首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the last decade, several studies demonstrated the effectiveness of ecological network analysis to a better understanding of the structure bee–plant interaction networks; however, such approaches involving urban areas are still scarce. Here, we analyzed two assemblages of corbiculate bees (Apoidea, Apidae) in two geographically distinct urban areas in Brazil. In both study areas, apid bees visiting flowers were captured with an insect net. Surveys were performed biweekly and alternately in each area, over a 1-year period. Both urban areas were very similar for most indices. The two social bee–plant networks were significantly nested, a pattern usually described for bee–plant networks and somehow expected in our study, considering the recognized behavior of social apid bees in exploring a wide range of plant species. The modularity measures were low and very similar for the networks of both urban areas, a finding that could be due at least in part to the low phylogenetic distance between corbiculate bees and the broad dietary habits of the social apid bees. Network-level indices showed that both bee assemblages had a relatively low niche overlap, indicating that the set of social apid species studied exploited differently the arrays of plants available. Species level index (resource range) showed that in both urban areas, Trigona spinipes (Fabr.) and Apis mellifera L. showed the higher number of interactions, a result that demonstrates the importance of these species in social bee–plant interaction networks in urban areas. Similarly to other ecosystems, these two apid species behaved as super-generalists in the two urban areas surveyed herein.  相似文献   

2.
Fungi in the genus Ascosphaera (Ascomycota: Eurotiomycetes: Ascosphaerales) cause chalkbrood disease in larvae of bees. Here, we report the first-ever detection of the fungus in adult bumble bees that were raised in captivity for studies on colony development. Wild queens of Bombus griseocollis, B. nevadensis and B. vosnesenskii were collected and maintained for establishment of nests. Queens that died during rearing or that did not lay eggs within one month of capture were dissected, and tissues were examined microscopically for the presence of pathogens. Filamentous fungi that were detected were plated on artificial media containing broad spectrum antibiotics for isolation and identification. Based on morphological characters, the fungus was identified as Ascosphaera apis (Maasen ex Claussen) Olive and Spiltoir, a species that has been reported earlier only from larvae of the European honey bee, Apis mellifera, the Asian honey bee, Apis cerana, and the carpenter bee Xylocopa californica arizonensis. The identity of the fungus was confirmed using molecular markers and phylogenetic analysis. Ascosphaera apis was detected in queens of all three bumble bee species examined. Of 150 queens dissected, 12 (8%) contained vegetative and reproductive stages of the fungus. Both fungal stages were also detected in two workers collected from colonies with Ascosphaera-infected B. nevadensis queens. In this study, wild bees could have been infected prior to capture for rearing, or, the A. apis infection could have originated via contaminated European honey bee pollen fed to the bumble bees in captivity. Thus, the discovery of A. apis in adult bumble bees in the current study has important implications for commercial production of bumble bee colonies and highlights potential risks to native bees via pathogen spillover from infected bees and infected pollen.  相似文献   

3.
The decline of both managed and wild bee populations has been extensively reported for over a decade now, with growing concerns amongst the scientific community. Also, evidence is growing that both managed and feral honey bees may exacerbate threats to wild bees. In Australia, there are over 1600 native bee species and introduced European honey bees (Apis mellifera) have established throughout most landscapes. There is a major gap in knowledge of the interactions between honey bees and native bees in Australian landscapes, especially floral resource use.Here we report on the pollen diets of wild bees in protected areas of coastal heathland, an ecosystem characterised by mass flowering in late winter and spring. We sampled bees within three sites and DNA metabarcoding was used to compare the pollen diets of honey bees and native bees. We recorded 2, 772 bees in total, with 13 genera and 18 described species identified. Apis mellifera was the most common species across all locations, accounting for 42% of all bees collected. Native bee genera included eusocial Tetragonula (stingless bees) (37%), and semi-social Exoneura and Braunsapis (19.8% combined). Metabarcoding data revealed both Tetragonula and honey bees have wide foraging patterns, and the bipartite network overall was highly generalised (H2’ = 0.24). Individual honey bees carried pollen of 7–29 plant species, and significantly more species than all other bees. We found niche overlap in the diets of honey bees and native bees generally (0.42), and strongest overlap with stingless bees (0.70) and species of Braunsapis (0.62). A surprising finding was that many species carried pollen from Restionaceae and Cyperaceae, families generally considered to be predominantly wind-pollinated in Australia. Our study showed introduced honey bee use of resources overlaps with that of native bees in protected heathlands, but there are clear differences in their diet preferences.  相似文献   

