首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
In Azotobacter chroococcum the hydrogenase structural genes (hupSL) cover about 2.8 kb of a 15-kb region associated with hydrogen-uptake (Hup) activity. Two other genes in this region, hupD and hupE, were located 8.9 kb downstream of hupL and were shown to be essential for hydrogenase activity by insertion mutagenesis. A fragment of DNA beginning 3.4 kb downstream of hupL was able to complement the hupE mutant, supporting earlier evidence for a promoter downstream of hupSL. Hybridization experiments showed that hupD and hupE share some similarity with a region of Alcaligenes eutrophus DNA which is apparently involved in the formation of catalytically active hydrogenase. The hupD gene encodes a 379-amino acid, 41.4-kDa polypeptide while hupE codes for a 341-amino acid, 36.1-kDa product. The predicted amino acid sequences of the hupD and hupE genes are homologous to the Escherichia coli hypD and hypE gene products, respectively. A polar mutation in hupD had no effect on beta-galactosidase activity in a strain also carrying a hupL-lacZ fusion, indicating that hupD and hupE are probably not involved in regulating hydrogenase structural gene expression.  相似文献   

3.
Insertion and deletion mutations of the hupB and hupA genes, which encode the HU-1 and HU-2 proteins, respectively, of Escherichia coli, have been constructed in vitro and transferred to the hup loci on the bacterial chromosome. The mutations were constructed by inserting a gene encoding chloramphenicol resistance or kanamycin resistance into the coding region of the hupB or hupA gene, respectively. A complete deletion of the hupA gene was constructed by replacing the entire hupA coding region with the kanamycin resistance gene. Cells in which either the hupB or the hupA gene is defective grow normally, but cells in which both of the hup genes are defective exhibit phenotypes different from the wildtype strain. The hupA-hupB double mutants are cold-sensitive, although their growth rate is normal at 37 degrees C. Furthermore, the viability of the hupA-hupB double mutants is severely reduced when the cells are subjected to either cold shock or heat shock, indicating that the hup genes are essential for cell survival under some conditions of stress. The double mutants also exhibit filamentation when grown in the lower range of permissive growth temperature.  相似文献   

4.
Transposon Tn5 mutagenesis was used to isolate mutants of Rhodospirillum rubrum which lack uptake hydrogenase (Hup) activity. Three Tn5 insertions mapped at different positions within the same 13-kb EcoRI fragment (fragment E1). Hybridization experiments revealed homology to the structural hydrogenase genes hupSLM from Rhodobacter capsulatus and hupSL from Bradyrhizobium japonicum in a 3.8-kb EcoRI-ClaI subfragment of fragment E1. It is suggested that this region contains at least some of the structural genes encoding the nickel-dependent uptake hydrogenase of R. rubrum. At a distance of about 4.5 kb from the fragment homologous to hupSLM, a region with homology to a DNA fragment carrying hypDE and hoxXA from B. japonicum was identified. Stable insertion and deletion mutations were generated in vitro and introduced into R. rubrum by homogenotization. In comparison with the wild type, the resulting hup mutants showed increased nitrogenase-dependent H(2) photoproduction. However, a mutation in a structural hup gene did not result in maximum H(2) production rates, indicating that the capacity to recycle H(2) was not completely lost. Highest H(2) production rates were obtained with a mutant carrying an insertion in a nonstructural hup-specific sequence and with a deletion mutant affected in both structural and nonstructural hup genes. Thus, besides the known Hup activity, a second, previously unknown Hup activity seems to be involved in H(2) recycling. A single regulatory or accessory gene might be responsible for both enzymes. In contrast to the nickel-dependent uptake hydrogenase, the second Hup activity seems to be resistant to the metal chelator EDTA.  相似文献   

