共查询到20条相似文献,搜索用时 46 毫秒
1.
GTP mobilization of Ca2+ from the endoplasmic reticulum of islets. Comparison with myo-inositol 1,4,5-trisphosphate. 总被引:1,自引:5,他引:1 下载免费PDF全文
The effect of the guanine nucleotide GTP on Ca2+ release from the endoplasmic reticulum of digitonin-permeabilized islets was investigated. maximal and half-maximal Ca2+ release were observed at 5 microM- and 2.5 microM-GTP respectively. GTP caused a rapid release of Ca2+ from the endoplasmic reticulum, which was complete within 1 min. GTP-induced Ca2+ release was structurally specific and required the hydrolysis of GTP. The combination of maximal concentrations of GTP (10 microM) and myo-inositol 1,4,5-trisphosphate (IP3) (10 microM) resulted in an additive effect on Ca2+ release from the endoplasmic reticulum. GDP (100 microM), which inhibits GTP-induced Ca2+ release, did not affect IP3-induced Ca2+ release. Furthermore, GTP-induced Ca2+ release was not independent on submicromolar free Ca2+ concentrations, unlike IP3-induced Ca2+ release. These observations suggest that mechanistically GTP-induced Ca2+ release is different from IP3-induced Ca2+ release from the endoplasmic reticulum. 相似文献
2.
The digitonin-permeabilized pancreatic islet model. Effect of myo-inositol 1,4,5-trisphosphate on Ca2+ mobilization. 下载免费PDF全文
B A Wolf P G Comens K E Ackermann W R Sherman M L McDaniel 《The Biochemical journal》1985,227(3):965-969
Glucose-induced insulin secretion is thought to be mediated by submicromolar increases in intracellular Ca2+, although the intracellular processes are not well understood. We have used the previously characterized digitonin-permeabilized insulin-secreting pancreatic islet model to study the role of myo-inositol 1,4,5-trisphosphate (IP3), a putative second messenger for mobilization of intracellular Ca2+. Ca2+ efflux from the endoplasmic reticulum was studied with or without vanadate present to inhibit Ca2+ reuptake. IP3 (10 microM), at a free Ca2+ level of 0.06 microM, increased Ca2+ release by 30% and, when vanadate was present, by 50%. Maximal and half-maximal Ca2+ release was observed at 10 microM- and 2.5 microM-IP3, respectively. IP3 provoked a rapid release that was followed by slow reuptake. Reuptake was diminished in the presence of vanadate. Inositol 1,4-bisphosphate, inositol 1-phosphate and other phosphoinositide metabolites did not have any significant effect. Because increases in Ca2+ levels in the submicromolar range have been previously shown to induce insulin release in digitonin-permeabilized islets, our results are consistent with the concept of IP3 serving as a second messenger for insulin secretion. 相似文献
3.
Stereospecific mobilization of intracellular Ca2+ by inositol 1,4,5-triphosphate. Comparison with inositol 1,4,5-trisphosphorothioate and inositol 1,3,4-trisphosphate. 总被引:7,自引:5,他引:7 下载免费PDF全文
The isolated activation segment of pig procarboxypeptidase A binds two Tb3+ ions in a strong and specific way. In contrast, the binding of Ca2+, Cd2+ and Mg2+ is weak. The binding of Tb3+ increases the resistance of the isolated activation segment against proteolysis and competes for the binding of the carbocyanine dye Stains-All. This dye forms complexes with the activation segment showing spectral properties similar to those observed with EF-hand structures. The presented results support a previous hypothesis on the existence of two regions in the activation segment of pancreatic procarboxypeptidases structurally related to Ca2+-binding domains of the EF-hand protein family. 相似文献
4.
