共查询到20条相似文献,搜索用时 15 毫秒
1.
Autophagy has recently been shown to be an important component of the innate immune response. The signaling pathways leading to activation of autophagy in innate immunity are not well studied. Our recent study shows that Toll-like receptor 4 (TLR 4) serves as an environmental sensor for autophagy. We define a new molecular pathway in which lipopolysaccharide (LPS) induces autophagy in human and murine macrophages by a pathway regulated through Toll-interleukin 1 receptor domain-containing adaptor-inducing interferon-beta (TRIF)-dependent, myeloid differentiation factor 88 (MyD88)-independent TLR4 signaling. Receptor-interacting protein (RIP1) and p38 mitogen-activated protein-kinase (MAPK) are downstream components of this pathway. This signaling pathway does not affect cell viability, indicating that it is distinct from an autophagic death signaling pathway. We further show that LPS-induced autophagy can enhance mycobacterial co-localization with the autophagosomes. The above study raises important questions. (1) What is the complete signaling pathway for LPS-induced autophagy? (2) Does TLR3 mediate autophagy? (3) What are the mechanisms that determine whether autophagy acts as a pro-death or pro-survival pathway? (4) What are the physiological functions of LPS-induced autophagosomes? Future studies examining the above questions should provide us with important clues as to how autophagy is regulated in innate immunity, and how autophagy can be utilized in pathogen clearance. 相似文献
2.
The fine‐tuning of innate immune responses is an important aspect of host defenses against mycobacteria. MicroRNAs (miRNAs), small non‐coding RNAs, play essential roles in regulating multiple biological pathways including innate host defenses against various infections. Accumulating evidence shows that many miRNAs regulate the complex interplay between mycobacterial survival strategies and host innate immune pathways. Recent studies have contributed to understanding the role of miRNAs, the levels of which can be modulated by mycobacterial infection, in tuning host autophagy to control bacterial survival and innate effector function. Despite considerable efforts devoted to miRNA profiling over the past decade, further work is needed to improve the selection of appropriate biomarkers for tuberculosis. Understanding the roles and mechanisms of miRNAs in regulating innate immune signaling and autophagy may provide insights into new therapeutic modalities for host‐directed anti‐mycobacterial therapies. Here, we present a comprehensive review of the recent literature regarding miRNA profiling in tuberculosis and the roles of miRNAs in modulating innate immune responses and autophagy defenses against mycobacterial infections. 相似文献
3.
Cells digest portions of their interiors in a process known as autophagy to recycle nutrients, remodel and dispose of unwanted cytoplasmic constituents. This ancient pathway, conserved from yeast to humans, is now emerging as a central player in the immunological control of bacterial, parasitic and viral infections. The process of autophagy may degrade intracellular pathogens, deliver endogenous antigens to MHC-class-II-loading compartments, direct viral nucleic acids to Toll-like receptors and regulate T-cell homeostasis. This Review describes the mechanisms of autophagy and highlights recent advances relevant to the role of autophagy in innate and adaptive immunity. 相似文献
4.
5.
6.
Influenza virus infections usually cause mild to moderately severe respiratory disease, however some infections, like those involving the avian H5N1 virus, can cause massive viral pneumonia, systemic disease and death. The innate immune response of respiratory tract resident cells is the first line of defense and limits virus replication. Enhanced cytokine and chemokine production following infection, however, appears to underlie much of the pathology that develops after infection with highly pathogenic strains. A so-called `cytokine storm' can damage the lung tissue and cause systemic disease, despite the control of viral replication. By summarizing current knowledge of the innate responses mounted to influenza infection, this review highlights the importance of the respiratory tract epithelial cells as regulators of innate and adaptive immunity to influenza virus. 相似文献
7.
Viral infection is detected by cellular sensors as foreign nucleic acid and initiates innate antiviral responses, including the activation of type I interferon (IFN) and proinflammatory cytokines. Recent advances in cytoplasmic virus sensors highlight their essential role in the induction of innate immunity. Moreover, it is intriguing to understand how they can discriminate innate RNA from viral foreign RNA. In this mini-review, we focus on these cytoplasmic virus sensors, termed retinoic acid inducible gene-I (RIG-I)-like receptors (RLRs), and discuss their function in the innate immune system. 相似文献
8.
