and sleep restriction. Firefighters completed 3 days of simulated wildfire suppression work separated by an 8-h (control condition; n = 18) or 4-h sleep opportunity (sleep restriction condition; n = 17) each night. Firefighters’ mood was assessed daily using the Mood Scale II and Samn-Perelli fatigue scale. Participants also provided samples for the determination of salivary cortisol and pro- (IL-6, IL-8, IL-1β, TNF-α) and anti-inflammatory (IL-4, IL-10) cytokine levels. An increase in the positive mood dimension Happiness was related to a rise in IL-8 and TNF-α in the sleep restriction condition. A rise in the positive mood dimension Activation among sleep restricted firefighters was also related to higher IL-6 levels. An increase in the negative mood dimension Fatigue in the sleep restriction condition was associated with increased IL-6, TNF-α, IL-10 and cortisol levels. In addition, an increase in Fear among sleep restricted firefighters was associated with a rise in TNF-α. Elevated positive mood and immune activation may reflect an appropriate response by the firefighters to these stressors. To further understand this relationship, subsequent firefighting-based research is needed that investigates whether immune changes are a function of affective arousal linked to the expression of positive moods. Positive associations between negative mood and inflammatory and cortisol levels to physical work and restricted sleep provide useful information to fire agencies about subjective fire-ground indicators of physiological changes.  相似文献   

2.

Objectives

To examine the effects of sleep restriction on firefighters’ physical task performance during simulated wildfire suppression.

Methods

Thirty-five firefighters were matched and randomly allocated to either a control condition (8-hour sleep opportunity, n = 18) or a sleep restricted condition (4-hour sleep opportunity, n = 17). Performance on physical work tasks was evaluated across three days. In addition, heart rate, core temperature, and worker activity were measured continuously. Rate of perceived and exertion and effort sensation were evaluated during the physical work periods.

Results

There were no differences between the sleep-restricted and control groups in firefighters’ task performance, heart rate, core temperature, or perceptual responses during self-paced simulated firefighting work tasks. However, the sleep-restricted group were less active during periods of non-physical work compared to the control group.

Conclusions

Under self-paced work conditions, 4 h of sleep restriction did not adversely affect firefighters’ performance on physical work tasks. However, the sleep-restricted group were less physically active throughout the simulation. This may indicate that sleep-restricted participants adapted their behaviour to conserve effort during rest periods, to subsequently ensure they were able to maintain performance during the firefighter work tasks. This work contributes new knowledge to inform fire agencies of firefighters’ operational capabilities when their sleep is restricted during multi-day wildfire events. The work also highlights the need for further research to explore how sleep restriction affects physical performance during tasks of varying duration, intensity, and complexity.  相似文献   

3.
Although a nonlinear time-of-day and prior wake interaction on performance has been well documented, two recent studies have aimed to incorporate the influences of sleep restriction into this paradigm. Through the use of sleep-restricted forced desynchrony protocols, both studies reported a time-of-day?×?sleep restriction interaction, as well as a time-of-day?×?prior wake?×?sleep dose three-way interaction. The current study aimed to investigate these interactions on simulated driving performance, a more complex task with ecological validity for the problem of fatigued driving. The driving performance of 41 male participants (mean?±?SD: 22.8 ±2.2 yrs) was assessed on a 10-min simulated driving task with the standard deviation of lateral position (SDLAT) measured. Using a between-group design, participants were subjected to either a control condition of 9.33?h of sleep/18.66?h of wake, a moderate sleep-restriction (SR) condition of 7?h of sleep/21?h of wake, or a severe SR condition of 4.66?h of sleep/23.33?h of wake. In each condition, participants were tested at 2.5-h intervals after waking across 7?×?28-h d of forced desynchrony. Driving sessions occurred at nine doses of prior wake, within six divisions of the circadian cycle based on core body temperature (CBT). Mixed-models analyses of variance (ANOVAs) revealed significant main effects of time-of-day, prior wake, sleep debt, and sleep dose on SDLAT. Additionally, significant two-way interactions of time-of-day?×?prior wake and time-of-day?×?sleep debt, as well as significant three-way interactions of time-of-day?×?prior wake?×?sleep debt and time-of-day?×?sleep debt?×?sleep dose were observed. Although limitations such as the presence of practice effects and large standard errors are noted, the study concludes with three findings. The main effects demonstrate that extending wake, reducing sleep, and driving at poor times of day all significantly impair driving performance at an individual level. In addition to this, combining either extended wake or a sleep debt with the early morning hours greatly decreases driving performance. Finally, operating under the influence of a reduced sleep dose can greatly decrease performance at all times of the day. (Author correspondence: )  相似文献   