Stoichiometry of contraction and Ca2+ mobilization by inositol 1,4,5-trisphosphate in isolated gastric smooth muscle cells 总被引:2,自引:0,他引:2
K N Bitar P G Bradford J W Putney G M Makhlouf 《The Journal of biological chemistry》1986,261(35):16591-16596
Smooth muscle cells were isolated from the circular muscle layer of guinea pig stomach and permeabilized by brief exposure to saponin. Both permeabilized and intact muscle cells contracted in response to cholecystokinin octapeptide (CCK-8) and acetylcholine, but only permeabilized muscle cells contracted in response to inositol 1,4,5-trisphosphate (InsP3). The contractile response to InsP3 was prompt (peak less than 5 s), concentration-dependent (EC50-0.3 microM), and insensitive to antimycin or oligomycin. Contraction induced by either InsP3 or CCK-8 was accompanied by a concentration-dependent increase in free Ca2+ that was directly correlated with the magnitude of contraction. Both InsP3 and CCK-8 caused rapid net efflux of Ca2+ from cells preloaded with 45Ca2+. Contraction, increase in free Ca2+ concentration, and net 45Ca2+ efflux elicited by a combination of maximal concentrations of InsP3 and CCK-8 were not significantly different from those elicited by maximal concentrations of either agent alone. Repeated stimulation of single muscle cells with either InsP3 or CCK-8 in Ca2+-free medium caused eventual loss of the contractile response to all agents. The response to all agents was restored upon re-exposure of the cell to a cytosol-like concentration of Ca2+, implying equal access of InsP3 and receptor-linked agonists to the same intracellular Ca2+ store. The results demonstrate that InsP3 mimics the effects of receptor-linked agonists on contraction and mobilization of intracellular Ca2+ in permeabilized smooth muscle cells that retain the functional properties of intact smooth muscle cells and support a role for InsP3 as membrane-derived messenger responsible for mobilization of intracellular Ca2+ in smooth muscle cells. 相似文献
5.
Inositol 1,4,5-trisphosphate (IP3) was found to release Ca2+ from presynaptic nerve endings (synaptosomes) made permeable with saponin. ATP-dependent Ca2+ uptake was carried out until equilibrium was reached. Addition of IP3 produced a rapid release of Ca2+, which was complete within 60 sec, followed by Ca2+ reaccumulation to the original level in 5–7 min. Cholinergic receptor stimulation with muscarine also produced a similar Ca2+ release from synaptic endoplasmic reticulum. Ca2+ release by IP3 was not detectable in the absence of the mitochondrial inhibitors oligomycin or sodium azide. Reaccumulation of Ca2+ was prevented by the presence of vanadate, a potent inhibitor of Ca2+/Mg2+ ATPase. Half maximal and near complete release of Ca2+ took place at 0.4 M and 3 M IP3 concentrations, respectively. These studies demonstrate for the first time IP3 mobilization of Ca2+ from endoplasmic reticulum within synaptic plasma membranes. 相似文献
6.
The effect of sarcoendoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibition on the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) was studied in primary insulin-releasing pancreatic beta-cells isolated from mice, rats and human subjects as well as in clonal rat insulinoma INS-1 cells. In Ca(2+)-deficient medium the individual primary beta-cells reacted to the SERCA inhibitor cyclopiazonic acid (CPA) with a slow rise of [Ca(2+)](i) followed by an explosive transient elevation. The [Ca(2+)](i) transients were preferentially observed at low intracellular concentrations of the Ca(2+) indicator fura-2 and were unaffected by pre-treatment with 100 microM ryanodine. Whereas 20mM caffeine had no effect on basal [Ca(2+)](i) or the slow rise in response to CPA, it completely prevented the CPA-induced [Ca(2+)](i) transients as well as inositol 1,4,5-trisphosphate-mediated [Ca(2+)](i) transients in response to carbachol. In striking contrast to the primary beta-cells, caffeine readily mobilized intracellular Ca(2+) in INS-1 cells under identical conditions, and such mobilization was prevented by ryanodine pre-treatment. The results indicate that leakage of Ca(2+) from the endoplasmic reticulum after SERCA inhibition is feedback-accelerated by Ca(2+)-induced Ca(2+) release (CICR). In primary pancreatic beta-cells this CICR is due to activation of inositol 1,4,5-trisphosphate receptors. CICR by ryanodine receptor activation may be restricted to clonal beta-cells. 相似文献
7.
