首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yang X  Li Y  Ren B  Ding L  Gao C  Shen Q  Guo S 《Plant & cell physiology》2012,53(3):495-504
Previous studies demonstrated that ammonium nutrition results in higher water uptake rate than does nitrate nutrition under water stress, and thus enhances the tolerance of rice plants to water stress. However, the process by which water uptake is related to nitrogen form under water stress remains unknown. A hydroponic experiment with simulated water stress induced by polyethylene glycol (PEG6000) was conducted in a greenhouse to study the relationship between root aerenchyma formation and water uptake rate, such as xylem sap flow rate and hydraulic conductance, in two different rice cultivars (cv. 'Shanyou 63' hybrid indica and cv. 'Yangdao 6' indica, China). The results showed that root aerenchyma tissue increased in water-stressed plants of both cultivars fed by nitrate. No significant difference was found in root hydraulic conductivity and/or xylem sap flow rate between the two rice cultivars fed by ammonium regardless of water status, whereas these parameters decreased significantly in water-stressed plants fed by nitrate. It was concluded that aerenchyma that formed in the root cortex impeded the radial transport of water in the root cylinder and decreased water uptake in water-stressed rice plants fed by nitrate. Water transport occurred mainly through Hg-sensitive water channels in rice roots supplied with ammonium.  相似文献   

2.
The relative effects of ammonium on nitrate uptake and partitioning during induction were compared among decapitated seedlings of three corn (Zea mays L.) genotypes at two developmental stages. This study tested the hypothesis that root systems efficient at translocating products of ammonium assimilation away from sites of nitrate uptake or reduction would exhibit less inhibition of nitrate uptake by ammonium compared to root systems with inefficient N translocation efficiency. Inhibition of nitrate uptake by ammonium was relatively slight at day 5 ranging from 0% to 20% among the three genotypes, as compared to greater inhibition, from 20% to 37%, at day 8. Five-day-old roots exhibited negligible xylem translocation capacity in comparison with those grown for 8 days. Thus, although the capability to translocate ammonium assimilates out of the root increased between days 5 and 8, inhibitory effects of ammonium also increased. In the absence of ammonium, nitrate uptake per unit root mass increased between days 5 and 8. This increased activity of the uptake system was proportionally more sensitive to ammonium.

Partitioning of entering nitrate into the reduction process was positively correlated with lateral root development of the inbred root systems at 5 and 8 days. This is supportive of a localization of a major portion of nitrate reduction occurring in root apical regions. Nitrate reduction was the partitioning process most severely inhibited by ammonium in all cases, ranging from 39% to 55% inhibition. In contrast, ammonium-inhibition of nitrate accumulation in the root tissue and translocation via xylem vessels varied with genotype and root age.

Two mechanisms of ammonium-inhibition of nitrate are implicated, one which directly affects nitrate reduction and the uptake system associated with it, and another which may involve potassium as an intermediate regulator of nitrate accumulation in the root tissue and nitrate translocation out of the root tissue.

  相似文献   

3.
Possible interactions of two synthetic plant-growth retardants during the short-term response of Brassica rapa L. ssp. oleifera (DC.) Metzger plants to low root-zone temperature were investigated by pretreating with mefluidide or paclobutrazol. Water and solute transfers were studied by measuring xylem sap volume flow (under root pressure exudation) and ion flow from the roots. Relations with nitrate uptake rate were also considered. Root pretreatment with paclobutrazol strongly restricted the cold-inducible processes which normally restore water and solute flow from the root xylem. Paclobutrazol decreased the rates of nitrate uptake and exudation flow from the root xylem (principally by reducing root hydraulic conductivity) with dramatic consequences for ion flow, especially that of nitrate.
The effects of root ABA pretreatment on plant response to root cooling were then studied separately or in association with a pretreatment with paclobutrazol. Despite a slight decrease in nitrate uptake rate, ABA pretreatment of the roots enabled the plant to develop rapid mechanisms for adaptation to cold constraint at the root level. Moreover, this action of exogenous ABA greatly reduced the effect of a simultaneous paclobutrazol pretreatment and partly restored water and solute flows.
Thus, the improvement of plant resistance to cold conditions brought about by treatments with mefluidide and paclobutrazol (previously shown in long-term experiments) cannot simply be explained by their short-term effects.  相似文献   