4.
5.
Bcr and Abr are GTPase-activating proteins for the small GTPase Rac. Both proteins are expressed in cells of the innate immune system, including neutrophils and macrophages. The function of Bcr has been linked to the negative regulation of neutrophil reactive oxygen species (ROS) production, but the function of Abr in the innate immune system was unknown. Here, we report that mice lacking both proteins are severely affected in two models of experimental endotoxemia, including exposure to Escherichia coli lipopolysaccharide and polymicrobial sepsis, with extensive microvascular leakage, resulting in severe pulmonary edema and hemorrhage. Additionally, in vivo-activated neutrophils of abr and bcr null mutant mice produced excessive tissue-damaging myeloperoxidase (MPO), elastase, and ROS. Moreover, the secretion of the tissue metalloproteinase MMP9 by monocytes and ROS by elicited macrophages was abnormally high. In comparison, ROS production from bone marrow monocytes was not significantly different from that of controls, and the exocytosis of neutrophil secondary and tertiary granule products, including lactoferrin, was normal. These data show that Abr and Bcr normally curb very specific functions of mature tissue innate immune cells, and that each protein has distinct as well as partly overlapping functions in the downregulation of inflammatory processes.BCR originally was discovered as a human gene on chromosome 22 that, in chronic myeloid leukemia, becomes fused to the c-ABL tyrosine kinase gene originating from chromosome 9 (18). The normal gene encodes a 160-kDa protein that contains a domain with GTPase-activating (GAP) activity toward Rho family GTPases (7, 11, 12, 32, 36). There is only one other gene in mouse and human, called ABR, that is closely homologous to BCR (17). Abr shares several domains with Bcr, which includes a Dbl homology (DH) domain and a GAP domain. Bcr has an additional N-terminal part consisting of a coiled-coil and a serine/threonine kinase domain that is not present in Abr, suggesting that each GAP has a distinct cellular function.Rho GTPases, including Rho, Rac, and Cdc42, play important roles in many functions of cells of the innate immune system (16). They cycle between active GTP and inactive GDP-bound conformations. GAP proteins catalyze the conversion of bound GTP to GDP on Rho GTPases and thus act as negative, inactivating regulators.In previous studies, we showed that both Abr and Bcr specifically act as GAPs for Rac and not for the related Cdc42 (6). To investigate the normal cellular function of these two related GAPs, we generated mice defective in the production of Abr or Bcr through gene targeting. Mice that lack both proteins have defects in the architecture of the inner ear, with the partial absence of otoconia and hair cells. Additionally, postnatal cerebellar development is abnormal, with a persistence of ectopic granule cells at the cerebellar surface. These combined abnormalities cause persistent circling and balance problems (20, 21).As reported previously, neutrophils from mice lacking Bcr produce increasing amounts of reactive oxygen species (ROS), and bcr−/− mice injected with Escherichia coli lipopolysaccharide (LPS) are much more severely affected than are wild-type mice (39). We further explored the role of Bcr and Abr in the innate immune system with a detailed study of bone marrow-derived macrophages (BMM). Interestingly, macrophages isolated from double-knockout (abr × bcr−/−) mice exhibited multiple defects. These include aberrant actin cytoskeletal organization and the increased colony-stimulating factor 1-stimulated chemotaxis and phagocytosis of opsonized zymosan or E. coli (6).In the current study, we examined whether the defects observed in vitro result in an observable phenotype in vivo, under inflammatory conditions. Here, we report that Abr plays a distinct role in negatively regulating the innate immune system in vivo, as well as exhibiting overlap with the function of Bcr. Mice lacking both Abr and Bcr have a severely impaired ability to resolve septic shock, showing that the activity of both proteins is required for the appropriate negative control of innate immune responses.  相似文献   