The ability of two fluoro-analogues of D-myo-inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) to mobilize intracellular Ca2+ stores in SH-SY5Y neuroblastoma cells has been investigated. DL-2-deoxy-2-fluoro-scyllo-Ins(1,4,5)P3 (2F-Ins(1,4,5)P3) and DL-2,2-difluoro-2-deoxy-myo-Ins(1,4,5)P3 (2,2-F2-Ins(1,4,5)P3) were full agonists (EC50s 0.77 and 0.41 microM respectively) and slightly less potent than D-Ins(1,4,5)P3 (EC50 0.13 microM), indicating that the axial 2-hydroxyl group of Ins(1,4,5)P3 is relatively unimportant in receptor binding and stimulation of Ca2+ release. Both analogues mobilized Ca2+ with broadly similar kinetics and were substrates for Ins(1,4,5)P3 3-kinase but, qualitatively, were slightly poorer than Ins(1,4,5)P3. 2F-Ins(1,4,5)P3 was a weak substrate for Ins(1,4,5)P3 5-phosphatase but 2,2-F2-Ins(1,4,5)P3 was apparently not hydrolysed by this enzyme, although it inhibited its activity potently (Ki = 26 microM). 相似文献
8.
Inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate formation in Ca2+-mobilizing-hormone-activated cells. 总被引:7,自引:0,他引:7 下载免费PDF全文
The inositol trisphosphate liberated on stimulation of guinea-pig hepatocytes, pancreatic acinar cells and dimethyl sulphoxide-differentiated human myelomonocytic HL-60 leukaemia cells is composed of two isomers, the 1,4,5-trisphosphate and the 1,3,4-trisphosphate. Inositol 1,4,5-trisphosphate was released rapidly, with no measurable latency on hormone stimulation, and, consistent with its proposed role as an intracellular messenger for Ca2+ mobilization, there was good temporal correlation between its formation and Ca2+-mediated events in these tissues. There was a definite latency before an increase in the formation of inositol 1,3,4-trisphosphate could be detected. In all of these tissues, however, it formed a substantial proportion of the total inositol trisphosphate by 1 min of stimulation. In guinea-pig hepatocytes, where inositol trisphosphate increases for at least 30 min after hormone application, inositol 1,3,4-trisphosphate made up about 90% of the total inositol trisphosphate by 5-10 min. In pancreatic acinar cells, pretreatment with 20 mM-Li+ caused an increase in hormone-induced inositol trisphosphate accumulation. This increase was accounted for by a rise in inositol 1,3,4-trisphosphate; inositol 1,4,5-trisphosphate was unaffected. This finding is consistent with the observation that Li+ has no effect on Ca2+-mediated responses in these cells. The role, if any, of inositol 1,3,4-trisphosphate in cellular function is unknown. 相似文献
9.