4.
Smith FW  Jackson WA 《Plant physiology》1987,84(4):1319-1324
The effect of nitrogen status on phosphorous uptake and translocation was examined in 6-day-old dark-grown decapitated maize seedlings exposed to 25 micromolar phosphorous. Transfer to complete solutions containing 1 millimolar ammonium resulted in an increase in phosphorous uptake rate after 6 to 8 hours. The stimulus remained effective for at least 5.5 hours upon subsequent transfer to nitrogen-free solutions. Pretreatments for 16 hours with either nitrate or ammonium resulted in enhanced rates of subsequent phosphorous uptake and in enhanced translocation to the xylem of the exogenously supplied phosphorous. Both processes reached a plateau following pretreatment with 0.1 to 1.0 millimolar concentrations of either nitrogen ion. Further enhancement occurred with 10 millimolar nitrate, but not with 10 millimolar ammonium pretreatment. Although nitrogen pretreatments slightly increased the quantity of exogenous phosphorous retained in the root tissue, most of the extra phosphorous taken up by the nitrogen-pretreated seedlings was translocated to the xylem. The enhanced translocation, however, did not totally account for the increase in uptake implying a specific stimulation of the uptake process.  相似文献   

5.
Following a precultivation with pedospheric nitrogen nutrition, Ricinus plants were supplied with nitrogen solely by spraying nitrate or ammonium solution onto the leaves during the experimental period. The chemical composition of tissues, xylem and phloem exudates was determined and on the basis of the previously determined nitrogen flows (Peuke et al., New Phytologist (1998), 138 , 657–687) the flows of potassium, sodium, magnesium, calcium, chloride and ABA were modelled. These data, which permit quantification of net-uptake, transport in xylem and phloem, and utilization in shoot and root, were compared with results obtained in plants with pedospherically-supplied nitrate or ammonium and data in the literature. Although the overall effects on the chemical composition of supplying ammonium to the leaves were not as pronounced as in pedospherically supplied plants, there were some typical responses of plants fed with ammonium (ammonium syndrome). In particular, in ammonium-sprayed plants uptake and transport of magnesium decreased and chloride uptake was increased compared with nitrate-sprayed plants. Furthermore, acropetal ABA transport in the xylem in ammonium-sprayed Ricinus was threefold higher than in nitrate-sprayed plants. Additionally, concentrations of anions were more or less increased in tissues, particularly in the roots, and transport fluids. The overall signal from ammonium-sprayed leaves without a direct effect of ammonium ions on uptake and transport systems in the root is discussed.  相似文献   

6.
7.
Root-shoot interactions in mineral nutrition   总被引:9,自引:0,他引:9  
In this paper four classes of co-operative root-shoot interations are addressed. (I) Nitrogen concentrations in the xylem sap originating from the root and in the phloem sap as exported from source leaves are much lower than those required for growth by apices and developing organs. Enrichment of xylem sap N is achieved by xylem to xylem (X-X) transfer, by which reduced N, but not nitrate, is abstracted from the xylem of leaf traces and loaded into xylem vessels serving the shoot apex. Nitrogen enrichment of phloem sap from source leaves is enacted by transfer of reduced N from xylem to phloem (X-P transfer). Quantitative data for the extent of the contribution of X-X and X-P transfer to the nutrition of young organs of Ricinus communis L. and for their change with time are presented. (II) Shoot and root cooperate in nitrate reduction and assimilation. The partitioning of this process between shoot and root is shifted towards the root under conditions of nitrate- and K-deficiency and under salt stress, while P deficiency shifts nitrate reduction almost totally to the shoot. All four changes in partitioning can be attributed to the need for cation-anion balance during xylem transport and the change in electrical charge occurring with nitrate reduction. (III) Even maintenance of the specificity of ion uptake by the root may – in addition to its need for energy – require a shoot-root interaction. This is shown to be needed in the case of the maintenance of K/Na selectivity under the highly adverse condition of salt stress and absence of K supply from the soil. (IV) Hormonal root to shoot interactions are required in the whole plant for sensing mineral imbalances in the soil. This is shown and addressed for conditions of salt stress and of P deficiency, both of which lead to a strong ABA signalling from root to shoot but result in different patterns of response in the shoot.  相似文献   