4.
1. Generalists are assumed to play a key role in structuring and stabilising animal–plant mutualistic networks. Until now, analyses on the effects of generalists have been based on empirical field data or simulations. The present natural field experiment manipulated the abundance of a generalist and abundant stingless bee [Melipona (Eomelipona) marginata] to determine the effects on the mutualistic network. 2. Networks were generated, and associated metrics were used for comparing replicate plots with and without the insertion of stingless bee nests. 3. Unweighted metrics and the basic qualitative structural pattern of networks (high nestedness, very low modularity and specialisation) was not affected by experimental variation in stingless bee abundance because they exert strong basal effects on the plant–pollinator community under natural conditions of abundance. Still, increased abundance caused significant variation in weighted nestedness and modularity and community-level specialisation. 4. Supporting predictions of neutral models, increased abundance of the stingless bee led to an increase in most of its specific metrics, expressing the expansion of its realised trophic niche. 5. During this process, specialist and other generalist bees were affected in different ways. More plant species became even more dependent on this stingless bee (increased asymmetry). 6. Long-term effects could not be inferred directly from instantaneous values of network metrics. Nonetheless, the increased abundance of the generalist stingless bee may both reduce the local level of ecological specialisation in the short term and affect the spatial distribution of less abundant and/or specialist bee species and plants in the long term.  相似文献   

5.
Bees are considered the most important plant pollinators in many ecosystems, yet little is known about pollination of native plants by bees in many Australian ecosystems including the alpine region. Here we consider bee pollination in this region by constructing a bee visitation network and investigating the degree of specialism and network ‘nestedness’, which are related to the robustness of the network to perturbations. Bees and flowers were collected and observed from 10 sites across the Bogong High Plains/Mt Hotham region in Victoria. Low nestedness and a low degree of specialism were detected, consistent with patterns in other alpine regions. Twenty‐one native and one non‐indigenous bee species were observed visiting 46 of the 67 flower species recorded. The introduced Apis mellifera had a large floral overlap with native bees, which may reduce fecundity of native bees through competition. The introduced plant, Hypochaeris radicata (Asteraceae), had the largest and most sustained coverage of any flower and had the most visitations and bee species of any flower. The network developed in this study is a first step in understanding pollination patterns in the alpine/subalpine region and serves as a baseline for future comparisons.  相似文献   

6.
A decline of wild pollinators, along with a decline of bee diversity, has been a cause of concern among academics and governmental organizations. According to IPBES, a lack of wild pollinator data contributes to difficulties in comprehensively analyzing the regional status of wild pollinators in Africa, Latin America, Asia and Oceania. It may have also contributed to the prevailing lack of awareness of the diversity of honey bees, of which the managed Apis mellifera is often considered as “the (only) honey bee,” despite the fact that there are eight other honey bee species extant in Asia. A survey of 100 journal articles published in 2016 shows that 57% of the studies still identified A. mellifera as “the honey bee.” In total, 80% of studies were conducted solely on A. mellifera. This focus on A. mellifera has also caused the honey standard of Codex Alimentarius and the European Union to be based solely on A. mellifera, causing improper evaluation of honeys from other species. We recommend adapting current standards to reflect the diversity of honey bees and in the process correct failures in the honey market and pave the way towards improved protection of honey bee species and their habitats.  相似文献   