The possibility that chronic activation of the phosphoinositide-mediated signaling pathway modifies the Ca(2+)-mobilizing action of inositol 1,4,5-trisphosphate (InsP3) was examined. SH-SY5Y human neuroblastoma cells were exposed to carbachol, permeabilized electrically, loaded with 45Ca2+, and 45Ca2+ mobilization in response to exogenous InsP3 was assessed. In control permeabilized cells, InsP3 released 65 +/- 2% of sequestered 45Ca2+ (EC50 = 0.32 +/- 0.05 microM). Pre-treatment with carbachol reduced both maximal InsP3-induced 45Ca2+ release (to 34 +/- 3%, with half-maximal and maximal inhibition at approximately 3 and 6 h, respectively) and the potency of InsP3 (EC50 = 0.92 +/- 0.13 microM). This inhibitory effect of carbachol was half-maximal at approximately 5 microM, was mediated by muscarinic receptors, and was reversible following withdrawal of agonist. Pretreatment with phorbol 12,13-dibutyrate did not alter the maximal effect of InsP3 but doubled its EC50. Evidence suggesting that the inhibitory effects of carbachol pretreatment resulted from altered Ca2+ homeostasis was not forthcoming; both 45Ca2+ uptake and release induced by ionomycin and thapsigargin were identical in control and pretreated permeabilized cells, as were the characteristics of reuptake of released Ca2+. In contrast, carbachol pretreatment, without altering the affinity of InsP3 (Kd = 64 +/- 7 nM), reduced the density of [32P]InsP3-binding sites from 2.0 +/- 0.1 to 1.0 +/- 0.1 pmol/mg protein with a time course essentially identical to that for the reduction in responsiveness to InsP3. This effect was not mimicked by pretreatment of cells with phorbol 12,13-dibutyrate. These data indicate that chronic activation of phosphoinositide hydrolysis can reduce the abundance of InsP3 receptors and that this causes a reduction in size of the InsP3-sensitive Ca2+ store. This modification, possibly in conjunction with a protein kinase C-mediated event, appears to account for the carbachol-induced suppression of InsP3 action. As intracellular InsP3 mass remained elevated above basal for at least 24 h after addition of carbachol, suppression of the Ca(2+)-mobilizing activity of InsP3 represents an important adaptive response to cell stimulation that can limit the extent to which intracellular Ca2+ is mobilized. 相似文献
10.
11.
Hisatsune C Nakamura K Kuroda Y Nakamura T Mikoshiba K 《The Journal of biological chemistry》2005,280(12):11723-11730
Stimulation of various cell surface receptors leads to the production of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) through phospholipase C (PLC) activation, and the IP3 and DAG in turn trigger Ca2+ release through IP3 receptors and protein kinase C activation, respectively. The amount of IP(3) produced is particularly critical to determining the spatio-temporally coordinated Ca(2+)-signaling patterns. In this paper, we report a novel signal cross-talk between DAG and the IP3-mediated Ca(2+)-signaling pathway. We found that a DAG derivative, 1-oleoyl-2-acyl-sn-glycerol (OAG), induces Ca2+ oscillation in various types of cells independently of protein kinase C activity and extracellular Ca2+. The OAG-induced Ca2+ oscillation was completely abolished by depletion of Ca2+ stores or inhibition of PLC and IP3 receptors, indicating that OAG stimulates IP3 production through PLC activation and thereby induces IP3-induced Ca2+ release. Furthermore, intracellular accumulation of endogenous DAG by a DAG-lipase inhibitor greatly increased the number of cells responding to agonist stimulation at low doses. These results suggest a novel physiological function of DAG, i.e. amplification of Ca2+ signaling by enhancing IP3 production via its positive feedback effect on PLC activity. 相似文献
12.
Perturbation of myo-inositol-1,4,5-trisphosphate levels during agonist-induced Ca2+ oscillations. 下载免费PDF全文
Agonist-induced Ca2+ oscillations in rat hepatocytes involve the production of myo-inositol-1,4,5-trisphosphate (IP3), which stimulates the release of Ca2+ from intracellular stores. The oscillatory frequency is conditioned by the agonist concentration. This study investigated the role of IP3 concentration in the modulation of oscillatory frequency by using microinjected photolabile IP3 analogs. Photorelease of IP3 during hormone-induced oscillations evoked a Ca2+ spike, after which oscillations resumed with a delay corresponding to the period set by the agonists. IP3 photorelease had no influence on the frequency of oscillations. After photorelease of 1-(alpha-glycerophosphoryl)-D-myo-inositol-4,5-diphosphate (GPIP2), a slowly metabolized IP3 analog, the frequency of oscillations initially increased by 34% and declined to its original level within approximately 6 min. Both IP3 and GPIP2 effects can be explained by their rate of degradation: the half-life of IP3, which is a few seconds, can account for the lack of influence of IP3 photorelease on the frequency, whereas the slower metabolism of GPIP2 allowed a transient acceleration of the oscillations. The phase shift introduced by IP3 is likely the result of the brief elevation of Ca2+ during spiking that resets the IP3 receptor to a state of maximum inactivation. A mathematical model of Ca2+ oscillations is in satisfactory agreement with the observed results. 相似文献
13.