8.
Levels of nitrate reductase activity (N.R.A.) were measured in shoots and roots of P sufficient and P deficient rape plants and changes in N.R.A. examined in relation to the onset of H ion efflux from the roots. Rates of xylem exudation were measured and the sap analysed for nitrate, amino-N and phosphate content. The optimum concentration of phosphate in the leaves for N.R.A. was about 0.7%. Both high and low concentrations of phosphate within the leaves inhibited N.R.A in those leaves. This inhibition of N.R.A led to the accumulation of nitrate in the older parts of the shoots of P sufficient plants. Less accumulation of nitrate occurred in the P deficient plants since nitrate uptake by the plants decreased before any fall in N.R.A. Xylem exudation rates halved within 18 hours of depriving the plants of phosphate, and, since the composition of the sap remained constant, this indicated a reduced flux of nitrate into the xylem. The rate of xylem exudation continued to fall and by the end of the experiment was approximately one tenth of the rate in the P sufficient plants. The onset of H ion efflux from the terminal portions of the root preceded any effect on N.R.A by 2 days.  相似文献   

9.
Brassica rapa L. plants were grown hydroponically for 5 or 6 weeks at 20°C and then half batches of plants were transferred to tanks in which the root temperature was lowered decrementally over 1 h to 7°C. Changes in nitrate uptake rate (NUR) and nitrate transfer from roots were studied in relation to transpiration and root pressure xylem exudation flow rates over a 48- or 72-h period. The response of plants following the root temperature decrease was biphasic. During phase 1, NUR and water and solute flow rates through the root decreased sharply. Coping mechanisms came into operation during phase 2, and tended to offset the effects of low temperature. The 3-h cold-treated roots exhibited a very low NUR but 48-h cold-treated roots partly recovered their ability to absorb nitrate. Transpiration rate decreased more slowly (during 24 h) than both root xylem exudation and parameters of root conductivity (during 6 h). Beyond these respective times, transpiration rate was balanced while root xylem exudation clearly increased, but without returning to the level of control plants. Nitrate transfer to the root xylem was strongly and rapidly affected by low root temperature, but the subsequent readjustment was such that no or little difference compared with the control was apparent after 48 h. Water and solute flows were strongly decreased when nitrate was replaced by chloride in the culture solution during exudation sampling. The major role of nitrate in root hydraulic conductivity and root xylem exudation is discussed.  相似文献   

10.
Zhou XJ  Wang HH  Shu LZ  Zhu PF  Shen JB  Li ZZ  Liang C 《应用生态学报》2010,21(8):2017-2024
通过向玉米幼苗分根装置一侧根室的营养液中加入聚乙二醇(PEG 6000)来模拟植物水分胁迫,并设3种供氮形态(硝态氮、铵态氮、两者各占50%的混合氮),且只加入到一侧根室(当氮加入到和PEG同侧时为水氮异区,加入到无PEG一侧时为水氮同区),测定各处理的光合、生理指标,以研究局部根区水分胁迫下氮形态与供给部位对玉米幼苗生长的影响.结果表明:同一氮形态供给下水氮同区植株的光合速率(Pn)、最大净光合速率(Pmax)、光饱和点(LSP)、CO2饱和点(CSP)、叶绿素a、b及叶绿素总含量、根系活力、氮含量和生物量高于水氮异区,光呼吸速率(Rp)、CO2补偿点(CCP)、木质部汁液脱落酸(ABA)浓度、氮利用效率、水分利用效率低于水氮异区;供混合氮和硝态氮的植株Pn、Pmax、LSP、CSP、氮含量和生物量高于供铵态氮的植株,而CCP、Rp、木质部汁液ABA浓度、氮利用效率、水分利用效率变化趋势则相反.可见,同一供氮形态下,水氮同区比水氮异区更利于植物生长,而水氮利用效率在水氮异区下较高;混合氮和硝态氮对植物生长的促进作用优于单一供给铵态氮,但铵态氮更有利于提高水氮利用效率.  相似文献   

11.
Methods are described for studying the uptake, by hydroponicallygrown Zea mays seedlings, of ammonium and nitrate ions labelledwith radioactive nitrogen-13, which has a half-life often minutes.For nitrate only, some of the activity absorbed by the rootexchanges back out again into the root bathing solution. Theamount of this activity is about five times too large to beattributable to exchange with ions in the root cortical apoplasm.Much of it must be transferred from the root symplasm with ahalf-time of exchange of 2–5 min. After exposing the rootto the labelled solution, equilibrium rates of transport to,and distribution in the shoot were attained within 2 min, fornitrate, or 5 min, for ammonium. The pools within the root,and the transport pathway through which the label passes musttherefore rapidly attain the specific activity of the nutrientsolution. Distribution patterns through the plant are reasonablyconsistent with earlier work on nitrogen assimilation and transport. Key words: Zea mays, Nitrate uptake, Amonium uptake, 13N tracer  相似文献   