7.
In the European honey bee, Apis mellifera, pollen foragers have a higher sucrose responsiveness than nectar foragers when tested using a proboscis extension response (PER) assay. In addition, Africanized honey bees have a higher sucrose responsiveness than European honey bees. Based on the biology of the Eastern honey bee, A. cerana, we hypothesized that A. cerana should also have a higher responsiveness to sucrose than A. mellifera. To test this hypothesis, we compared the sucrose thresholds of pollen foragers and nectar foragers in both A. cerana and A. mellifera in Fujian Province, China. Pollen foragers were more responsive to sucrose than nectar foragers in both species, consistent with previous studies. However, contrary to our hypothesis, A. mellifera was more responsive than A. cerana. We also demonstrated that this higher sucrose responsiveness in A. mellifera was not due to differences in the colony environment by co-fostering two species of bees in the same mixed-species colonies. Because A. mellifera foragers were more responsive to sucrose, we predicted that their nectar foragers should bring in less concentrated nectar compared to that of A. cerana. However, we found no differences between the two species. We conclude that A. cerana shows a different pattern in sucrose responsiveness from that of Africanized bees. There may be other mechanisms that enable A. cerana to perform well in areas with sparse nectar resources.  相似文献   

8.
9.
The epizootic disease caused by Apis cerana sacbrood virus (AcSBV) occurred in Eastern hive bee, A. cerana, since 2015 in Taiwan. A large-scale survey of this disease from September and December 2016 in Taiwan was performed including symptom check and molecular identification in honey bees of A. cerana hives and several A. mellifera hives, which were co-cultured with A. cerana. Based on the nucleotide sequences of partial VP1, the phylogenetic analysis with those of the known AcSBV isolates revealed that most of AcSBV isolates from Taiwan were closely relative to SBV-FZ and -JL isolates from China, whereas only one sample (N15-5-1) was in a distinct cluster, which was closely relative to SBV-LN from China too. The AcSBV prevalence was occurring in A. cerana hives in most areas of Taiwan except for those in Hualien and Pingtung Counties in Taiwan. Notably, the AcSBV prevalence rate showed the temporal increase from 47.1% to 69.6% within 4?months. In addition, 37.5% of AcSBV prevalence rate was found in A. mellifera hives. It showed that A. mellifera was also susceptible to AcSBV infection. The present results would provide the information on the epidemiology and for prospective research.  相似文献   

10.
Yeasts isolated from honey bees, Apis mellifera, fed 2,4-D and antibiotics   总被引:1,自引:0,他引:1  
Yeasts belonging to seven species were isolated and identified from the intestines of 388 adult worker honey bees, Apis mellifera. Torulopsis magnoliae, Candida parapsilosis, and Torulopsis grabrata were found in bee guts most frequently. The intestines of bees from colonies fed a combination of Terramycin and Fumidil B contained few or no yeasts. More guts of bees from colonies fed 2,4-D contained yeasts than those examined from bees from control colonies.  相似文献   