6.
The objective of this study was to quantify daytime sleep in night-shift workers with and without an intervention designed to recover the normal relationship between the endogenous circadian pacemaker and the sleep/wake cycle. Workers of the treatment group received intermittent exposure to full-spectrum bright light during night shifts and wore dark goggles during the morning commute home. All workers maintained stable 8-h daytime sleep/darkness schedules. The authors found that workers of the treatment group had daytime sleep episodes that lasted 7.1?±?.1?h (mean?±?SEM) versus 6.6?±?.2?h for workers in the control group (p?=?.04). The increase in total sleep time co-occurred with a larger proportion of the melatonin secretory episode during daytime sleep in workers of the treatment group. The results of this study showed reestablishment of a phase angle that is comparable to that observed on a day-oriented schedule favors longer daytime sleep episodes in night-shift workers. (Author correspondence: )  相似文献   

7.

Background

Obstructive Sleep Apnea (OSA) is tightly linked to some components of Metabolic Syndrome (MetS). However, most of the evidence evaluated individual components of the MetS or patients with a diagnosis of OSA that were referred for sleep studies due to sleep complaints. Therefore, it is not clear whether OSA exacerbates the metabolic abnormalities in a representative sample of patients with MetS.

Methodology/Principal Findings

We studied 152 consecutive patients (age 48±9 years, body mass index 32.3±3.4 Kg/m2) newly diagnosed with MetS (Adult Treatment Panel III). All participants underwent standard polysomnography irrespective of sleep complaints, and laboratory measurements (glucose, lipid profile, uric acid and C-reactive protein). The prevalence of OSA (apnea-hypopnea index ≥15 events per hour of sleep) was 60.5%. Patients with OSA exhibited significantly higher levels of blood pressure, glucose, triglycerides, cholesterol, LDL, cholesterol/HDL ratio, triglycerides/HDL ratio, uric acid and C-reactive protein than patients without OSA. OSA was independently associated with 2 MetS criteria: triglycerides: OR: 3.26 (1.47–7.21) and glucose: OR: 2.31 (1.12–4.80). OSA was also independently associated with increased cholesterol/HDL ratio: OR: 2.38 (1.08–5.24), uric acid: OR: 4.19 (1.70–10.35) and C-reactive protein: OR: 6.10 (2.64–14.11). Indices of sleep apnea severity, apnea-hypopnea index and minimum oxygen saturation, were independently associated with increased levels of triglycerides, glucose as well as cholesterol/HDL ratio, uric acid and C-reactive protein. Excessive daytime sleepiness had no effect on the metabolic and inflammatory parameters.

Conclusions/Significance

Unrecognized OSA is common in consecutive patients with MetS. OSA may contribute to metabolic dysregulation and systemic inflammation in patients with MetS, regardless of symptoms of daytime sleepiness.  相似文献   