5.
Serratia marcescens US46, a human urinary tract isolate, exhibits mannose-resistant hemagglutination and agglutinates yeast cells, thereby indicating that it has two types of adhesins. We constructed a cosmid library for the DNA of this organism and isolated DNA clones carrying genes for mannose-sensitive (MS) and mannose-resistant (MR) fimbriae. On introduction of the cloned genes into Escherichia coli K-12, MS and MR fimbriae were formed. These fimbriae were functionally and morphologically indistinguishable from those of S. marcescens. Subcloning of these gene clusters revealed that the genes encoding MS fimbriae reside on a 9-kilobase (kb) DNA fragment, while those encoding MR fimbriae are present on a 12-kb fragment. Transposon insertion and maxicell analyses revealed that formation of MR fimbriae is controlled by several genes which reside on the 9-kb fragment. The nucleotide sequence of smfA, the gene encoding the major structural component of MR fimbriae, revealed that this gene encodes a 174-amino-acid polypeptide with a typical procaryotic signal peptide. The primary structure of the smfA product showed significant homology with the primary structure of the E. coli fimbrial subunit.  相似文献   

6.
An isolated 5.2-kb fragment of Methylobacterium extorquens AM1 DNA was found to contain a gene cluster involved in methylamine utilization. Analysis of polypeptides synthesized in an Escherichia coli T7 expression system showed that five genes were present. Two of the genes encoded the large and small subunits of methylamine dehydrogenase, and a third encoded amicyanin, the presumed electron acceptor for methylamine dehydrogenase, but the function of the other two genes is not known. The order on the 5.2-kb fragment was found to be large-subunit gene, the two genes of unknown function, small-subunit gene, amicyanin gene. The gene for azurin, another possible electron acceptor in methylamine oxidation, does not appear to be present within this cluster of methylamine utilization genes.  相似文献   

7.
Corynebacterium glutamicum ATCC 21850 produces up to 5 g of extracellular L-tryptophan per liter in broth culture and displays resistance to several synthetic analogs of aromatic amino acids. Here we report the cloning of the tryptophan biosynthesis (trp) gene cluster of this strain on a 14.5-kb BamHI fragment. Subcloning and complementation of Escherichia coli trp auxotrophs revealed that as in Brevibacterium lactofermentum, the C. glutamicum trp genes are clustered in an operon in the order trpE, trpD, trpC, trpB, trpA. The cloned fragment also confers increased resistance to the analogs 5-methyltryptophan and 6-fluorotryptophan on E. coli. The sequence of the ATCC 21850 trpE gene revealed no significant changes when compared to the trpE sequence of a wild-type strain reported previously. However, analysis of the promoter-regulatory region revealed a nonsense (TGG-to-TGA) mutation in the third of three tandem Trp codons present within a trp leader gene. Polymerase chain reaction amplification and sequencing of the corresponding region confirmed the absence of this mutation in the wild-type strain. RNA secondary-structure predictions and sequence similarities to the E. coli trp attenuator suggest that this mutation results in a constitutive antitermination response.  相似文献   

8.
A 16-kb BamHI fragment of the lactose plasmid pNZ63 from Leuconostoc lactis NZ6009 was cloned in Escherichia coli MC1061 by using pACYC184 and was found to express a functional beta-galactosidase. Deletion and complementation analysis showed that the coding region for beta-galactosidase was located on a 5.8-kb SalI-BamHI fragment. Nucleotide sequence analysis demonstrated that this fragment contained two partially overlapping genes, lacL (1,878 bp) and lacM (963 bp), that could encode proteins with calculated sizes of 72,113 and 35,389 Da, respectively. The L. lactis beta-galactosidase was overproduced in E. coli by using a lambda pL expression system. Two new proteins with M(r)s of 75,000 and 36,000 appeared upon induction of PL. The N-terminal sequences of these proteins corresponded to those deduced from the lacL and lacM gene sequences. Mutation and deletion analysis showed that lacL expression is essential for LacM production and that both the lacL and lacM genes are required for the production of a functional beta-galactosidase in E. coli. The deduced amino acid sequences of the LacL and LacM proteins showed considerable identity with the sequences of the N- and C-terminal parts, respectively, of beta-galactosidases from other lactic acid bacteria or E. coli. DNA and protein sequence alignments suggest that the L. lactis lacL and lacM genes have been generated by an internal deletion in an ancestral beta-galactosidase gene.  相似文献   