12.
The experiments reported herein had two objectives. One was to determine if the slow rate of nitrate uptake which occurs upon initial exposure of nitrogen-depleted wheat (Triticum vulgare cv. Knox) plants to nitrate was the result of insufficient reduced nitrogen. The second was to determine the impact of restrictions in ribonucleic acid or protein synthesis on both nitrate uptake and nitrate reduction. Pretreatments of 14-day-old seedlings for a few hours in ammonium or nitrite did not result in an enhancement of the initial slow rate of nitrate uptake. Growth for two additional weeks in ammonium also failed to eliminate the induction period. The evidence indicates that the presence of nitrate, rather than a product of its reduction, was required to initiate development of the accelerated rate of nitrate uptake. Puromycin (400 μg ml?1) and 6-methylpurine (0.5 mM) prevented development of the accelerated phase of nitrate uptake. With both compounds, the relative restriction of nitrate uptake was greater than that of nitrate reduction as revealed by incorporation of 15N from labeled nitrate into reduced forms. The proportion of reduction which occurred in the root system under the imposed treatments could not be delineated precisely, preventing an unequivocal determination of the extent to which the two processes are coupled in the root system. The data nevertheless indicate nitrate reduction was closely associated with nitrate uptake. Accumulation of nitrate in the shoots was markedly restricted in presence of 6 methylpurine. This effect most likely was a result of a severe restriction in the translocation of nitrate into the xylem, rather than an increase in the reduction rate in the shoots.  相似文献   

13.
Calcium in Xylem Sap and the Regulation of its Delivery to the Shoot   总被引:7,自引:2,他引:5  
Amounts of total and free calcium in root and shoot xylem sapwere quantified for a number of species grown in comparableenvironments and in a rooting medium not deficient in calcium.The potential for the shoot to sequester calcium was also examined,along with the ability for ABA to regulate calcium flux to theleaf. Xylem sap calcium showed considerable interspecific and diurnalvariation, even though the plants were grown with similar rhizosphericcalcium concentrations. The potential for the shoot to sequesterxylem sap calcium was also highly variable between species andimplied an ability, at least in some species, to regulate thecalcium reaching the shoot in the transpiration stream. Long distance transport of calcium in the xylem was not primarilyby mass flow, because neither calcium uptake nor distributionwere closely related to water uptake or transpiration. The diurnalchanges in xylem sap total ion concentration appeared to benegatively correlated with transpiration while, in contrast,the calcium ion concentration showed two peaks, one occurringin the dark and the other in the light period. The application of ABA to roots caused an increase in the rateof exudation from the xylem of detopped well-watered plants.These experiments suggest that changes in root water relationsdriven by ionic fluxes were the likely cause for enhanced sapexudation from ABA-treated roots. The steady-state concentrationof calcium in the xylem sap was unaffected by ABA when exudationrate increased and, consequently, the flux of calcium must alsohave increased. Key words: Abscisic acid, calcium, xylem sap, ionic fluxes  相似文献   

14.
To study the effects of local nitrogen supply on water and nutrient absorption, French bean (Phaseolus vulgaris L.) plants were grown in a split root system. Five treatments supplied with different nitrogen forms were compared: homogeneous nitrate (NN) and homogenous ammonium (AA) supply, spatially separated supply of nitrate and ammonium (NA), half of the root system supplied with N-free nutrient solution, the other half with either nitrate (NO) or ammonium (AO). The results showed that 10 d after onset of treatments, root dry matter (DM) in the nitratesupplied vessels treated with NA was more than two times higher than that in the ammonium-supplied vessels. Water uptake from the nitrate-supplied vessels treated with NA was 281% higher than under ammonium supply. In treatments NO and AO, the local supply of N resulted in clearly higher root DM, and water uptake from the nitratesupplied vessels was 82% higher than in the -N vessels. However, in AO plants, water uptake from the -N nutrient solution was 129% higher than from the ammonium-supplied vessels. This indicates a compensatory effect, which resulted in almost identical rates of total water uptake of treatments AA and AO, which had comparable shoot DM and leaf area. Ammonium supply reduced potassium and magnesium absorption. Water uptake was positively correlated with N, Mg and K uptake.  相似文献   