11.
Honey bees forage for pollen and nectar. Sugar is an important stimulus for foraging and a major source of energy for honey bees. Any differential response of bees to different concentrations of sugary nectar can affect their foraging. The sugar responsiveness of Apis species (Apis dorsata, Apis florea, and Apis cerana) was determined in comparison to that of Apis mellifera by evaluating the proboscis extension response (PER) with eight serial concentrations (0.00001, 0.0001, 0.001, 0.01, 0.1, 0.5, 1.0, and 1.5 M) of sucrose, glucose and fructose. Nectar foragers of bee species (A. dorsata, A. florea, A. cerana, and A. mellifera) exhibited an equal response for sucrose, glucose, and fructose, with no significant differences in their PER at all tested concentrations of these sugars within the same species. The inter-species comparison between Apis species revealed the differential responsiveness to the different concentrations of sugars, and the lowest concentration at which a response occurs was considered as the response threshold of these bee species for sugar solutions. A. mellifera presented significantly higher responsiveness than A. dorsata to low concentrations (0.00001, 0.0001, 0.001, 0.01, and 0.1 M) of sucrose, glucose and fructose. A. mellifera displayed a significantly higher response to water than A. dorsata. A. florea and A. mellifera presented no significant difference in their responsiveness to sucrose, glucose, and fructose at all tested concentrations, and their water responsiveness was also significantly at par but relatively higher in A. mellifera than in A. florea. Likewise, the responsiveness of A. cerana and A. mellifera to different concentrations of sucrose, glucose and fructose was significantly at par with no difference in their water responsiveness. This study represents preliminary research comparing the response of different honey bee species to three sugar types at different concentrations. The results imply that the native species are all better adapted than A. mellifera under local climate conditions.  相似文献   

12.
Pollinators provide an important service in many crops. Managed honey bees (Apis mellifera L.) are used to supplement pollination services provided by wild bees with the assumption that they will enhance pollination, fruit set and crop yield beyond the levels provided by the wild bees. Recent declines in managed honey bee populations have stimulated interest in finding alternative managed pollinators to service crops. In the eastern U.S., managed hives of the native common eastern bumble bee (Bombus impatiens Cresson) may be an excellent choice. To examine this issue, a comprehensive 2-yr study was conducted to compare fruit yield and bee visits to flowers in pumpkin (Cucurbita pepo L.) fields that were either supplemented with A. mellifera hives, B. impatiens hives or were not supplemented. We compared pumpkin yield, A. mellifera flower visitation frequency and B. impatiens flower visitation frequency between treatments. Results indicated that supplementing pumpkin fields with either A. mellifera or B. impatiens hives did not increase their visitation to pumpkin flowers or fruit yield compared with those that were not supplemented. Next, the relationship between frequency of pumpkin flower visitation by the most prominent bee species (Peponapis pruinosa (Say), B. impatiens and A. mellifera) and fruit yield was determined across all pumpkin fields sampled. Fruit yield increased as the frequency of flower visits by A. mellifera and B. impatiens increased in 2011 and 2012, respectively. These results suggest that supplementation with managed bees may not improve pumpkin production and that A. mellifera and B. impatiens are important pollinators of pumpkin in our system.  相似文献   

13.
Colombian tropical dry forest is considered the most endangered tropical biome due to anthropic activities. Desierto de la Tatacoa (DsT) is an example of high disturbed tropical dry forest which still maintains a high biodiversity. The objective of the study was to record the diversity and phenology of wild bees in this place by monthly sampling between December 2014 and December 2016 in a 9-km2 area. During the study, there was a prolonged El Niño–Southern Oscillation period. Bees were collected by entomological nets, malaise traps, eugenol scent trapping, and nest traps. Shannon index was calculated to estimate diversity and Simpson index to determine dominance of a species. The effect of environmental conditions (wet and dry season) in richness and abundance was analyzed by paired T tests. A total of 3004 bee specimens were collected, belonging to 80 species from Apidae, Megachilidae, Halictidae, and Colletidae. Apidae was the most diverse. Shannon index value was 2.973 (discarding Apis mellifera Linnaeus 1758 data); thus, DsT can be considered as a zone of high wild bee diversity. Dry and rainy season showed differences in diversity (p?<?0.05). Rainy season showed larger blooming periods and higher bee diversity than dry season. In both seasons, social species were dominant (e.g., A. mellifera or Trigona fulviventris Guérin 1844). Although DsT is a highly disturbed ecosystem, this study found it has the second highest number of genera and the fourth highest number of species reported in Colombia.  相似文献   

