首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Barblu L  Herbeuval JP 《PloS one》2012,7(3):e32874
Activation-induced cell death is a natural process that prevents tissue damages from over-activated immune cells. TNF-Related apoptosis ligand (TRAIL), a TNF family member, induces apoptosis of infected and tumor cells by binding to one of its two death receptors, DR4 or DR5. TRAIL was reported to be secreted by phytohemagglutinin (PHA)-stimulated CD4(+) T cells in microvesicles.We investigate here TRAIL and DR5 regulation by activated primary CD4(+) T cells and its consequence on cell death. We observed that PHA induced CD4(+) T cell apoptosis in a dose-dependent manner. Thus, we investigated molecules involved in PHA-mediated cell death and demonstrated that TRAIL and DR5 were over-expressed on the plasma membrane of PHA-stimulated CD4(+) T cells. Surprisingly, DR5 was constitutively expressed in naive CD4(+) T cells at messenger RNA (mRNA) and protein levels. Thus, using 3 dimensional microscopy and intracellular staining assays, we show that DR5 is constitutively expressed in CD4(+) T cells and is pre-stocked in the cytoplasm. When cells are stimulated by PHA, DR5 is relocalized from cytoplasm to plasma membrane. Small interference RNA (siRNA) and blocking antibody assays demonstrate that TRAIL/DR5 interaction is mainly responsible for PHA-mediated CD4(+) T cell apoptosis. Thus, membrane DR5 expression leading to TRAIL-mediated apoptosis may represent one of the pathways responsible for eradication of over-activated CD4(+) T cells during immune responses.  相似文献   

2.
3.
As we have shown previously that protein antigen applied epicutaneously (EC) in mice inhibits TNP-specific Th1-mediated contact sensitivity (CS), we postulated that the maneuver of EC immunization might also suppress Tc1-dependent CS response. Here we showed that EC immunization of normal mice with 2,4-dinitrophenylated bovine serum albumin (DNP-BSA) applied on the skin in the form of a patch induces a state of subsequent unresponsiveness due to regulatory T cells (Treg) that inhibited sensitization and elicitation of effector T-cell responses. Suppression is transferable in vivo by TCRαβ(+) CD4(+) CD25(+) lymphocytes harvested from lymph nodes (LNs) of skin-patched animals. Flow cytometry revealed that EC immunization with DNP-BSA increased TCRαβ(+) CD4(+) CD25(+) FoxP3(+) lymphocytes in subcutaneous LNs, suggesting that observed suppression was mediated by Treg cells. Further, in vitro experiments showed that EC immunization with DNP-BSA prior to 1-fluoro-2,4-dinitrobenzen sensitization suppressed LN cell proliferation and inhibited production of TNF-α, IL-12 and IFN-γ. Using a transwell system or anti-CTLA-4 mAb, we found that EC induced suppression required direct Treg-effector cell contact and is CTLA-4-dependent.  相似文献   

4.
CD4(+)CD25(+) regulatory T cells (Tregs) suppress immunity to infections and tumors as well as autoimmunity and graft-vs-host disease. Since Tregs constitutively express CTLA-4 and activated T cells express B7-1 and B7-2, it has been suggested that the interaction between CTLA-4 on Tregs and B7-1/2 on the effector T cells may be required for immune suppression. In this study, we report that autopathogenic T cells from B7-deficient mice cause multiorgan inflammation when adoptively transferred into syngeneic RAG-1-deficient hosts. More importantly, this inflammation is suppressed by adoptive transfer of purified wild-type (WT) CD4(+)CD25(+) T cells. WT Tregs also inhibited lymphoproliferation and acquisition of activation markers by the B7-deficient T cells. An in vitro suppressor assay revealed that WT and B7-deficient T cells are equally susceptible to WT Treg regulation. These results demonstrate that B7-deficient T cells are highly susceptible to immune suppression by WT Tregs and refute the hypothesis that B7-CTLA-4 interaction between effector T cells and Tregs plays an essential role in Treg function.  相似文献   