8.
9.
Due to the mixed findings of previous studies, it is still difficult to provide guidance on how to best manage sleep inertia after waking from naps in operational settings. One of the few factors that can be manipulated is the duration of the nap opportunity. The aim of the present study was to investigate the magnitude and time course of sleep inertia after waking from short (20-, 40- or 60-min) naps during simulated night work and extended operations. In addition, the effect of sleep stage on awakening and duration of slow wave sleep (SWS) on sleep inertia was assessed. Two within-subject protocols were conducted in a controlled laboratory setting. Twenty-four healthy young men (Protocol 1: n?=?12, mean age?=?25.1 yrs; Protocol 2: n?=?12, mean age?=?23.2 yrs) were provided with nap opportunities of 20-, 40-, and 60-min (and a control condition of no nap) ending at 02:00?h after ~20?h of wakefulness (Protocol 1 [P1]: simulated night work) or ending at 12:00?h after ~30?h of wakefulness (Protocol 2 [P2]: simulated extended operations). A 6-min test battery, including the Karolinska Sleepiness Scale (KSS) and the 4-min 2-Back Working Memory Task (WMT), was repeated every 15?min the first hour after waking. Nap sleep was recorded polysomnographically, and in all nap opportunities sleep onset latency was short and sleep efficiency high. Mixed-model analyses of variance (ANOVA) for repeated measures were calculated and included the factors time (time post-nap), nap opportunity (duration of nap provided), order (order in which the four protocols were completed), and the interaction of these terms. Results showed no test x nap opportunity effect (i.e., no effect of sleep inertia) on KSS. However, WMT performance was impaired (slower reaction time, fewer correct responses, and increased omissions) on the first test post-nap, primarily after a 40- or 60-min nap. In P2 only, performance improvement was evident 45?min post-awakening for naps of 40?min or more. In ANOVAs where sleep stage on awakening was included, the test x nap opportunity interaction was significant, but differences were between wake and non-REM Stage 1/Stage 2 or wake and SWS. A further series of ANOVAs showed no effect of the duration of SWS on sleep inertia. The results of this study demonstrate that no more than 15?min is required for performance decrements due to sleep inertia to dissipate after nap opportunities of 60?min or less, but subjective sleepiness is not a reliable indicator of this effect. Under conditions where sleep is short, these findings also suggest that SWS, per se, does not contribute to more severe sleep inertia. When wakefulness is extended and napping occurs at midday (i.e., P2), nap opportunities of 40- and 60-min have the advantage over shorter duration sleep periods, as they result in performance benefits ~45?min after waking.  相似文献   

10.
We have studied the effect of a short period of exposure to the intense heat of a sauna bath on the electrocardiogram and plasma catecholamine, free fatty acid, and triglyceride concentrations in 17 subjects with apparently normal hearts and 18 persons with coronary heart disease. Similar observations were made on 11 of the 17 normal subjects and on 7 of the persons with coronary heart disease in response to exercise.Exposure to heat was associated with an increase in plasma adrenaline with no change in noradrenaline, free fatty acid, or triglyceride concentrations. Exercise was associated with the expected increase in both plasma noradrenaline and adrenaline concentrations. A heart rate up to 180 beats/min was observed in response to both heat and exercise. Apart from the ST-T changes inherent to sinus tachycardia, ST-T segment abnormalities were frequent in response to heat in both the subjects with normal and abnormal hearts, but little change occurred in the ST-T configuration when the subjects were exercised to produce comparable heart rates. Ectopic beats, sometimes numerous and multifocal, were observed in some subjects of both groups in response to heat, but not to exercise. It seems likely that the net unbalanced adrenaline component of the increased plasma catecholamine concentrations (which is also seen in certain emotional stress situations) is predominantly responsible for ischaemic-like manifestations of the electrocardiogram in susceptible subjects. The observations provide further validation for previously reported studies that it is the increased plasma noradrenaline in response to emotional stress that is associated with the release of free fatty acids and ultimate hypertriglyceridaemia, of probable importance in the aetiology of atheroma.  相似文献   