The nucleus also contains the inositol 1,4,5-trisphosphate receptor (IP3R)/Ca2+ channels in the nucleoplasm proper independent of the nuclear envelope or the cytoplasm. The nuclear IP3R/Ca2+ channels were shown to be present in small IP3-dependent nucleoplasmic Ca2+ store vesicles, yet no information is available regarding the IP3 sensitivity of nuclear IP3R/Ca2+ channels. Here, we show that nuclear IP3R/Ca2+ channels are 3-4-fold more sensitive to IP3 than cytoplasmic ones in both neuroendocrine PC12 cells and nonneuroendocrine NIH3T3 cells. Given the presence of phosphoinositides and phospholipase C and the importance of IP3-mediated Ca2+ signaling in the nucleus, the high IP3 sensitivity of nuclear IP3R/Ca2+ channels seemed to reflect the physiological needs of the nucleus to finely control the IP3-dependent Ca2+ concentrations. It was further shown that the IP3R/Ca2+ channels of secretory cells are 7-8-fold more sensitive to IP3 than those of nonsecretory cells. This difference appeared to result from the presence of secretory cell marker protein chromogranins (thus secretory granules) in secretory cells; expression of chromogranins in NIH3T3 cells increased the IP3 sensitivity of both nuclear and cytoplasmic IP3R/Ca2+ channels by approximately 4-6-fold. In contrast, suppression of chromogranin A expression in PC12 cells changed the EC50 of IP3 sensitivity for cytoplasmic IP3R/Ca2+ channels from 17 to 47 nM, whereas suppression of chromogranin B expression changed the EC50 of cytoplasmic IP3R/Ca2+ channels from 17 to 102 nM and the nuclear ones from 4.3 to 35 nM. Given that secretion is the major function of secretory cells and is under a tight control of intracellular Ca2+ concentrations, the high IP3 sensitivity appears to reflect the physiological roles of secretory cells. 相似文献
14.
The effect of inositol-1,4,5-trisphosphate on Ca2+ release from microsomes isolated from dark-grown zucchini (Cucurbita pepo L.) hypocotyls was studied. Up to 30% of the Ca2+ taken up by the microsomes in the presence of 2mM ATP, was released by mumolar concentrations of inositol-1,4, 5-trisphosphate. This release was very rapid (less than 0.5 min) and was followed by a slower re-uptake of Ca2+. The microsomal levels of Ca2+ previously attained were not re-established within 5 min. External concentration of free Ca2+ was maintained in the 10(-8)M region during the release. This is the first time that inositol-1,4,5-trisphosphate has been shown to have a regulatory effect on Ca2+ in plant membrane fractions. Phosphoinositides may be important in signal transduction in plant cells, by altering the cytoplasmic Ca2+ activity, a function already known in animal cells. 相似文献
15.