5.
CD4(+)CD25(+) T regulatory (Treg) cells are a CD4(+) T cell subset involved in the control of the immune response. In vitro, murine CD4(+)CD25(+) Treg cells inhibit CD4(+)CD25(-) Th cell proliferation induced by anti-CD3 mAb in the presence of APCs. The addition of IL-4 to cocultured cells inhibits CD4(+)CD25(+) Treg cell-mediated suppression. Since all cell types used in the coculture express the IL-4Ralpha chain, we used different combinations of CD4(+)CD25(-) Th cells, CD4(+)CD25(+) Treg cells, and APCs from wild-type IL-4Ralpha(+/+) or knockout IL-4Ralpha(-/-) mice. Results show that the engagement of the IL-4Ralpha chain on CD4(+)CD25(-) Th cells renders these cells resistant to suppression. Moreover, the addition of IL-4 promotes proliferation of IL-4Ralpha(+/+)CD4(+)CD25(+) Treg cells, which preserve full suppressive competence. These findings support an essential role of IL-4 signaling for CD4(+)CD25(-) Th cell activation and indicate that IL-4-induced proliferation of CD4(+)CD25(+) Treg cells is compatible with their suppressive activity.  相似文献   

6.
We previously demonstrated that HIV envelope glycoprotein (Env), delivered in the form of a vaccine and expressed by dendritic cells or 293T cells, could suppress Ag-stimulated CD4(+) T cell proliferation. The mechanism remains to be identified but is dependent on CD4 and independent of coreceptor binding. Recently, CD4(+) regulatory T (Treg) cells were found to inhibit protective anti-HIV CD4(+) and CD8(+) T cell responses. However, the role of Tregs in HIV remains highly controversial. HIV Env is a potent immune inhibitory molecule that interacts with host CD4(+) cells, including Treg cells. Using an in vitro model, we investigated whether Treg cells are involved in Env-induced suppression of CD4(+) T cell proliferation, and whether Env directly affects the functional activity of Treg cells. Our data shows that exposure of human CD4(+) T cells to Env neither induced a higher frequency nor a more activated phenotype of Treg cells. Depletion of CD25(+) Treg cells from PBMC did not overcome the Env-induced suppression of CD4(+) T cell proliferation, demonstrating that CD25(+)FoxP3(+) Treg cells are not involved in Env-induced suppression of CD4(+) T cell proliferation. In addition, we extend our observation that similar to Env expressed on cells, Env present on virions also suppresses CD4(+) T cell proliferation.  相似文献   

7.
CD4(+)CD25(+) regulatory T cells (CD25(+) Tregs) play a key role in immune regulation. Since hepatitis C virus (HCV) persists with increased circulating CD4(+)CD25(+) T cells and virus-specific effector T-cell dysfunction, we asked if CD4(+)CD25(+) T cells in HCV-infected individuals are similar to natural Tregs in uninfected individuals and if they include HCV-specific Tregs using the specific Treg marker FoxP3 at the single-cell level. We report that HCV-infected patients display increased circulating FoxP3(+) Tregs that are phenotypically and functionally indistinguishable from FoxP3(+) Tregs in uninfected subjects. Furthermore, HCV-specific FoxP3(+) Tregs were detected in HCV-seropositive persons with antigen-specific expansion, major histocompatibility complex class II/peptide tetramer binding affinity, and preferential suppression of HCV-specific CD8 T cells. Transforming growth factor beta contributed to antigen-specific Treg expansion in vitro, suggesting that it may contribute to antigen-specific Treg expansion in vivo. Interestingly, FoxP3 expression was also detected in influenza virus-specific CD4 T cells. In conclusion, functionally active and virus-specific FoxP3(+) Tregs are induced in HCV infection, thus providing targeted immune regulation in vivo. Detection of FoxP3 expression in non-HCV-specific CD4 T cells suggests that immune regulation through antigen-specific Treg induction extends beyond HCV.  相似文献   

8.
CD4(+) and CD8(+) T cells play specific roles during an immune response. Different molecular mechanisms could regulate the proliferation, death, and effector functions of these two subsets of T cells. The p38 mitogen-activated protein (MAP) kinase pathway is induced by cytokines and environmental stress and has been associated with cell death and cytokine expression. Here we report that activation of the p38 MAP kinase pathway in vivo causes a selective loss of CD8(+) T cells due to the induction of apoptosis. In contrast, activation of p38 MAP kinase does not induce CD4(+) T-cell death. The apoptosis of CD8(+) T cells is associated with decreased expression of the antiapoptotic protein Bcl-2. Regulation of the p38 MAP kinase pathway in T cells is therefore essential for the maintenance of CD4/CD8 homeostasis in the peripheral immune system. Unlike cell death, gamma interferon production is regulated by the p38 MAP kinase pathway in both CD4(+) and CD8(+) T cells. Thus, specific aspects of CD4(+) and CD8(+) T-cell function are differentially controlled by the p38 MAP kinase signaling pathway.  相似文献   