11.
12.
Exposure to hard metal tungsten carbide cobalt (WC-Co) “dusts” in enclosed industrial environments is known to contribute to the development of hard metal lung disease and an increased risk for lung cancer. Currently, the influence of local and systemic inflammation on disease progression following WC-Co exposure remains unclear. To better understand the relationship between WC-Co nanoparticle (NP) exposure and its resultant effects, the acute local pulmonary and systemic inflammatory responses caused by WC-Co NPs were explored using an intra-tracheal instillation (IT) model and compared to those of CeO2 (another occupational hazard) NP exposure. Sprague-Dawley rats were given an IT dose (0-500 μg per rat) of WC-Co or CeO2 NPs. Following 24-hr exposure, broncho-alveolar lavage fluid and whole blood were collected and analyzed. A consistent lack of acute local pulmonary inflammation was observed in terms of the broncho-alveolar lavage fluid parameters examined (i.e. LDH, albumin, and macrophage activation) in animals exposed to WC-Co NP; however, significant acute pulmonary inflammation was observed in the CeO2 NP group. The lack of acute inflammation following WC-Co NP exposure contrasts with earlier in vivo reports regarding WC-Co toxicity in rats, illuminating the critical role of NP dose and exposure time and bringing into question the potential role of impurities in particle samples. Further, we demonstrated that WC-Co NP exposure does not induce acute systemic effects since no significant increase in circulating inflammatory cytokines were observed. Taken together, the results of this in vivo study illustrate the distinct differences in acute local pulmonary and systemic inflammatory responses to NPs composed of WC-Co and CeO2; therefore, it is important that the outcomes of pulmonary exposure to one type of NPs may not be implicitly extrapolated to other types of NPs.  相似文献   

13.
自杀是复杂且致死率高的重要公共健康问题,应激和睡眠障碍均为自杀的重要风险因素,且三者之间具有密切的关联。由于应激和睡眠障碍具有可改变性,了解应激、睡眠和自杀的关系及其生理机制,有助于了解自杀的病理基础,探寻识别和干预自杀的关键靶点,促进对自杀的预防和干预。本文介绍有关应激、自杀、睡眠关联的最新研究结果,分别从 HPA轴功能、多胺应激反应系统等神经生理基础,以及基因、表观遗传修饰等遗传学的角度探讨三者关联的生理机制,探索该领域的研究挑战及未来的研究方向。  相似文献   

14.
Previous forced desynchrony studies have highlighted the close relationship between the circadian rhythms of core body temperature (CBT) and sleep propensity. In particular, these studies have shown that a “forbidden zone” for sleep exists on the rising limb of the CBT rhythm. In these previous studies, the length of the experimental day was either ultrashort (90?min), short (20?h), or long (28?h), and the ratio of sleep to wake was normal (i.e., 1:2). The aim of the current study was to examine the relative effects of the circadian and homeostatic processes on sleep propensity using a 28-h forced desynchrony protocol in which the ratio of sleep to wake was substantially lower than normal (i.e., 1:5). Twenty-seven healthy males lived in a time-isolation sleep laboratory for 11 consecutive days. Participants completed either a control (n?=?13) or sleep restriction (n?=?14) condition. In both conditions, the protocol consisted of 2?×?24-h baseline days followed by 8?×?28-h forced desynchrony days. On forced desynchrony days, the control group had 9.3?h in bed and 18.7?h of wake, and the sleep restriction group had 4.7?h in bed and 23.3?h of wake. For all participants, each 30-s epoch of time in bed was scored as sleep or wake based on standard polysomnography recordings, and was also assigned a circadian phase (360°?=?24?h) based on a cosine equation fitted to continuously recorded CBT data. For each circadian phase (i.e., 72?×?5° bins), sleep propensity was calculated as the percentage of epochs spent in bed scored as sleep. For the control group, there was a clear circadian rhythm in sleep propensity, with a peak of 98.5% at 5° (~05:20?h), a trough of 64.9% at 245° (~21:20?h), and an average of 82.3%. In contrast, sleep propensity for the sleep restriction group was relatively high at all circadian phases, with an average of 96.7%. For this group, the highest sleep propensity (99.0%) occurred at 60° (~09:00?h), and the lowest sleep propensity (91.3%) occurred at 265° (~22:40?h). As has been shown previously, these current data indicate that with a normal sleep-to-wake ratio, the effect of the circadian process on sleep propensity is pronounced, such that a forbidden zone for sleep exists at a phase equivalent to evening time for a normally entrained individual. However, these current data also indicate that when the ratio of sleep to wake is substantially lower than normal, this circadian effect is masked. In particular, sleep propensity is very high at all circadian phases, including those that coincide with the forbidden zone for sleep. This finding suggests that if the homeostatic pressure for sleep is sufficiently high, then the circadian drive for wakefulness can be overridden. In future studies, it will be important to determine whether or not this masking effect occurs with less severe sleep restriction, e.g., with a sleep-to-wake ratio of 1:3. (Author correspondence: )  相似文献   