Background
Pruritic scabies lesions caused by Sarcoptes scabiei burrowing in the stratum corneum of human skin facilitate opportunistic bacterial infections. Emerging resistance to current therapeutics emphasizes the need to identify novel targets for protective intervention. We have characterized several protein families located in the mite gut as crucial factors for host-parasite interactions. Among these multiple proteins inhibit human complement, presumably to avoid complement-mediated damage of gut epithelial cells. Peritrophins are major components of the peritrophic matrix often found in the gut of arthropods. We hypothesized that a peritrophin, if abundant in the scabies mite gut, could be an activator of complement.Methodology/Principal Findings
A novel full length scabies mite peritrophin (SsPTP1) was identified in a cDNA library from scabies mites. The amino acid sequence revealed four putative chitin binding domains (CBD). Recombinant expression of one CBD of the highly repetitive SsPTP1 sequence as TSP-hexaHis-fusion protein resulted in soluble protein, which demonstrated chitin binding activity in affinity chromatography assays. Antibodies against a recombinant SsPTP1 fragment were used to immunohistochemically localize native SsPTP1 in the mite gut and in fecal pellets within the upper epidermis, co-localizing with serum components such as host IgG and complement. Enzymatic deglycosylation confirmed strong N- and O-glycosylation of the native peritrophin. Serum incubation followed by immunoblotting with a monoclonal antibody against mannan binding lectin (MBL), the recognition molecule of the lectin pathway of human complement activation, indicated that MBL may specifically bind to glycosylated SsPTP1.Conclusions/Significance
This study adds a new aspect to the accumulating evidence that complement plays a major role in scabies mite biology. It identifies a novel peritrophin localized in the mite gut as a potential target of the lectin pathway of the complement cascade. These initial findings indicate a novel role of scabies mite peritrophins in triggering a host innate immune response within the mite gut. 相似文献9.
Recently, the B cell has emerged as a cornerstone of systemic lupus erythematosus (SLE) pathogenesis. This has been highlighted by studies of the cytokine B-cell-activating factor of the tumour necrosis factor (TNF) family (BAFF), a crucial factor regulating B-cell maturation, survival and function. Overexpression of BAFF in mice leads to the development of an SLE-like disease, independent of T cells but instead relying on innate immunity mechanisms. Moreover, BAFF has been shown to be elevated in the serum of patients suffering from autoimmune conditions, especially SLE, and may correlate with disease activity. These findings challenge the previous notion that T:B-cell collaboration is the sole driver of SLE. In recent years, controlled trials have for the first time tested targeted therapeutics for SLE. However, agents designed to target B cells failed to meet primary endpoints in clinical trials in SLE, suggesting that a more complex role for B cells in SLE awaited elucidation. By contrast, on 9 March 2011, the US Food and Drug Administration approved belimumab, a fully human anti-BAFF monoclonal antibody, as a new B-cell-specific treatment for SLE. This article will review over 10 years of research on the BAFF system, key findings that led to this recent positive clinical outcome and propose a model potentially explaining why this B-cell-specific therapy has yielded positive results in clinical trials. We will also review promising therapies presently in clinical trials targeting innate immunity, which are likely to revolutionize SLE management towards a personalized and targeted therapy approach. 相似文献
10.
11.
12.
13.
Yang CS Rodgers M Min CK Lee JS Kingeter L Lee JY Jong A Kramnik I Lin X Jung JU 《Cell host & microbe》2012,11(3):277-289
Assembly of a scaffold consisting of CARD9, BCL10, and MALT1 (CBM complex) is critical for effective signaling by multiple pattern recognition receptors (PRRs) including Dectin and RIG-I. The RUN domain Beclin-1-interacting cysteine-rich-containing Rubicon protein associates constitutively with the Beclin-UVRAG-Vps34 complex under normal conditions to regulate autophagy. Rubicon also interacts with the phagocytic NADPH-oxidase complex upon TLR stimulation to induce potent antimicrobial responses. Here, we show Rubicon is a physiological feedback inhibitor of CBM-mediated PRR signaling, preventing unbalanced proinflammatory responses. Upon Dectin-1- or RIG-I-mediated activation, Rubicon dynamically exchanges binding partners from 14-3-3β to CARD9 in a stimulation-specific and phosphorylation-dependent manner, disassembling the CBM signaling complex and ultimately terminating PRR-induced cytokine production. Remarkably, Rubicon's actions in the autophagy complex, phagocytosis complex, and CBM complex are functionally and genetically separable. Rubicon thus differentially targets signaling complexes, depending on environmental stimuli, and may function to coordinate various immune responses against microbial infection. 相似文献
14.