15.
Barley (Hordeum vulgare L. cv. Golf) was cultured using the relative addition rate technique, where nitrogen is added in a fixed relation to the nitrogen already bound in biomass. The relative rate of total nitrogen addition was 0.09 day?1 (growth limiting by 35%), while the nitrate addition was varied by means of different nitrate: ammonium ratios. In 3- to 4-week-old plants, these ratios of nitrate to ammonium supported nitrate fluxes ranging from 0 to 22 μmol g?1 root dry weight h?1, whereas the total N flux was 21.8 ± 0.25 μmol g?1 root dry weight h?1 for all treatments. The external nitrate concentrations varied between 0.18 and 1.5 μM. The relative growth rate, root to total biomass dry weight ratios, as well as Kjeldahl nitrogen in roots and shoots were unaffected by the nitrate:ammonium ratio. Tissue nitrate concentration in roots were comparable in all treatments. Shoot nitrate concentration increased with increasing nitrate supply, indicating increased translocation of nitrate to the shoot. The apparent Vmax for net nitrate uptake increased with increased nitrate fluxes. Uptake activity was recorded also after growth at zero nitrate addition. This activity may have been induced by the small, but detectable, nitrate concentration in the medium under these conditions. In contrast, nitrate reductase (NR) activity in roots was unaffected by different nitrate fluxes, whereas NR activity in the shoot increased with increased nitrate supply. NR-mRNA was detected in roots from all cultures and showed no significant response to the nitrate flux, corroborating the data for NR activity. The data show that an extremely low amount of nitrate is required to elicit expression of NR and uptake activity. However, the uptake system and root NR respond differentially to increased nitrate flux at constant total N nutrition. It appears that root NR expression under these conditions is additionally controlled by factors related to the total N flux or the internal N status of the root and/or plant. The method used in this study may facilitate separation of nitrate-specific responses from the nutritional effect of nitrate.  相似文献   

16.
Reduced plant water potential, induced by polyethylene glycol in hydroponics, inhibited growth and decreased the number of leaves per branch in the southern California drought-deciduous species Lotus scoparius (Nutt. in T & G) Ottley. Decreasing plant water potential diminished the proportion of large leaves per branch and therefore reduced the leaf area. Nitrate uptake rate decreased with decreasing water potential, although the nitrate ion concentration increased in the roots and the leaves. Ammonium ion concentration increased significantly in the roots at −5 bars and lower osmotic potentials in the root medium. Kjeldahl nitrogen remained the same in all treatments and tissues over the experimental period. It is suggested that the increase in ammonium ion in the roots was due to a decreased rate of ammonium transport caused by low plant water potential. The slight increase in nitrate ion in the roots may correspond to a decrease in nitrate reductase activity. This study indicates that some of the changes in nitrogen metabolism associated with low water potentials in agricultural plants occur also in a plant which experiences frequent droughts in its native habitat.  相似文献   

17.
Translocation of nitrogen in osmotically stressed wheat seedlings   总被引:2,自引:1,他引:1  
Wheat (Triticum aestivum L., cv. Drabant) seedlings were grown in a ‘split root’ system where either the whole root system or one root half was subjected to osmotic stress for 24 h, using 200 g polyethylene glycol (PEG, molecular weight 4000) dm?3 nutrient solution. 15N-Labelled nitrate was fed to one of the root compartments and total N and 15N-labelling were measured in plant material and xylem sap. Untreated plants translocated 87% of the N taken up to the shoot, and 10% of this was then retranslocated back to the root. Recalculated on a root nitrogen basis, 36% of the label recovered in the root after 24 h had passed through the shoot. Significant labelling of xylem sap collected from non-labelled roots indicated cycling of organic N through the roots. PEG-treatment of the whole root system caused significant water loss in both roots and shoots. Uptake of nitrate and retranslocation of N to roots were inhibited, whereas cycling of organic nitrogen through the root was still measurable. Treatment of half the root system with PEG had minor effects on shoot water content, but reduced the water content of the treated root part. The total uptake of nitrate by the root system was unaffected, and the effect on the treated root half was comparatively small. Nitrate reductase activity (NRA) declined in PEG-treated roots even if high nitrate uptake rates were maintained. Shoot NRA was unaffected by osmotic stress. The data indicate that the reduction in water content of the root per se has only small effects on nitrate uptake. Major inhibition of nitrate uptake was observed only after treatment of a sufficiently large portion of the root system to given an effect on shoot water content.  相似文献   

