首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Retrovirus intasomes purified from virus-infected cells contain the linear viral DNA genome and integrase (IN). Intasomes are capable of integrating the DNA termini in a concerted fashion into exogenous target DNA (full site), mimicking integration in vivo. Molecular insights into the organization of avian myeloblastosis virus IN at the viral DNA ends were gained by reconstituting nucleoprotein complexes possessing intasome characteristics. Assembly of IN-4.5-kbp donor complexes capable of efficient full-site integration appears cooperative and is dependent on time, temperature, and protein concentration. DNase I footprint analysis of assembled IN-donor complexes capable of full-site integration shows that wild-type U3 and other donors containing gain-of-function attachment site sequences are specifically protected by IN at low concentrations (<20 nM) with a defined outer boundary mapping ~20 nucleotides from the ends. A donor containing mutations in the attachment site simultaneously eliminated full-site integration and DNase I protection by IN. Coupling of wild-type U5 ends with wild-type U3 ends for full-site integration shows binding by IN at low concentrations probably occurs only at the very terminal nucleotides (<10 bp) on U5. The results suggest that assembly requires a defined number of avian IN subunits at each viral DNA end. Among several possibilities, IN may bind asymmetrically to the U3 and U5 ends for full-site integration in vitro.  相似文献   

2.
Concerted integration of retrovirus DNA termini into the host chromosome in vivo requires specific interactions between the cis-acting attachment (att) sites at the viral termini and the viral integrase (IN) in trans. In this study, reconstruction experiments with purified avian myeloblastosis virus (AMV) IN and retrovirus-like donor substrates containing wild-type and mutant termini were performed to map the internal att DNA sequence requirements for concerted integration, here termed full-site integration. The avian retrovirus mutations were modeled after internal att site mutations studied at the in vivo level with human immunodeficiency virus type 1 (HIV-1) and murine leukemia virus (MLV). Systematic overlapping 4-bp deletions starting at nucleotide positions 7, 8, and 9 in the U3 terminus had a decreasing detrimental gradient effect on full-site integration, while more internal 4-bp deletions had little or no effect. This decreasing detrimental gradient effect was measured by the ability of mutant U3 ends to interact with wild-type U3 ends for full-site integration in trans. Modification of the highly conserved C at position 7 on the catalytic strand to either A or T resulted in the same severe decrease in full-site integration as the 4-bp deletion starting at this position. These studies suggest that nucleotide position 7 is crucial for interactions near the active site of IN for integration activity and for communication in trans between ends bound by IN for full-site integration. The ability of AMV IN to interact with internal att sequences to mediate full-site integration in vitro is similar to the internal att site requirements observed with MLV and HIV-1 in vivo and with their preintegration complexes in vitro.  相似文献   

3.
Retroviral DNA integration is mediated by nucleoprotein complexes (intasomes) comprising a pair of viral DNA ends synapsed by a tetramer of integrase. Current integrase inhibitors act on intasomes rather than free integrase protein. Structural and functional studies of intasomes are essential to understand their mechanism of action and how the virus can escape by mutation. To date, prototype foamy virus (PFV) is the only retrovirus for which high‐resolution structures of intasomes have been determined. In the PFV intasome structure, only the core domains of the outer subunits are ordered; the N‐terminal domain, C‐terminal domain, and N‐terminal extension domain are disordered. Are these “missing domains” required for function or are they dispensable? We have devised a strategy to assemble “hetero‐intasomes” in which the outer domains are not present as a tool to assess the functional role of the missing domains for catalysis of integration. We find that the disordered domains of outer subunits are not required for intasome assembly or catalytic activity as catalytic core domains can substitute for the outer subunits in the case of both PFV and HIV‐1 intasomes.  相似文献   

4.
5.
An in vitro integration system derived from avian leukosis virus-infected cells supports both intra- and intermolecular integration of the viral DNA. In the absence of polyethylene glycol, intramolecular integration of viral DNA molecules into themselves (autointegration) was preferred. In the presence of polyethylene glycol, integration into an exogenously supplied DNA target was greatly promoted. Analysis of integration intermediates revealed that the strand transfer mechanisms of both reactions were identical to those of retroviruses and some transposons: each 3' end of the donor molecule is joined to a 5' end of the cleaved target DNA. The immediate integration precursor appears to be linear viral DNA with the 3' ends shortened by 2 nucleotides. Finally, in the avian system, most cytoplasmic viral DNA appears to be incomplete and further DNA synthesis is required for integration in vitro.  相似文献   

