首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lactococci inoculated into cheese grow as colonies producing lactic acid. The pH microgradients were investigated around colonies in a complex food such as cheese. The results, obtained using a nondestructive technique, demonstrated that pH microgradients did not occur regardless of the acidification kinetics and the size of the colony.  相似文献   

2.
During colony relocation, the selection of a new nest involves exploration and assessment of potential sites followed by colony movement on the basis of a collective decision making process. Hygiene and pathogen load of the potential nest sites are factors worker scouts might evaluate, given the high risk of epidemics in group-living animals. Choosing nest sites free of pathogens is hypothesized to be highly efficient in invasive ants as each of their introduced populations is often an open network of nests exchanging individuals (unicolonial) with frequent relocation into new nest sites and low genetic diversity, likely making these species particularly vulnerable to parasites and diseases. We investigated the nest site preference of the invasive pharaoh ant, Monomorium pharaonis, through binary choice tests between three nest types: nests containing dead nestmates overgrown with sporulating mycelium of the entomopathogenic fungus Metarhizium brunneum (infected nests), nests containing nestmates killed by freezing (uninfected nests), and empty nests. In contrast to the expectation pharaoh ant colonies preferentially (84%) moved into the infected nest when presented with the choice of an infected and an uninfected nest. The ants had an intermediate preference for empty nests. Pharaoh ants display an overall preference for infected nests during colony relocation. While we cannot rule out that the ants are actually manipulated by the pathogen, we propose that this preference might be an adaptive strategy by the host to “immunize” the colony against future exposure to the same pathogenic fungus.  相似文献   

3.
4.
Colonies of the ant, Leptothorax (s. str.) gredleri may contain several inseminated female reproductives of which typically only one is laying eggs. Observations suggest that “functional monogyny” is caused by aggressive interactions among nestmate queens. Only the most dominant queen reproduces. Subordinate queens either leave the colony to found their own nests solitarily or by budding, or stay in the nest without reproducing, but may eventually replace the dominant queen. The interrelations of life history of L. gredleri, population structure and habitat characteristics are examined.  相似文献   

5.
A colony of red wood ants can inhabit more than one spatially separated nest, in a strategy called polydomy. Some nests within these polydomous colonies have no foraging trails to aphid colonies in the canopy. In this study we identify and investigate the possible roles of non-foraging nests in polydomous colonies of the wood ant Formica lugubris. To investigate the role of non-foraging nests we: (i) monitored colonies for three years; (ii) observed the resources being transported between non-foraging nests and the rest of the colony; (iii) measured the amount of extra-nest activity around non-foraging and foraging nests. We used these datasets to investigate the extent to which non-foraging nests within polydomous colonies are acting as: part of the colony expansion process; hunting and scavenging specialists; brood-development specialists; seasonal foragers; or a selfish strategy exploiting the foraging effort of the rest of the colony. We found that, rather than having a specialised role, non-foraging nests are part of the process of colony expansion. Polydomous colonies expand by founding new nests in the area surrounding the existing nests. Nests founded near food begin foraging and become part of the colony; other nests are not founded near food sources and do not initially forage. Some of these non-foraging nests eventually begin foraging; others do not and are abandoned. This is a method of colony growth not available to colonies inhabiting a single nest, and may be an important advantage of the polydomous nesting strategy, allowing the colony to expand into profitable areas.  相似文献   

6.
Insect societies are normally closed entities from which alien individuals are excluded. The occasional fusion of unrelated colonies of the thelytokous ant Platythyrea punctata is therefore puzzling, because it strongly intensifies competition among nestmates for the replacement of an old reproductive. Most colonies of P. punctata have only one or few reproductives, which produce female offspring from unfertilized eggs, and therefore have a clonal structure. Fusion leads to multi‐clone colonies. We compared the occurrence of dominance and policing behavior between single‐ and double‐clone colonies. We find that the frequency of aggression is higher in double‐clone colonies, but that individuals do not preferentially direct attacks toward non‐clonemates. This matches observations in other species that social insects perceive genetic homogeneity but are not capable of reliable discrimination among nestmates of different degree of relatedness.  相似文献   