15.
以城市绿地中使用频度较高、花期较长的葱兰Zephyranthes candida、鸢尾Iris tectorum、长春花Catharanthus roseus、香彩雀Angelonia angustifolia 等4种观花地被植物为研究对象,采用聚乙二醇溶液(PEG)模拟干旱胁迫对苗期植株进行处理,分析不同干旱胁迫强度下4种植物生理指标的变化,并对其抗旱性进行综合评价。结果表明,随着干旱胁迫程度的加重,4种植物的叶片相对含水量呈不同程度降低,其中长春花在轻度胁迫下已显著降低;叶片相对电导率、可溶性糖含量、脯氨酸和丙二醛的含量均呈不同程度上升趋势。主成分分析表明,4种植物的抗旱能力强弱为葱兰>鸢尾>香彩雀>长春花。  相似文献   

16.

Background

Sleep restriction, leading to deprivation of sleep, is common in modern 24-h societies and is associated with the development of health problems including cardiovascular diseases. Our objective was to investigate the immunological effects of prolonged sleep restriction and subsequent recovery sleep, by simulating a working week and following recovery weekend in a laboratory environment.

Methods and Findings

After 2 baseline nights of 8 hours time in bed (TIB), 13 healthy young men had only 4 hours TIB per night for 5 nights, followed by 2 recovery nights with 8 hours TIB. 6 control subjects had 8 hours TIB per night throughout the experiment. Heart rate, blood pressure, salivary cortisol and serum C-reactive protein (CRP) were measured after the baseline (BL), sleep restriction (SR) and recovery (REC) period. Peripheral blood mononuclear cells (PBMC) were collected at these time points, counted and stimulated with PHA. Cell proliferation was analyzed by thymidine incorporation and cytokine production by ELISA and RT-PCR. CRP was increased after SR (145% of BL; p<0.05), and continued to increase after REC (231% of BL; p<0.05). Heart rate was increased after REC (108% of BL; p<0.05). The amount of circulating NK-cells decreased (65% of BL; p<0.005) and the amount of B-cells increased (121% of BL; p<0.005) after SR, but these cell numbers recovered almost completely during REC. Proliferation of stimulated PBMC increased after SR (233% of BL; p<0.05), accompanied by increased production of IL-1β (137% of BL; p<0.05), IL-6 (163% of BL; p<0.05) and IL-17 (138% of BL; p<0.05) at mRNA level. After REC, IL-17 was still increased at the protein level (119% of BL; p<0.05).

Conclusions

5 nights of sleep restriction increased lymphocyte activation and the production of proinflammatory cytokines including IL-1β IL-6 and IL-17; they remained elevated after 2 nights of recovery sleep, accompanied by increased heart rate and serum CRP, 2 important risk factors for cardiovascular diseases. Therefore, long-term sleep restriction may lead to persistent changes in the immune system and the increased production of IL-17 together with CRP may increase the risk of developing cardiovascular diseases.  相似文献   

17.
18.

Purpose

To compare the effects of endurance exercise performed in the morning and evening on inflammatory cytokine responses in young men.

Methods

Fourteen healthy male participants aged 24.3 ± 0.8 years (mean ± standard error) performed endurance exercise in the morning (0900–1000 h) on one day and then in the evening (1700–1800 h) on another day with an interval of at least 1 week between each trial. In both the morning and evening trials, the participants walked for 60 minutes at approximately 60% of the maximal oxygen uptake (V·O2max) on a treadmill. Blood samples were collected to determine hormones and inflammatory cytokines at pre-exercise, immediately post exercise, and 2 h post exercise.