6.
7.
Viral integrase catalyzes the integration of the linear viral DNA genome into the chromatin of the infected host cell, an essential step in the life cycle of retroviruses. The reaction produces a characteristic small duplication of host sequences at the site of integration, implying that there is a close juxtaposition of the viral DNA ends during a concerted integration event. We have used an in vitro assay to measure the concerted integration of virus-like plasmid DNA into naked lambda DNA catalyzed by virion purified avian integrase. In contrast to in vivo avian integration, which has strong fidelity for a 6-bp duplication, purified avian integrase in the context of this assay produced a distribution of duplication sizes, with the 6-bp size dominating. The metal cofactor Mg2+ induced increased fidelity for the 6-bp duplication relative to that with Mn2+. The immediate sequence of the host site may also influence duplication size in that we found sites that sustained multiple independent integration events producing the same duplication size. Additionally, for each set of cloned integration sites (5, 6, and 7 bp), a unique but similar symmetrical pattern of G/C and A/T sequence biases was found. Using duplex oligonucleotides as target substrates, we tested the significance of the 6-bp G/C and A/T pattern for site selection. In the context of this assay, which is likely dominated by the integration of only one viral end, the 6-bp pattern was not preferred. Instead, integration was predominantly into the 3' ends of the oligonucleotides. The combined results of the lambda and oligonucleotide assays indicated that although host site selection has properties in common with recognition of the viral DNA termini, the nonrandom sequence preferences seen for host site selection were not identical to the sequence requirements for long terminal repeat recognition.  相似文献   

8.
We report the efficient concerted integration of a linear virus-like DNA donor into a 2.8 kbp circular DNA target by integrase (IN) purified from avian myeloblastosis virus. The donor was 528 bp, contained recessed 3' OH ends, was 5' end labeled, and had a unique restriction site not found in the target. Analysis of concerted (full-site) and half-site integration events was accomplished by restriction enzyme analysis and agarose gel electrophoresis. The donor also contained the SupF gene that was used for genetic selection of individual full-site recombinants to determine the host duplication size. Two different pathways, involving either one donor or two donor molecules, were used to produce full-site recombinants. About 90% of the full-site recombinants were the result of using two donor molecules per target. These results imply that juxtapositioning an end from each of two donors by IN was more efficient than the juxtapositioning of two ends of a single donor for the full-site reaction. The formation of preintegration complexes containing integrase and donor on ice prior to the addition of target enhanced the full-site reaction. After a 30 min reaction at 37 degrees C, approximately 20-25% of all donor/target recombinants were the result of concerted integration events. The efficient production of full-site recombinants required Mg2+; Mn2+ was only efficient for the production of half-site recombinants. We suggest that these preintegration complexes can be used to investigate the relationships between the 3' OH trimming and strand transfer reactions.  相似文献   

9.
The enzymatic domains of the avian retrovirus polymerase (pol) gene have been mapped by the use of peptide antibodies and COOH-terminal amino acid analysis. The processed pol beta polypeptide is cleaved in vivo to yield alpha and pp32. Rabbit antibodies were directed against synthetic peptides whose sequence was deduced from the known pol sequence of Rous sarcoma virus, Prague C (Schwartz, D.E., Tizard, R., and Gilbert, W. (1983) Cell 32, 853-869). The RNase H active site of pol was located in the NH2-terminal region of the alpha DNA polymerase subunit. The COOH terminus of the alpha subunit was found to be immediately adjacent to the NH2 terminus of the pp32 pol protein. COOH-terminal amino acid analysis of pp32 revealed that this protein is also processed. From the deduced amino acid sequence of pol, it appears likely that pol encodes an additional 4100-dalton polypeptide located at its extreme COOH terminus. The enzymatic domains on beta appear to map in the following order: RNase H-DNA polymerase-DNA endonuclease. Hydrophilicity analysis and secondary structure predictions of wild type Rous sarcoma virus pol products and mutated pp32 possessing single amino acid changes permit further structural evaluation of the multifunctional pol protein.  相似文献   

10.
Concerted integration of retroviral DNA termini, which produces a characteristic duplication of sequences at the integration site and formation of the proviral state, is a necessary step of the retroviral life cycle. We investigated the pairwise integration reaction catalyzed by purified avian retrovirus integrase by measuring the response to solution parameters and how the sequences of the viral termini, which comprise the avian imperfect inverted repeat, affect the reaction. When we optimized the reaction, an efficiency was achieved which approached that measured in systems using cytoplasmic extracts from virus-infected cells. The response of purified avian integrase to solution parameters was similar to that of the integration activity derived from cellular extracts. For strand transfer, the U3 viral terminal sequences were preferred to those of the U5 termini, a result we previously showed for the trimming reaction. That the sequence preference was the same for trimming and strand transfer may be further evidence that only one catalytic site is used for both reactions. A significant number of integration sites were sequenced. Interesting trends were found for the fidelity of the host duplications to the avian 6-bp duplication size, the clustering of the integration sites in the nonessential region of the lambda host DNA, and the sequence characteristics of the duplication sites.  相似文献   