14.
American foulbrood (AFB) disease is caused by Paenibacillus larvae. Currently, this pathogen is widespread in the European honey bee— Apis mellifera. However, little is known about infectivity and pathogenicity of P. lan'ae in the Asiatic cavity-nesting honey bees, Apis cerana. Moreover, comparative knowledge of P. larvae infectivity and pathogenicity between both honey bee species is scarce. In this study, we examined susceptibility, larval mortality, survival rate and expression of genes encoding antimicrobial peptides (AMPs) including defensin, apidaecin, abaecin, and hymenoptaecin in A. mellifera and A. cerana when infected with P. larvae. Our results showed similar effects of P. larvae on the survival rate and patterns of AMP gene expression in both honey bee species when bee larvae are infected with spores at the median lethal concentration (LC5 0 ) for A. mellifera. All AMPs of infected bee larvae showed significant upregulation compared with noninfected bee larvae in both honey bee species. However, larvae of A. cerana were more susceptible than A. mellifera when the same larval ages and spore concentration of P. larvae were used. It also appears that A. cerana showed higher levels of AMP expression than A. mellifera. This research provides the first evidence of survival rate, LC50 and immune response profiles of Asian honey bees, A. cerana, when infected by P. larvae in comparison with the European honey bee, A. mellifera.  相似文献   

15.
ObjectivesThis study aimed to analyze the genetic relationships between honey bee subspecies using reference specimens and recently collected specimens from different parts of the world. The purity of these specimens was discussed in light of the obtained results.MethodsThe genetic networks were constructed between 21 subspecies of honey bees, Apis mellifera L.: 9 in Africa, 7 in Europe and 5 in Asia. The analysis was performed using the mtDNA of these subspecies and the Population Analysis with Reticulate Trees software. Some subspecies were represented by more than two specimens based on the available online sequences.Results and conclusionsThe subspecies A. m. sahariensis from Africa showed unique characteristics and is genetically isolated than all other studied bee subspecies. Specimens collected from Saudi Arabia showed genetic relatedness to A. m. jemenitica, A. m. lamarckii, and some European subspecies, suggesting high degree of hybridization. The close genetic relationship between the Egyptian bees, A. m. lamarckii, and the Syrian bees, A. m. syriaca, were emphasized. The overall genetic network showed the presence of three distinct branches in relation to geographical locations. The high accurateness of the used analysis was confirmed by previous phylogenetic studies as well as the genetic relationships between hybrid bees of A. m. capensis and A. m. scutellata. The genetic networks showed the presence of bee subspecies from Africa in all branches including Europe and Asia. The study suggests the impurity of some specimens mostly due to the hybridization between subspecies. Specific recommendations for future conservation efforts of bees were presented in light of this study.  相似文献   

16.
《Insect Biochemistry》1985,15(5):597-600
Makisterone A, a 28-carbon moulting hormone, has been identified as the major free pupal ecdysteroid in the honey bee, Apis mellifera. The pupal ecdysteroid was isolated and identified by normal and reversed-phase high performance liquid chromatography in conjunction with a radioimmune assay. The compound was further characterized physico-chemically by both mass spectrometry and nuclear magnetic resonance spectroscopy. No C27 ecdysteroids (i.e. 20-hydroxyecdysone or ecdysone) were detected at this stage of development. This is the first isolation and identification of a 28-carbon ecdysteroid in an insect species from the order Hymenoptera. Utilization of dietary sterols by honey bees is also discussed.  相似文献   