Khaitov RM 《Rossi?skii fiziologicheski? zhurnal imeni I.M. Sechenova / Rossi?skaia akademiia nauk》2006,92(6):649-661
The mechanisms of innate immunity functioning--the first row of counteraction (resistance) to infectious agents are reviewed. A concept of pathogen associated molecular patterns--the unique prokaryotic conservative structures--as well as a concept of pattern-recognizing receptors of innate immunity cell recognizing the given bacterial patterns, are discussed. The data on molecular and genetic structures of both Toll-like- and NOD-receptors: the important compounds of pattern-recognizing receptors, the main signaling pathways from receptor to cell genome activation as well as the principles of immune cell activation by pathogen associated molecular patterns are submitted. 相似文献
15.
Phytopathogenic bacteria use the type-III secretion system (TTSS) to inject effector proteins into plant cells, presumably to colonize their hosts. The function of these proteins inside plant cells has remained a mystery for years. The recent discovery that the effectors XopD, AvrXv4, AvrPphB, and AvrRpt2 have cysteine protease functions reveals that the proteolysis of host substrates is an important strategy employed by pathogens to alter plant physiology. Moreover, the characterization of these proteases and their targets provides new insight to mechanisms of bacterial virulence and the activation of plant immunity. 相似文献
16.
The successful development of Plasmodium in Anopheles mosquitoes is governed by complex molecular and cellular interactions that we are just beginning to understand. Anopheles immune system has received particular attention as genetic evidence points clearly to its critical role in eliminating the majority of parasites invading the midgut epithelium. Several factors regulating Plasmodium development have been identified and tentatively assigned to the individual steps leading to mosquito immune reactions; non-self-recognition, signal modulation, signal transduction and effector mechanisms. Detailed knowledge of these steps and their underlying molecular mechanisms may offer novel perspectives to abort Plasmodium development in the vector. Here, we summarize our current knowledge of mosquito innate immunity highlighting both, recent advances and areas where additional research is required. 相似文献
17.
Antiviral innate immunity pathways 总被引:27,自引:0,他引:27
18.
Mitochondria are cellular organelles involved in host-cell metabolic processes and the control of programmed cell death. A direct link between mitochondria and innate immune signalling was first highlighted with the identification of MAVS-a crucial adaptor for RIGI-like receptor signalling-as a mitochondria-anchored protein. Recently, other innate immune molecules, such as NLRX1, TRAF6, NLRP3 and IRGM have been functionally associated with mitochondria. Furthermore, mitochondrial alarmins-such as mitochondrial DNA and formyl peptides-can be released by damaged mitochondria and trigger inflammation. Therefore, mitochondria emerge as a fundamental hub for innate immune signalling. 相似文献
19.
Defensins in innate immunity 总被引:1,自引:0,他引:1
The innate immune system is the first line of defense against many common microorganisms, which can initiate adaptive immune
responses to provide increased protection against subsequent re-infection by the same pathogen. As a major family of antimicrobial
peptides, defensins are widely expressed in a variety of epithelial cells and sometimes in leukocytes, playing an important
role in the innate immune system due to their antimicrobial, chemotactic and regulatory activities. This review introduces
their structure, classification, distribution, synthesis, and focuses on their biological activities and mechanisms, as well
as clinical relevance. These studies of defensins in the innate immune system have implications for the prevention and treatment
of a variety of infectious diseases, including bacterial ocular disease. 相似文献
20.
线粒体是真核细胞至关重要的细胞器,在细胞生命周期中参与了很多关键进程,如ATP的供给、Ca2+动态平衡的维持、活性氧簇(Reactive oxygen species,ROS)的产生与清除、细胞凋亡等[1]。因此,不难想象,线粒体能够通过自身参与的各种生理 相似文献