11.
Insertion of the linear retrovirus DNA genome into the host DNA by the virus-encoded integrase (IN) is essential for efficient replication. We devised an efficient virus-like DNA plasmid integration assay which mimics the standard oligonucleotide assay for integration. It permitted us to study, by electron microscopy and sequence analysis, insertion of a single long terminal repeat terminus (LTR half-site) of one plasmid into another linearized plasmid. The reaction was catalyzed by purified avian myeloblastosis virus IN in the presence of Mg2+. The recombinant molecules were easily visualized and quantitated by agarose gel electrophoresis. Agarose gel-purified recombinants could be genetically selected by transformation of ligated recombinants into Escherichia coli HB101 cells. Electron microscopy also permitted the identification and localization of IN-DNA complexes on the virus-like substrate in the absence of the joining reaction. Intramolecular and intermolecular DNA looping by IN was visualized. Although IN preferentially bound to AT-rich regions in the absence of the joining reaction, there was a bias towards GC-rich regions for the joining reaction. Alignment of 70 target site sequences 5' of the LTR half-site insertions with 68 target sites previously identified for the concerted insertion of both LTR termini (LTR full-site reaction) indicated similar GC inflection patterns with both insertional events. Comparison of the data suggested that IN recognized only half of the target sequences necessary for integration with the LTR half-site reaction.  相似文献   

12.
The integration protein (IN) of the Prague A strain of Rous sarcoma virus (RSV) was analyzed by high-resolution sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Three polypeptides of similar proportions and molecular mass (32 kDa) were immunoprecipitated by an antiserum directed against the first 10 amino acids of the amino terminus of IN. However, the faster-migrating nonphosphorylated polypeptide was not immunoprecipitated by two different polyclonal antisera directed against the last 11 amino acids of the carboxyl terminus of IN. These results suggest that the faster-migrating species was proteolytically processed at its carboxyl terminus. RSV IN is phosphorylated on an S residue located five amino acids from its carboxyl terminus. Two different missense mutations at this S residue resulted in the isolation of slow-growing viable mutants whose phenotypes were stable. Each mutation at residue 282 eliminated both major phosphorylated-Ser-containing tryptic peptides observed with wild-type IN. An S----F mutation resulted in the conversion of all IN polypeptides to one species that was not precipitable by carboxyl-terminal antisera, suggesting that this amino acid transition promoted proteolysis at the carboxyl terminus. An S----D mutation resulted in the recovery of one major (greater than 95%) slower-migrating polypeptide that was immunoprecipitated by carboxyl-terminal antisera, suggesting that this negatively charged D residue (similar to phosphorylated Ser) inhibited proteolysis. Modification of the S residue at amino acid 262 to R had no apparent effect on the proteolytic processing or phosphorylation of IN.  相似文献   

13.
Retrovirus preintegration complexes (PIC) in virus-infected cells contain the linear viral DNA genome (approximately 10 kbp), viral proteins including integrase (IN), and cellular proteins. After transport of the PIC into the nucleus, IN catalyzes the concerted insertion of the two viral DNA ends into the host chromosome. This successful insertion process is termed "full-site integration." Reconstitution of nucleoprotein complexes using recombinant human immunodeficiency virus type 1 (HIV-1) IN and model viral DNA donor substrates (approximately 0.30 to 0.48 kbp in length) that are capable of catalyzing efficient full-site integration has proven difficult. Many of the products are half-site integration reactions where either IN inserts only one end of the viral donor substrate into a circular DNA target or into other donors. In this report, we have purified recombinant HIV-1 IN at pH 6.8 in the presence of MgSO4 that performed full-site integration nearly as efficiently as HIV-1 PIC. The size of the viral DNA substrate was significantly increased to 4.1 kbp, thus allowing for the number of viral DNA ends and the concentrations of IN in the reaction mixtures to be decreased by a factor of approximately 10. In a typical reaction at 37 degrees C, recombinant HIV-1 IN at 5 to 10 nM incorporated 30 to 40% of the input DNA donor into full-site integration products. The synthesis of full-site products continued up to approximately 2 h, comparable to incubation times used with HIV-1 PIC. Approximately 5% of the input donor was incorporated into the circular target producing half-site products with no significant quantities of other integration products produced. DNA sequence analysis of the viral DNA-target junctions derived from wild-type U3 and U5 coupled reactions showed an approximately 70% fidelity for the HIV-1 5-bp host site duplications. Recombinant HIV-1 IN successfully utilized a mutant U5 end containing additional nucleotide extensions for full-site integration demonstrating that IN worked properly under nonideal active substrate conditions. The fidelity of the 5-bp host site duplications was also high with these coupled mutant U5 and wild-type U3 donor ends. These studies suggest that recombinant HIV-1 IN is at least as capable as native IN in virus particles and approaching that observed with HIV-1 PIC for catalyzing full-site integration.  相似文献   