9.
The organization of genes encoding the blood group M-specific hemagglutinin (M-agglutinin) of Escherichia coli strain IH11165 was studied with a cloned 6.5-kb DNA segment. This DNA segment contains at least five genes which code for the polypeptides of 12.5, 30, 80, 18.5 and 21 kDa. The 30-, 80- and 21-kDa polypeptides are synthesized as precursors that are approximately 2 kDa larger. The 21-kDa polypeptide was identified as the M-agglutinin subunit by its reactivity with anti-M-agglutinin serum. Nucleotide sequence analysis of the corresponding gene showed that the M-agglutinin precursor had a 24-amino acid (aa) signal sequence, while the mature protein is 146 aa residues long. Although the organization of the M-agglutinin gene cluster resembles those of other E. coli adhesins, there is no significant sequence homology between the M-agglutinin subunit and the subunits of the other potentially related proteins in E. coli.  相似文献   

10.
Genes coding for 5S ribosomal RNA of the nematode Caenorhabditis elegans   总被引:6,自引:0,他引:6  
D W Nelson  B M Honda 《Gene》1985,38(1-3):245-251
We have identified a 1-kb genomic sequence that represents the major class of 5S rRNA genes in the nematode Caenorhabditis elegans. This 1-kb sequence is tandemly repeated 110 times in the haploid genome forming a single homogeneous gene family. Other nematode genomic sequences, distinct from the major 1-kb repeat class but homologous to it, may represent dispersed 5S rRNA genes or the ends of a gene cluster. One such fragment shows a restriction fragment length difference between two C. elegans strains. This should allow the genetic analysis of 5S rRNA-coding DNA (5S X rDNA) and its flanking regions in C. elegans.  相似文献   

11.
Biochemical and genetic data indicate that in Streptomyces coelicolor A3(2) the majority of the genes involved in the biosynthesis of histidine are clustered in a small region of the chromosome [Carere et al., Mol. Gen. Genet. 123 (1973) 219-224; Russi et al., Mol. Gen. Genet. 123 (1973) 225-232]. To investigate the structural organization and the regulation of these genes, we have constructed genomic libraries from S. coelicolor A3(2) in pUC vectors. Recombinant clones were isolated by complementation of an Escherichia coli hisBd auxotroph. A recombinant plasmid containing a 3.4-kb fragment of genomic DNA was further characterized. When cloned in the plasmid vector, pIJ699, this fragment was able to complement S. coelicolor A3(2) hisB mutants. Overlapping clones spanning a 15-kb genomic region were isolated by screening other libraries with labeled DNA fragments obtained from the first clone. Derivative clones were able to complement mutations in four different cistrons of the his cluster of S. coelicolor A3(2). Nucleotide sequence analysis of a 4-kb region allowed the identification of five ORFs which showed significant homology with the his gene products of E. coli. The order of the genes in S. coelicolor A3(2) (5'--hisD-hisC-hisBd-hisH-hisA-3') is the same as in the his operon of E. coli.  相似文献   

12.
巴西固氮螺菌中吸氢酶基因同源性的分子检测   总被引:2,自引:0,他引:2  
罗永华  郭俊 《微生物学杂志》2002,22(3):12-13,34
通过TTC(2 ,3,5 氯化三苯基氮唑 )实验筛选出 12株能产生吸氢酶蛋白 (Hup+ )的巴西固氮螺菌 (Azospir rilumbrasilense)菌株。用Qiagen柱分离提纯含豌豆根瘤菌的hup基因片段的质粒 pHVT10 9和pHVT115 ,并用地高辛标记法标记pHVT115 ,与 12株Hup+ 巴西固氮螺菌的总DNA进行斑点杂交 ,结果显示pHVT115所含的吸氢酶基因 (hup基因 )片段与巴西固氮螺菌的大部分菌株的hup基因同源性不强。这一结果表明hup基因在固氮生物中存在着遗传多样性 ,异源hup基因探针不一定都适宜于探测hup基因。  相似文献   