7.
8.
Flagellins evoke strong innate and adaptive immune responses. These proteins may play a key role as radioprotectors, exert antitumoral activity in certain types of tumor and reduce graft-versus-host disease in allogeneic hematopoietic stem cell transplant recipients. Notwithstanding, flagellins are highly immunogenic, and repeated use leads to their neutralization by systemic antibodies. This neutralization is not prevented by using functional deleted flagellins. These observations led us to explore the possibility of preventing initial neutralization by means of another functional flagellin that does not belong to common pathogenic bacteria but that has the capacity to activate TLR5. Here we characterized the functional capacity of the two-phase Marinobacter algicola (MA)-derived flagellins (F and FR) as systemic and mucosal adjuvants and compared their performance with that of Salmonella typhimurium (STF) flagellins (FljB and FliC). We also report for the first time on the in vitro and in vivo capacity of various flagellins to trigger TLR5 activation in the presence of species-specific anti-flagellin antibodies, the cross-neutralization mediated by these antibodies, and the sequential use of these flagellins for TLR5 activation. Our results showed that MA flagellins behave in a similar way to STF ones, inducing pro-inflammatory cytokines (IL8, CCL20, CCL2) and evoking a strong in vivo antibody response against a model epitope. More importantly, MA flagellins were fully functional, in vitro or in vivo, in the presence of a high concentration of neutralizing anti-flagellin STF antibodies, and STF flagellin was not inhibited by neutralizing anti-flagellin MA antibodies. The use of active flagellins from distinct bacteria could be a useful approach to prevent systemic neutralization of this group of adjuvants and to facilitate the rational design of flagellin-based vaccines and/or other therapeutic treatments (against ischemia, acute renal failure, tumors, ionizing radiations and also to improve the outcome of bone marrow transplants).  相似文献   

9.
Physiological trade-offs mediated by limiting energy, resources or time constrain the simultaneous expression of major functions and can lead to the evolution of temporal separation between demanding activities. In birds, plumage renewal is a demanding activity, which accomplishes fundamental functions, such as allowing thermal insulation, aerodynamics and socio-sexual signaling. Feather renewal is a very expensive and disabling process, and molt is often partitioned from breeding and migration. However, trade-offs between feather renewal and breeding have been only sparsely studied. In barn swallows (Hirundo rustica) breeding in Italy and undergoing molt during wintering in sub-Saharan Africa, we studied this trade-off by removing a tail feather from a large sample of individuals and analyzing growth bar width, reflecting feather growth rate, and length of the growing replacement feather in relation to the stage in the breeding cycle at removal and clutch size. Growth bar width of females and length of the growing replacement feather of both sexes were smaller when the original feather had been removed after clutch initiation. Importantly, in females both growth bar width and replacement feather length were negatively predicted by clutch size, and more strongly so for large clutches and when feather removal occurred immediately after clutch completion. Hence, we found strong, coherent evidence for a trade-off between reproduction, and laying effort in particular, and the ability to generate new feathers. These results support the hypothesis that the derived condition of molting during wintering in long-distance migrants is maintained by the costs of overlapping breeding and molt.  相似文献   

10.
Potential trade-offs between learning speed and memory-related performance could be important factors in the evolution of learning. Here, we test whether rapid learning interferes with the acquisition of new information using a reversal learning paradigm. Bumblebees (Bombus terrestris) were trained to associate yellow with a floral reward. Subsequently the association between colour and reward was reversed, meaning bees then had to learn to visit blue flowers. We demonstrate that individuals that were fast to learn yellow as a predictor of reward were also quick to reverse this association. Furthermore, overnight memory retention tests suggest that faster learning individuals are also better at retaining previously learned information. There is also an effect of relatedness: colonies whose workers were fast to learn the association between yellow and reward also reversed this association rapidly. These results are inconsistent with a trade-off between learning speed and the reversal of a previously made association. On the contrary, they suggest that differences in learning performance and cognitive (behavioural) flexibility could reflect more general differences in colony learning ability. Hence, this study provides additional evidence to support the idea that rapid learning and behavioural flexibility have adaptive value.  相似文献   

11.
12.
Understanding the determinants of reproductive skew (the partitioning of reproduction among co‐breeding individuals) is one of the major questions in social evolution. In ants, multiple‐queen nests are common and reproductive skew among queens has been shown to vary tremendously both within and between species. Proximate determinants of skew may be related to both queen and worker behaviour. Queens may attempt to change their reproductive share through dominance interactions, egg eating and by changing individual fecundity. Conversely, workers are in a position to regulate the reproductive output of queens when rearing the brood. This paper investigates queen behaviour at the onset of egg laying and the effect of queen fecundity and worker behaviour on brood development and reproductive shares of multiple queens in the ant Formica fusca. The study was conducted in two‐queen laboratory colonies where the queens produced only worker offspring. The results show that in this species reproductive apportionment among queens is not based on dominance behaviour and aggression, but rather on differences in queen fecundity. We also show that, although the queen fecundity at the onset of brood rearing is a good indicator of her final reproductive output, changes in brood composition occur during brood development. Our results highlight the importance of queen fecundity as a major determinant of her reproductive success. They furthermore suggest that in highly derived polygyne species, such as the Formica ants, direct interactions as a means for gaining reproductive dominance have lost their importance.  相似文献   