14.
CELO virus (fowl adenovirus 1) contained three core polypeptides of molecular weights 20,000, 12,000, and 9,500. The core was similar to that of human adenoviruses, with some evidence of compact subcore domains. Micrococcal nuclease digestion of CELO virus cores produced a smear of DNA fragments of gradually decreasing size, with no nucleosome subunit or repeat pattern. Moreover, when digested cores were analyzed without protease treatment, there was again no evidence of a nucleosome substructure; neither DNA fragments nor core proteins entered a 4% polyacrylamide gel. The organization of the core is thus quite unlike that of chromatin. Restriction endonuclease analysis of the DNA from digested cores showed that the right end was on the outside of the core. We suggest that adenovirus DNA is condensed into the core by cross-linking and neutralization by the core proteins, beginning with the packaging sequence at the center of the core and ending with the right end of the DNA on the outside.  相似文献   

15.
We used in vitro mutagenesis in the 3' region of the avian retrovirus polymerase (pol) gene to genetically define the role of the DNA endonuclease domain. In-frame insertional mutations, which were dispersed throughout the 5' region of pp32, produced a series of five replication-deficient mutants. In contrast, a single point mutant (Ala----Pro) located 48 amino acids from the NH2 terminus of pp32 exhibited a delayed replication phenotype. Molecular analysis of this mutant demonstrated that upon infection it was capable of synthesizing both linear and circular species of unintegrated viral DNA. The levels of unintegrated viral DNA present in cells infected with the mutant virus were several times greater than wild-type levels. Quantitation of the amount of integrated viral genomes demonstrated that the mutant virus integrated viral DNA one-fifth as efficiently as wild-type virus. This single point mutation in the NH2 terminus of pp32 prevented efficient integration of viral DNA, with no apparent effect on viral DNA synthesis per se. Thus, the DNA endonuclease domain has been genetically defined as necessary for avian retrovirus integration.  相似文献   

16.
Molecular organization of the AIDS retrovirus   总被引:20,自引:0,他引:20  
A B Rabson  M A Martin 《Cell》1985,40(3):477-480
  相似文献   

17.
Retroviral integrase, one of only three enzymes encoded by the virus, catalyzes the essential step of inserting a DNA copy of the viral genome into the host during infection. Using the avian sarcoma virus integrase, we demonstrate that the enzyme functions as a tetramer. In presteady-state active site titrations, four integrase protomers were required for a single catalytic turnover. Volumetric determination of integrase-DNA complexes imaged by atomic force microscopy during the initial turnover additionally revealed substrate-induced assembly of a tetramer. These results suggest that tetramer formation may be a requisite step during catalysis with ramifications for antiviral design strategies targeting the structurally homologous human immunodeficiency virus, type 1 (HIV-1) integrase.  相似文献   

18.
Efficient autointegration of avian retrovirus DNA in vitro.   总被引:5,自引:10,他引:5       下载免费PDF全文
Y M Lee  J M Coffin 《Journal of virology》1990,64(12):5958-5965
We have developed a cell-free system for an avian retrovirus that promotes autointegration, one-long-terminal-repeat (LTR) circle formation, and correct integration into exogenous target DNA. In this system, autointegration and one-LTR circle formation occurred far more frequently than integration into exogenous target DNA. Autointegration had the same characteristics of normal integration into target DNA except in its selection of target. Highly efficient autointegration as well as one-LTR circle formation in vitro suggest that there may be a mechanism to prevent these processes in vivo.  相似文献   

19.
The avian myeloblastosis virus integration protein (IN) was capable of removing a specific set of 3'-OH-terminal nucleotides from blunt-ended long terminal repeat (LTR) substrates which resembled linear viral DNA in vivo. The 3'-OH-recessed ends map to the in vivo site of integration on linear viral DNA. The linear DNA plasmid substrate was formed by the generation of a unique DraI restriction enzyme site (TTT/AAA) at the circle junction of a 330-bp tandem LTR-LTR insert. IN preferentially released the three T nucleotides from the minus strand of the U3 LTR substrate compared with its ability to remove the three T nucleotides from the plus strand of the U5 LTR substrate. It was also observed that IN was capable of cleaving a non-LTR DNA substrate containing sequence homology to the U5 LTR terminus.  相似文献   

20.
The molecular organization of the conjugative cat-erm-tet region of Streptococcus agalactiae B109 was examined by cloning large contiguous portions of the strain B109 chromosome, using a cosmid vector system. The organization of this region was compared with pDP5, a plasmid which acquired this resistance element by transposition. Both the chromosomal copy and the transposed copy of the resistance region were found to be 67-kilobases long, although sequences at the boundary of the transposed copy of the element showed some rearrangement. In addition to the stable chromosomal state, we present evidence which suggests the presence of a circular form of the element.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号