9.
Regulatory T cells (Treg) are important in maintaining tolerance to self tissues. As both CD28 and CTLA-4 molecules are implicated in the function of Treg, we investigated the ability of their two natural ligands, CD80 and CD86, to influence the Treg-suppressive capacity. During T cell responses to alloantigens expressed on dendritic cells, we observed that Abs against CD86 potently enhanced suppression by CD4(+)CD25(+) Treg. In contrast, blocking CD80 enhanced proliferative responses by impairing Treg suppression. Intriguingly, the relative expression levels of CD80 and CD86 on dendritic cells are modulated during progression from an immature to a mature state, and this correlates with the ability of Treg to suppress responses. Our data show that CD80 and CD86 have opposing functions through CD28 and CTLA-4 on Treg, an observation that has significant implications for manipulation of immune responses and tolerance in vivo.  相似文献   

10.
High expression of IL-21 and/or IL-21R has been described in T cell-mediated inflammatory diseases characterized by defects of counterregulatory mechanisms. CD4(+)CD25(+) regulatory T cells (Treg) are a T cell subset involved in the control of the immune responses. A diminished ability of these cells to inhibit T cell activation has been documented in immune-inflammatory diseases, raising the possibility that inflammatory stimuli can block the regulatory properties of Treg. We therefore examined whether IL-21 controls CD4(+)CD25(+) T cell function. We demonstrate in this study that IL-21 markedly enhances the proliferation of human CD4(+)CD25(-) T cells and counteracts the suppressive activities of CD4(+)CD25(+) T cells on CD4(+)CD25(-) T cells without affecting the percentage of Foxp3(+) cells or survival of Treg. Additionally, CD4(+)CD25(+) T cells induced in the presence of IL-21 maintain the ability to suppress alloresponses. Notably, IL-21 enhances the growth of CD8(+)CD25(-) T cells but does not revert the CD4(+)CD25(+) T cell-mediated suppression of this cell type, indicating that IL-21 makes CD4(+) T cells resistant to suppression rather than inhibiting CD4(+)CD25(+) T cell activity. Finally, we show that IL-2, IL-7, and IL-15, but not IL-21, reverse the anergic phenotype of CD4(+)CD25(+) T cells. Data indicate that IL-21 renders human CD4(+)CD25(-) T cells resistant to Treg-mediated suppression and suggest a novel mechanism by which IL-21 could augment T cell-activated responses in human immune-inflammatory diseases.  相似文献   

11.
BACKGROUND: CD4(+) CD25(bright+) regulatory T cells (Treg) can be expanded to clinical doses using CD3/CD28 Ab-coated beads plus IL-2. However, this method requires high purity of the starting population to prevent overgrowth by non-regulatory T cells. Rapamycin, an agent that inhibits T-cell proliferation but selectively spares Treg, may be a means to expand Treg from less pure CD25-enriched cells. METHODS: CD25-enriched cells were prepared by a single-step immunomagnetic-selection using anti-CD25 microbeads. The cells were activated with a single addition of anti-CD3/CD28 beads and expanded in ex vivo 15-5% HS and autologous CD4(+) CD25(-) feeder cells,+/-rapamycin (0.01-20 ng/mL). IL-2 was added on day 3. Cells were rested for 2 days in ex vivo 15-5% HS and tested for phenotype, intracellular Foxp3 protein and suppressor activity. RESULTS: In the absence of rapamycin, CD25-enriched fractions expanded >17 000-fold by 21 days. Although suppressor activity was detected to day 14, it declined significantly by 21 days as non-regulatory cells expanded. The addition of rapamycin inhibited expansion of non-regulatory T cells at doses > or =1 ng/mL while increasing suppressor activity and the percentage of CD4(+) CD25(+) CD27(+) Foxp3(+) cells. Rapamycin did not enrich for Foxp3(+) cells in expanded cultures of CD4(+) CD25(-) cells. Treg were also readily expanded in cultures of CD25-enriched cells obtained from patients with multiple sclerosis in the presence of rapamycin. DISCUSSION: The addition of 1-20 ng/mL rapamycin to CD25-enriched cultures increased the purity of cells with the phenotype and function of Treg. This approach may alleviate the need for rigorous enrichment of Treg prior to activation and expansion for potential clinical use.  相似文献   