13.
14.
Microorganisms in nature are constantly subjected to a limited availability of resources and experience repeated starvation and nutrition. Therefore, microbial life may evolve for both growth fitness and sustainability. By contrast, experimental evolution, as a powerful approach to investigate microbial evolutionary strategies, often targets the increased growth fitness in controlled, steady-state conditions. Here, we address evolutionary changes balanced between growth and maintenance while taking nutritional fluctuations into account. We performed a 290-day-long evolution experiment with a histidine-requiring Escherichia coli strain that encountered repeated histidine-rich and histidine-starved conditions. The cells that experienced seven rounds of starvation and re-feed grew more sustainably under prolonged starvation but dramatically lost growth fitness under rich conditions. The improved sustainability arose from the evolved capability to use a trace amount of histidine for cell propagation. The reduced growth rate was attributed to mutations genetically disturbing the translation machinery, that is, the ribosome, ultimately slowing protein translation. This study provides the experimental demonstration of slow growth accompanied by an enhanced affinity to resources as an evolutionary adaptation to oscillated environments and verifies that it is possible to evolve for reduced growth fitness. Growth economics favored for population increase under extreme resource limitations is most likely a common survival strategy adopted by natural microbes.  相似文献   

15.
Animals are often threatened by predators, parasites, or competitors, and attacks against these enemies are a common response, which can help to remove the danger. The costs of defense are complex and involve the risk of injury, the loss of energy/time, and the erroneous identification of a friend as a foe. Our goal was to study the specificity of defense strategies. We analyzed the aggressive responses of ant colonies by confronting them with workers of an unfamiliar congeneric species, a non‐nestmate conspecific, a co‐occurring congeneric competitor species, and a social parasite—a slave‐making ant. As expected, the latter species, which can inflict dramatic fitness losses to the colony, was treated with most aggression. A co‐occurring competitor was also attacked, but the ants used different behaviors in their responses to both enemies. While the slavemaker was attacked by biting and stinging and was approached with spread mandibles, the competitor was dragged, a behavioral strategy only possible if the defending ant is similar in size and strength to the opponent. Non‐nestmate conspecifics were treated aggressively as well, but less than the slavemaker and the co‐occurring competitor, presumably because they are less easily recognized as enemies. An unfamiliar congeneric species was rarely attacked. This first detailed study comparing the aggressive responses of ant colonies toward slave‐making ants to other species posing different threats indicates that the responses of ant colonies are adjusted to the risk each opponent poses to the colony.  相似文献   

16.
The ecological success of social insects is often attributed to an increase in efficiency achieved through division of labor between workers in a colony. Much research has therefore focused on the mechanism by which a division of labor is implemented, i.e., on how tasks are allocated to workers. However, the important assumption that specialists are indeed more efficient at their work than generalist individuals—the “Jack-of-all-trades is master of none” hypothesis—has rarely been tested. Here, I quantify worker efficiency, measured as work completed per time, in four different tasks in the ant Temnothorax albipennis: honey and protein foraging, collection of nest-building material, and brood transports in a colony emigration. I show that individual efficiency is not predicted by how specialized workers were on the respective task. Worker efficiency is also not consistently predicted by that worker''s overall activity or delay to begin the task. Even when only the worker''s rank relative to nestmates in the same colony was used, specialization did not predict efficiency in three out of the four tasks, and more specialized workers actually performed worse than others in the fourth task (collection of sand grains). I also show that the above relationships, as well as median individual efficiency, do not change with colony size. My results demonstrate that in an ant species without morphologically differentiated worker castes, workers may nevertheless differ in their ability to perform different tasks. Surprisingly, this variation is not utilized by the colony—worker allocation to tasks is unrelated to their ability to perform them. What, then, are the adaptive benefits of behavioral specialization, and why do workers choose tasks without regard for whether they can perform them well? We are still far from an understanding of the adaptive benefits of division of labor in social insects.  相似文献   