Results

Plasma interleukin (IL)-6 and adrenaline concentrations were significantly higher immediately after exercise in the evening trial than in the morning trial (P < 0.01, both). Serum free fatty acids concentrations were significantly higher in the evening trial than in the morning trial at 2 h after exercise (P < 0.05). Furthermore, a significant correlation was observed between the levels of IL-6 immediately post-exercise and free fatty acids 2 h post-exercise in the evening (r = 0.68, P < 0.01).

Conclusions

These findings suggest that the effect of acute endurance exercise in the evening enhances the plasma IL-6 and adrenaline concentrations compared to that in the morning. In addition, IL-6 was involved in increasing free fatty acids, suggesting that the evening is more effective for exercise-induced lipolysis compared with the morning.  相似文献   

19.

Background

Pregnancy increases susceptibility to influenza. The placenta releases an immunosuppressive endogenous retroviral protein syncytin-1. We hypothesised that exposure of peripheral monocytes (PBMCs) to syncytin-1 would impair responses to H1N1pdm09 influenza.

Methods and Findings

Recombinant syncytin-1 was produced. PBMCs from non-pregnant women (n=10) were exposed to H1N1pdm09 in the presence and absence of syncytin-1 and compared to responses of PBMCs from pregnant women (n=12). PBMCs were characterised using flow cytometry, release of interferon (IFN)-α, IFN-λ, IFN-γ, IL-10, IL-2, IL-6 and IL-1β were measured by cytometric bead array or ELISA. Exposure of PBMCs to H1N1pdm09 resulted in the release of IFN-α, (14,787 pg/mL, 95% CI 7311-22,264 pg/mL) IFN-λ (1486 pg/mL, 95% CI 756-2216 pg/mL) and IFN-γ (852 pg/mL, 95% CI 193-1511 pg/mL) after 48 hours. This was significantly impaired in pregnant women (IFN-α; p<0.0001 and IFN-λ; p<0.001). Furthermore, in the presence of syncytin-1, PBMCs demonstrated marked reductions in IFN-α and IFN-λ, while enhanced release of IL-10 as well as IL-6 and IL-1β.

Conclusions

Our data indicates that a placental derived protein, syncytin-1 may be responsible for the heightened vulnerability of pregnant women to influenza.  相似文献   

20.

Background

Sleep plays a pivotal role in normal biological functions. Sleep loss results in higher stress vulnerability and is often found in mental disorders. There is evidence that brain-derived neurotrophic factor (BDNF) could be a central player in this relationship. Recently, we could demonstrate that subjects suffering from current symptoms of insomnia exhibited significantly decreased serum BDNF levels compared with sleep-healthy controls. In accordance with the paradigm indicating a link between sleep and BDNF, we aimed to investigate if the stress system influences the association between sleep and BDNF.

Methodology/Principal Findings

Participants with current symptoms of insomnia plus a former diagnosis of Restless Legs Syndrome (RLS) and/or Periodic Limb Movement (PLM) and sleep healthy controls were included in the study. They completed questionnaires on sleep (ISI, Insomnia Severity Index) and stress (PSS, Perceived Stress Scale) and provided a blood sample for determination of serum BDNF. We found a significant interaction between stress and insomnia with an impact on serum BDNF levels. Moreover, insomnia severity groups and score on the PSS each revealed a significant main effect on serum BDNF levels. Insomnia severity was associated with increased stress experience affecting serum BDNF levels. Of note, the association between stress and BDNF was only observed in subjects without insomnia. Using a mediation model, sleep was revealed as a mediator of the association between stress experience and serum BDNF levels.

Conclusions

This is the first study to show that the interplay between stress and sleep impacts BDNF levels, suggesting an important role of this relationship in the pathogenesis of stress-associated mental disorders. Hence, we suggest sleep as a key mediator at the connection between stress and BDNF. Whether sleep is maintained or disturbed might explain why some individuals are able to handle a certain stress load while others develop a mental disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号