18.
Seedlings of carob ( Ceratonia siliqua L. cv. Mulata) were grown in nutrient solution culture for 5 weeks, with or without nitrogen at different root temperatures (10, 16, 22, 30, 35 or 40deg;C) and with the air temperature kept between 20 and 24°C. The nitrogen was given as either ammonium or nitrate. At all root temperatures studied, nitrogen-depleted plants developed higher net uptake rates for nitrogen than plants grown in the presence of nitrogen. Temperature affected the kinetic parameters of nitrate uptake more than those of ammonium uptake. With increasing root temperature, the Km of ammonium uptake decreased, but to a lesser extent than the Km for nitrate. The increase in Vmax of ammonium uptake with temperature was also less noticeable than that for nitrate uptake. Ammonium and nitrate uptakes were inhibited in a similar way by respiratory or protein synthesis inhibitors. It may be noted that ammonium uptake in the presence of inhibitors at 40°C was higher than uptake at 10°C without inhibitors. Some similarities between the transport mechanisms for nitrate and ammonium are underlined in the present work. Components of both transport systems displayed saturation kinetics and depended on protein synthesis and energy. The following components of nitrate uptake were distinguished: (a) a passive net influx into the apparent free space; (b) a constitutive active uptake and (c) active uptake dependent on protein synthesis. We may similarly define three ammonium uptake systems: (a) a passive influx into the apparent free space; (b) passive diffusion uptake at high temperature and (c) active uptake dependent on protein synthesis. The possible role of the ratio between mechanism (c) and mechanism (b) as determinant of ammonium sensitivity is discussed.  相似文献   

19.
根系氮吸收过程及其主要调节因子   总被引:5,自引:0,他引:5  
氮(N)是植物根系吸收最多的矿质元素之一.全球变化将使土壤中N的有效性发生改变,影响陆地生态系统碳分配格局与过程.研究根系N吸收及其调控对预测生态系统结构和功能具有重要理论意义.由于土壤中存在多种形态的N源,长期的生物进化和环境适应导致植物根系对不同形态N的吸收部位、机理及调控有较大差别.因此,植物长期生长在以某一形态N源为主的土壤上就形成了不同的N吸收机制和策略.本文简述了近年来在植物根系N吸收和调控方面的最新研究进展,重点评述了不同形态N在土壤中的生物有效性,根系N吸收部位,N在木质部中的装载和运输,不同形态N(NO3^-、NH4^+和有机氮)的吸收机制,以及根系N吸收的自身信号调控和环境因子对根系N吸收的影响.在此基础上,提出了目前根系N吸收研究中存在的几个问题.  相似文献   

20.
Barley plants (Hordeum vulgare L. cv. Mazurka) were grown inaerated solution cultures with 2 mM or 8 mM inorganic nitrogensupplied as nitrate alone, ammonium alone or 1:1 nitrate+ammonium.Activities of the principal inorganic nitrogen assimilatoryenzymes and nitrogen transport were measured. Activities ofnitrate and nitrite reductases, glutamine synthetase and glutamatesynthase were greater in leaves than in roots but glutamatedehydrogenase was most active in roots. Only nitrate and nitritereductases changed notably (4–10 times) in response tothe different nitrogen treatments. Nitrate reductase appearedto be rate-limiting for nitrate assimilation to glutamate inroots and also in leaves, where its total in vitro activitywas closely related to nitrate flux in the xylem sap and wasslightly in excess of that needed to reduce the transportednitrate. Xylem nitrate concentration was 13 times greater thanthat in the nutrient solution. Ammonium nitrogen was assimilatedalmost completely in the roots and the small amount releasedinto the xylem sap was similar for the nitrate and the ammoniumtreatments. The presence of ammonium in the nutrient decreasedboth export of nitrate to the xylem and its accumulation inleaves and roots. Nitrate was stored in stem bases and was releasedto the xylem and thence to the leaves during nitrogen starvation.In these experiments, ammonium was assimilated principally inthe roots and nitrate in the leaves. Any advantage of this divisionof function may depend partly on total conversion of inorganicnitrogen to amino acids when nitrate and ammonium are givenin optimal concentrations. Hordeum vulgare L., barley, nitrate, ammonium, nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase, glutamate dehydrogenase, nitrogen transport  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号