Inositol 1,4,5-trisphosphate mobilizes intracellular Ca2+ from permeabilized insulin-secreting cells. 总被引:6,自引:15,他引:6 下载免费PDF全文
T J Biden M Prentki R F Irvine M J Berridge C B Wollheim 《The Biochemical journal》1984,223(2):467-473
A possible role in secretory processes is proposed for inositol 1,4,5-triphosphate (IP3), based upon investigations of the Ca2+ steady state maintained by "leaky', insulin-secreting RINm5F cells. These cells had been treated with digitonin to permeabilize their plasma membranes and thereby ensure that only intracellular Ca2+ buffering mechanisms were active. When placed in a medium with a cation composition resembling that of the cytosol, cells rapidly took up Ca2+ as measured by a Ca2+-specific minielectrode. Two Ca2+ steady states were observed. A lower level of around 120nM required ATP-dependent Ca2+ uptake and was probably determined by the endoplasmic reticulum. The higher steady state (approx. 800 nM), seen only in the absence of ATP, was shown to be due to mitochondrial activity. IP3 specifically released Ca2+ accumulated in the ATP-dependent pool, but not from mitochondria, since Ca2+ release was demonstrated in the presence of the respiratory poison antimycin. The IP3-induced Ca2+ release was rapid, with 50% of the response being seen within 15s. The apparent Km was 0.5 microM and maximal concentrations of IP3 (2.5 microM) produced a peak Ca2+ release of 10 nmol/mg of cell protein, which was followed by re-uptake. A full Ca2+ response was seen if sequential pulses of 2.5 microM-IP3 were added at 20 min intervals, although there was a slight (less than 20%) attenuation if the intervening period was decreased to 10 min. These observations could be related to the rate of IP3 degradation which, in this system, corresponded to a 25% loss of added 32P label within 2 min, and a 75% loss within 20 min. The results suggest that IP3 might act as a link between metabolic, cationic and secretory events during the stimulation of insulin release. 相似文献
16.
myo-Inositol 1,4,5-trisphosphate mobilizes Ca2+ from isolated adipocyte endoplasmic reticulum but not from plasma membranes. 下载免费PDF全文
D M Delfert S Hill H A Pershadsingh W R Sherman J M McDonald 《The Biochemical journal》1986,236(1):37-44
The effects of myo-inositol 1,4,5-trisphosphate (IP3) on Ca2+ uptake and release from isolated adipocyte endoplasmic reticulum and plasma membrane vesicles were investigated. Effects of IP3 were initially characterized using an endoplasmic reticulum preparation with cytosol present (S1-ER). Maximal and half-maximal effects of IP3 on Ca2+ release from S1-ER vesicles occurred at 20 microM- and 7 microM-IP3, respectively, in the presence of vanadate which prevents the re-uptake of released Ca2+ via the endoplasmic reticulum Ca2+ pump. At saturating IP3 concentrations, Ca2+ release in the presence of vanadate was 20% of the exchangeable Ca2+ pool. IP3-induced release of Ca2+ from S1-ER was dependent on extravesicular free Ca2+ concentration with maximal release occurring at 0.13 microM free Ca2+. At 20 microM-IP3 there was no effect on the initial rate of Ca2+ uptake by S1-ER. IP3 promoted Ca2+ release from isolated endoplasmic reticulum vesicles (cytosol not present) to a similar level as compared with S1-ER. Addition of cytosol to isolated endoplasmic reticulum vesicles did not affect IP3-induced Ca2+ release. The endoplasmic reticulum preparation was further fractionated into heavy and light vesicles by differential centrifugation. Interestingly, the heavy fraction, but not the light fraction, released Ca2+ when challenged with IP3. IP3 (20 microM) did not promote Ca2+ release from plasma membrane vesicles and had no effect on the (Ca2+ + Mg2+)-ATPase activity or on the initial rate of ATP-dependent Ca2+ uptake by these vesicles. These results support the concept that IP3 acts exclusively at the endoplasmic reticulum to promote Ca2+ release. 相似文献
17.