13.
Pseudomonas syringae pv. syringae 61 contains a 25-kb cluster of hrp genes that are required for elicitation of the hypersensitive response (HR) in tobacco. TnphoA mutagenesis of cosmid pHIR11, which contains the hrp cluster, revealed two genes encoding exported or inner-membrane-spanning proteins (H.-C. Huang, S. W. Hutcheson, and A. Collmer, Mol. Plant-Microbe Interact. 4:469-476, 1991). The gene in complementation group X, designated hrpH, was subcloned on a 3.1-kb SalI fragment into pCPP30, a broad-host-range, mobilizable vector. The subclone restored the ability of hrpH mutant P. syringae pv. syringae 61-2089 to elicit the HR in tobacco. DNA sequence analysis of the 3.1-kb SalI fragment revealed a single open reading frame encoding an 81,956-Da preprotein with a typical amino-terminal signal peptide and no likely inner-membrane-spanning hydrophobic regions. hrpH was expressed in the presence of [35S]methionine by using the T7 RNA polymerase-promoter system and vector pT7-3 in Escherichia coli and was shown to encode a protein with an apparent molecular weight of 83,000 on sodium dodecyl sulfate-polyacrylamide gels. The HrpH protein in E. coli was located in the membrane fraction and was absent from the periplasm and cytoplasm. The HrpH protein possessed similarity with several outer membrane proteins that are known to be involved in protein or phage secretion, including the Klebsiella oxytoca PulD protein, the Yersinia enterocolitica YscC protein, and the pIV protein of filamentous coliphages. All of these proteins possess a possible secretion motif, GG(X)12VP(L/F)LXXIPXIGXL(F/L), near the carboxyl terminus, and they lack a carboxyl-terminal phenylalanine, in contrast to other outer membrane proteins with no known secretion function. These results suggest that the P. syringae pv. syringae HrpH protein is involved in the secretion of a proteinaceous HR elicitor.  相似文献   

14.
NADP(+)-isocitrate dehydrogenase (NADP(+)-IDH) from the dinitrogen-fixing filamentous cyanobacterium Anabaena sp. strain PCC 7120 was purified to homogeneity. The native enzyme is composed of two identical subunits (M(r), 57,000) and cross-reacts with antibodies obtained against the previously purified NADP(+)-IDH from the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Anabaena NADP(+)-IDH resembles in its physicochemical and kinetic parameters the typical dimeric IDHs from prokaryotes. The gene encoding Anabaena NADP(+)-IDH was cloned by complementation of an Escherichia coli icd mutant with an Anabaena genomic library. The complementing DNA was located on a 6-kb fragment. It encodes an NADP(+)-IDH that has the same mobility as that of Anabaena NADP(+)-IDH on nondenaturing polyacrylamide gels. The icd gene was subcloned and sequenced. Translation of the nucleotide sequence gave a polypeptide of 473 amino acids that showed high sequence similarity to the E. coli enzyme (59% identity) and with IDH1 and IDH2, the two subunits of the heteromultimeric NAD(+)-IDH from Saccharomyces cerevisiae (30 to 35% identity); however, a low level of similarity to NADP(+)-IDHs of eukaryotic origin was found (23% identity). Furthermore, Anabaena NADP(+)-IDH contains a 44-residue amino acid sequence in its central region that is absent in the other IDHs so far sequenced. Attempts to generate icd mutants by insertional mutagenesis were unsuccessful, suggesting an essential role of IDH in Anabaena sp. strain PCC 7120.  相似文献   

15.
Abstract Nucleotide sequence analysis of a 3.3-kb genomic Eco RI fragment and of relevant subfragments of a genomic 13.2-kb Sma I fragment of Alcaligenes eutrophus , which were identified by using a dihydrolipoamide dehydrogenase-specific DNA probe, revealed the structural genes of the 2-oxoglutarate dehydrogenase complex in a 7.5-kb genomic region. The genes odhA (2850 bp), odhB (1248 bp), and odhL (1422 bp), encoding 2-oxoglutarate dehydrogenase (El), dihydrolipoamide succinyltransferase (E2), and dihydrolipoamide dehydrogenase (E3), respectively, occur co-linearly in one gene cluster downstream of a putative −35 / −10 promoter in the order odhA, odhB , and odhL . In comparison to other bacteria, the occurrence of genes for two E3 components for the pyruvate as well as for the 2-oxoglutarate dehydrogenase complexes is unique. Heterologous expression of the A. eutrophus odh genes in E. coli XL1-Blue and in the kgdA mutant Pseudomonas putida JS347 was demonstrated by the occurrence of protein bands in electropherograms, by spectrometric detection of enzyme activities, and by phenotypic complementation, respectively.  相似文献   