17.
18.
The eusocial honey bee, Apis mellifera, has evolved remarkable abilities to survive extreme seasonal differences in temperature and availability of resources by dividing the worker caste into two groups that differ in physiology and lifespan: summer and winter bees. Most of the recent major losses of managed honey bee colonies occur during the winter, suggesting that winter bees may have compromised immune function and higher susceptibility to diseases. We tested this hypothesis by comparing the expression of eight immune genes and naturally occurring infection levels of deformed wing virus (DWV), one of the most widespread viruses in A. mellifera populations, between summer and winter bees. Possible interactions between immune response and physiological activity were tested by measuring the expression of vitellogenin and methyl farnesoate epoxidase, a gene coding for the last enzyme involved in juvenile hormone biosynthesis. Our data show that high DWV loads in winter bees correlate with reduced expression of genes involved in the cellular immune response and physiological activity and high expression of humoral immune genes involved in antibacterial defense compared with summer bees. This expression pattern could reflect evolutionary adaptations to resist bacterial pathogens and economize energy during the winter under a pathogen landscape with reduced risk of pathogenic viral infections. The outbreak of Varroa destructor infestation could have overcome these adaptations by promoting the transmission of viruses. Our results suggest that reduced cellular immune function during the winter may have increased honey bee’s susceptibility to DWV. These results contribute to our understanding of honey bee colony losses in temperate regions.  相似文献   

19.
The bacterial communities in the guts of the adults and larvae of the Asian honey bee Apis cerana and the European honey bee Apis mellifera were surveyed by pyrosequencing the 16S rRNA genes. Most of the gut bacterial 16S rRNA gene sequences were highly similar to the known honey bee-specific ones and affiliated with Pasteurellaceae or lactic acid bacteria (LAB). The numbers of operational taxonomic units (OTUs, defined at 97% similarity) were lower in the larval guts (6 or 9) than in the adult guts (18 or 20), and the frequencies of Pasteurellaceae-related OTUs were higher in the larval guts while those of LAB-related OTUs in the adult guts. The frequencies of Lactococcus, Bartonella, Spiroplasma, Enterobacteriaceae, and Flavobacteriaceae-related OTUs were much higher in A. cerana guts while Bifidobacterium and Lachnospiraceae-related OTUs were more abundant in A. mellfera guts. The bacterial community structures in the midguts and hindguts of the adult honey bees were not different for A. cerana, but significantly different for A. mellifera. The above results substantiated the previous observation that honey bee guts are dominated by several specific bacterial groups, and also showed that the relative abundances of OTUs could be markedly changed depending on the developmental stage, the location within the gut, and the honey bee species. The possibility of using the gut bacterial community as an indicator of honey bee health was discussed.  相似文献   

20.
Parasites and pathogens are apparent key factors for the detrimental health of managed European honey bee subspecies, Apis mellifera. Apicultural trade is arguably the main factor for the almost global distribution of most honey bee diseases, thereby increasing chances for multiple infestations/infections of regions, apiaries, colonies and even individual bees. This imposes difficulties to evaluate the effects of pathogens in isolation, thereby creating demand to survey remote areas. Here, we conducted the first comprehensive survey for 14 honey bee pathogens in Mongolia (N = 3 regions, N = 9 locations, N = 151 colonies), where honey bee colonies depend on humans to overwinter. In Mongolia, honey bees, Apis spp., are not native and colonies of European A. mellifera subspecies have been introduced ~60 years ago. Despite the high detection power and large sample size across Mongolian regions with beekeeping, the mite Acarapis woodi, the bacteria Melissococcus plutonius and Paenibacillus larvae, the microsporidian Nosema apis, Acute bee paralysis virus, Kashmir bee virus, Israeli acute paralysis virus and Lake Sinai virus strain 2 were not detected, suggesting that they are either very rare or absent. The mite Varroa destructor, Nosema ceranae and four viruses (Sacbrood virus, Black queen cell virus, Deformed wing virus (DWV) and Chronic bee paralysis virus) were found with different prevalence. Despite the positive correlation between the prevalence of V. destructor mites and DWV, some areas had only mites, but not DWV, which is most likely due to the exceptional isolation of apiaries (up to 600 km). Phylogenetic analyses of the detected viruses reveal their clustering and European origin, thereby supporting the role of trade for pathogen spread and the isolation of Mongolia from South-Asian countries. In conclusion, this survey reveals the distinctive honey bee pathosphere of Mongolia, which offers opportunities for exciting future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号