The size of inositol 1,4,5-trisphosphate-sensitive Ca2+ stores depends on inositol 1,4,5-trisphosphate concentration. 总被引:5,自引:0,他引:5 下载免费PDF全文
An explanation of the complex effects of hormones on intracellular Ca2+ requires that the intracellular actions of Ins(1,4,5)P3 and the relationships between intracellular Ca2+ stores are fully understood. We have examined the kinetics of 45Ca2+ efflux from pre-loaded intracellular stores after stimulation with Ins(1,4,5)P3 or the stable phosphorothioate analogue, Ins(1,4,5)P3[S]3, by simultaneous addition of one of them with glucose/hexokinase to rapidly deplete the medium of ATP. Under these conditions, a maximal concentration of either Ins(1,4,5)P3 or Ins(1,4,5)P3[S]3 evoked rapid efflux of about half of the accumulated 45Ca2+, and thereafter the efflux was the same as occurred under control conditions. Submaximal concentrations of Ins(1,4,5)P3 or Ins(1,4,5)P3[S]3 caused a smaller rapid initial efflux of 45Ca2+, after which the efflux was similar whatever the concentration of Ins(1,4,5)P3 or Ins(1,4,5)P3[S]3 present. The failure of submaximal concentrations of Ins(1,4,5)P3 and Ins(1,4,5)P3[S]3 to mobilize fully the Ins(1,4,5)P3-sensitive Ca2+ stores despite prolonged incubation was not due either to inactivation of Ins(1,4,5)P3 or to desensitization of the Ins(1,4,5)P3 receptor. The results suggest that the size of the Ins(1,4,5)P3 sensitive Ca2+ stores depends upon the concentration of Ins(1,4,5)P3. 相似文献
18.
The effects of Ca2+ and GTP on the release of Ca2+ from the inositol 1,4,5-trisphosphate (IP3) sensitive Ca2+ compartment were investigated with digitonin permeabilized rat pancreatic acinar cells. The amount of Ca2+ released due to IP3 directly correlated with the amount of stored Ca2+ and was found to be inversely proportional to the medium free Ca2+ concentration. Ca2+ release induced by 0.18 microM IP3 was half maximally inhibited at 0.5 microM free Ca2+, i.e. at concentrations observed in the cytosol of pancreatic acinar cells. GTP did not cause Ca2+ release on its own, but a single addition of GTP (20 microM) abolished the apparent desensitization of the Ca2+ release which was observed during repeated IP3 applications. This effect of GTP was reversible. GTP gamma S could not replace GTP. Desensitization still occurred when GTP gamma S was added prior to GTP. The reported data indicate that GTP, stored Ca2+ and cytosolic free Ca2+ modulate the IP3 induced Ca2+ release. 相似文献
19.
The immediate reaction products of PLA2-mediated hydrolysis of phospholipids were tested for their ability to induce Ca2+ mobilization from internal stores in permeabilized ob/ob mouse pancreatic islets. Lysophospholipids and unsaturated fatty acids increased the free Ca2+ concentration in the incubation medium of permeabilized ob/ob mouse pancreatic islets. The potency of the lysophospholipids decreased in the following order: lysophosphatidylcholine = lysophosphatidylglycerol much greater than lysophosphatidylinositol greater than lysophosphatidylserine much greater than lysophosphatidylethanolamine. Arachidonic acid and palmitoleic acid had a potency comparable to lysophosphatidylinositol, while palmitic acid was ineffective. The Ca(2+)-mobilizing effect of inositol-1,4,5-trisphosphate (IP3) in permeabilized islet cells was additive to the lysophospholipid effect, indicating different sites of action. Both Ca(2+)-mobilizing effects were counteracted by the polyamine spermine, while the presence of Mg2+ shifted the Ca2+ concentrations to higher levels. Since not only an activation of a phospholipase C but also an activation of a phospholipase A2 with subsequent generation of lysophospholipids and free fatty acids is reported to occur in glucose-induced insulin secretion, the interaction of the phospholipase C reaction product IP3 with a lysophospholipid or an unsaturated fatty acid may affect the extent and duration of the rise in the free cytoplasmic Ca2+ concentration responsible for initiation of insulin secretion. 相似文献
20.
The comparison between the ionization state and the binding properties on brain membrane receptors of the synthetized myo-inositol 1,4,5-trisphosphate lead to the conclusion that the biological active species may be either the monoprotonated or the fully deprotonated trisphosphate. 相似文献