16.
Restriction fragments from Bacillus stearothermophilus chromosomal DNA were cross-hybridized with the Escherichia coli ribosomal protein L2 gene rplB. A 2-kb EcoRI fragment which showed cross-hybridization was cloned into the M13 phage and sequenced by the dideoxy chain-terminating method. Comparison of the deduced amino-acid sequences with the corresponding sequences of E. coli ribosomal proteins showed that this fragment contains the region encoding the C-terminus of L2, the genes encoding S19, L22, S3 as well as the N-terminus of L16. Thus the organization of this gene cluster is the same as that in the S10 operon of E. coli. The deduced sequences of proteins L22 and S3, which have not been determined so far, were found to have 52% or 55% amino-acid identity, respectively, with those of the corresponding proteins in E. coli. The deduced B. stearothermophilus S19 protein sequence was in accordance with the reinvestigated protein sequence (H. Hirano, personal communication).  相似文献   

17.
To investigate a possible chromosomal clustering of glycolytic enzyme genes in Corynebacterium glutamicum, a 6.4-kb DNA fragment located 5' adjacent to the structural phosphoenolpyruvate carboxylase (PEPCx) gene ppc was isolated. Sequence analysis of the ppc-proximal part of this fragment identified a cluster of three glycolytic genes, namely, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene gap, the 3-phosphoglycerate kinase (PGK) gene pgk, and the triosephosphate isomerase (TPI) gene tpi. The four genes are organized in the order gap-pgk-tpi-ppc and are separated by 215 bp (gap and pgk), 78 bp (pgk and tpi), and 185 bp (tpi and ppc). The predicted gene product of gap consists of 336 amino acids (M(r) of 36,204), that of pgk consists of 403 amino acids (M(r) of 42,654), and that of tpi consists of 259 amino acids (M(r) of 27,198). The amino acid sequences of the three enzymes show up to 62% (GAPDH), 48% (PGK), and 44% (TPI) identity in comparison with respective enzymes from other organisms. The gap, pgk, tpi, and ppc genes were cloned into the C. glutamicum-Escherichia coli shuttle vector pEK0 and introduced into C. glutamicum. Relative to the wild type, the recombinant strains showed up to 20-fold-higher specific activities of the respective enzymes. On the basis of codon usage analysis of gap, pgk, tpi, and previously sequenced genes from C. glutamicum, a codon preference profile for this organism which differs significantly from those of E. coli and Bacillus subtilis is presented.  相似文献   

18.
19.
The L-phenylalanine transaminase gene of Paracoccus denitrificans was cloned by a shotgun method using the Escherichia coli K-12 mutant DG30, which lacks three distinct transaminase genes. Plasmid pPAP142 was constructed by inserting a 2.2-kb fragment carrying the transaminase gene into pUC18. Strain E. coli K-12 HB101 cells harboring the plasmid produced 20-fold to 30-fold more transaminase than wild type P. denitrificans cells. The nucleotide sequence of the 2.2-kb fragment was determined, revealing that the deduced amino acid sequence of the transaminase of P. denitrificans is similar to that of other transaminases.  相似文献   

20.
The streptomycin resistance of Escherichia coli 2418 strain has been shown to be associated with a 1.2-kb DNA fragment found in the naturally occurring plasmid R2418S. Here, nucleotide sequence analysis of the 1.2-kb DNA fragment revealed the presence of the strB gene which is located immediately downstream of the strA gene. Both sequences are identical to those of strA and strB genes in plasmid RSF1010. Thus, the observed resistance in the clinical isolate is due to the presence of strA-strB genes encoding streptomycin-modifying enzymes. The sequence downstream of strB gene showed a perfect homology with that of RSF1010. In addition, it contained the right inverted repeat of the transposon Tn5393 that has been suggested to be a relic of this transposon found in DNA plasmids isolated from human- and animal-associated bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号