17.
When an antlion captures a foraging ant, the victim’s nestmates may display rescue behaviour. This study tested the hypothesis that the expression of rescue behaviour depends on the life expectancy of the captured ant. This hypothesis predicts that the expression of rescue behaviour will be less frequent when the captured ant has a lower life expectancy than when it has a higher life expectancy because such a response would be adaptive at the colony level. Indeed, significant differences were found in the frequency of rescue behaviours in response to antlion victims with differing life expectancies. In agreement with prediction, victims with lower life expectancies were rescued less frequently, and those rescues had a longer latency and shorter duration. There was also a qualitative difference in the behaviour of rescuers to victims from the low and high life expectancy groups. Several explanations for these findings are proposed.  相似文献   

18.
The outstanding recent advances in the analysis of differentiationare in concept and method. In this paper examples are providedto demonstrate that formulation of the problem of differentiationin terms of biosynthesis and its control poses questions innew and more manageable ways. As examples, reference will bemade to: (1) the question of control of the sets of specializedproperties by which we define a cell type; (2) propagabilityof differentiated states; (3) developmental bias in relationto intracellular events; and (4) the mechanisms of extrinsiccontrol of differentiation. Particular attention, also, willbe focused on the relationship of morphogenetic to biosyntheticevents.  相似文献   

19.
Life history theory accounts for variations in many traits involved in the reproduction and survival of living organisms, by determining the constraints leading to trade-offs among these different traits. The main life history traits of phages—viruses that infect bacteria—are the multiplication rate in the host, the survivorship of virions in the external environment, and their mode of transmission. By comparing life history traits of 16 phages infecting the bacteria Escherichia coli, we show that their mortality rate is constant with time and negatively correlated to their multiplication rate in the bacterial host. Even though these viruses do not age, this result is in line with the trade-off between survival and reproduction previously observed in numerous aging organisms. Furthermore, a multiple regression shows that the combined effects of two physical parameters, namely, the capsid thickness and the density of the packaged genome, account for 82% of the variation in the mortality rate. The correlations between life history traits and physical characteristics of virions may provide a mechanistic explanation of this trade-off. The fact that this trade-off is present in this very simple biological situation suggests that it might be a fundamental property of evolving entities produced under constraints. Moreover, such a positive correlation between mortality and multiplication reveals an underexplored trade-off in host–parasite interactions.  相似文献   

20.
Persistent reovirus infections of murine L929 cells select cellular mutations that inhibit viral disassembly within the endocytic pathway. Mutant cells support reovirus growth when infection is initiated with infectious subvirion particles (ISVPs), which are intermediates in reovirus disassembly formed following proteolysis of viral outer-capsid proteins. However, mutant cells do not support growth of virions, indicating that these cells have a defect in virion-to-ISVP processing. To better understand mechanisms by which viruses use the endocytic pathway to enter cells, we defined steps in reovirus replication blocked in mutant cells selected during persistent infection. Subcellular localization of reovirus after adsorption to parental and mutant cells was assessed using confocal microscopy and virions conjugated to a fluorescent probe. Parental and mutant cells did not differ in the capacity to internalize virions or distribute them to perinuclear compartments. Using pH-sensitive probes, the intravesicular pH was determined and found to be equivalent in parental and mutant cells. In both cell types, virions localized to acidified intracellular organelles. The capacity of parental and mutant cells to support proteolysis of reovirus virions was assessed by monitoring the appearance of disassembly intermediates following adsorption of radiolabeled viral particles. Within 2 h after adsorption to parental cells, proteolysis of viral outer-capsid proteins was observed, consistent with formation of ISVPs. However, in mutant cells, no proteolysis of viral proteins was detected up to 8 h postadsorption. Since treatment of cells with E64, an inhibitor of cysteine-containing proteases, blocks reovirus disassembly, we used immunoblot analysis to assess the expression of cathepsin L, a lysosomal cysteine protease. In contrast to parental cells, mutant cells did not express the mature, proteolytically active form of the enzyme. The defect in cathepsin L maturation was not associated with mutations in procathepsin L mRNA, was not complemented by procathepsin L overexpression, and did not affect the maturation of cathepsin B, another lysosomal cysteine protease. These findings indicate that persistent reovirus infections select cellular mutations that affect the maturation of cathepsin L and suggest that alterations in the expression of lysosomal proteases can modulate viral cytopathicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号