12.
Inhibition of human CD4(+)CD25(+high) regulatory T cell function   总被引:17,自引:0,他引:17  
CD4(+)CD25(+high) T cells are potent regulators of autoreactive T cells. However, it is unclear how regulatory CD4(+)CD25(+high) cells discriminate between desirable inflammatory immune responses to microbial Ags and potentially pathologic responses by autoreactive T cells. In this study, an in vitro model was created that allowed differential activation of regulatory CD4(+)CD25(+high) and responder CD4(+) T cells. If CD4(+)CD25(+high) regulatory cells were strongly activated, they maintained suppressive effector function for only 15 h, while stimulation with weaker TCR stimuli produced regulatory cells that were suppressive until 60 h after activation. In contrast, strongly activated CD4(+) responder T cells were resistant to regulation at all time points, while weakly stimulated CD4(+) cells were sensitive to suppression until 38 or 60 h after activation depending upon the strength of the stimulus. The extent of suppression mediated by CD4(+)CD25(+high) cells also depended on the strength of stimulation in an Ag-specific system. Thus, the stronger the TCR signal, the more rapidly and more completely the responder cells become refractory to suppression.  相似文献   

13.
CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer   总被引:12,自引:0,他引:12  
CD4+CD25+ regulatory T cells (Treg) that suppress T cell-mediated immune responses may also regulate other arms of an effective immune response. In particular, in this study we show that Treg directly inhibit NKG2D-mediated NK cell cytotoxicity in vitro and in vivo, effectively suppressing NK cell-mediated tumor rejection. In vitro, Treg were shown to inhibit NKG2D-mediated cytolysis largely by a TGF-beta-dependent mechanism and independently of IL-10. Adoptively transferred Treg suppressed NK cell antimetastatic function in RAG-1-deficient mice. Depletion of Treg before NK cell activation via NKG2D and the activating IL-12 cytokine, dramatically enhanced NK cell-mediated suppression of tumor growth and metastases. Our data illustrate at least one mechanism by which Treg can suppress NK cell antitumor activity and highlight the effectiveness of combining Treg inhibition with subsequent NK cell activation to promote strong innate antitumor immunity.  相似文献   

14.
Although the role of CD4(+) T regulatory cells (Treg) in transplantation tolerance has been established, putative mechanisms of Treg induction and function in vivo remain unclear. TLR4 signaling has been implicated in the regulation of CD4(+)CD25(+) Treg functions recently. In this study, we first examined the role of recipient TLR4 in the acquisition of operational CD4(+) Treg following CD154 blockade in a murine cardiac transplant model. Then, we determined whether TLR4 activation in allograft tolerant recipients would reverse alloimmune suppression mediated by CD4(+) Treg. We document that donor-specific immune tolerance was readily induced in TLR4-deficient recipients by a single dose of anti-CD154 mAb, similar to wild-type counterparts. The function and phenotype of CD4(+) Treg in both wild-type and TLR4 knockout long-term hosts was demonstrated by a series of depletion experiments examining their ability to suppress the rejection of secondary donor-type test skin grafts and to inhibit alloreactive CD8(+) T cell activation in vivo. Furthermore, TLR4 activation in tolerant recipients following exogenous LPS infusion in conjunction with donor-type skin graft challenge, failed to break Treg-mediated immune suppression. In conclusion, our data reveals a distinctive property of CD4(+) Treg in tolerant allograft recipients, whose induction and function are independent of TLR4 signaling.  相似文献   

15.
Activation of CD25(+)CD4(+) regulatory T cells by oral antigen administration   总被引:36,自引:0,他引:36  
CD25(+)CD4(+) T cells are naturally occurring regulatory T cells that are anergic and have suppressive properties. Although they can be isolated from the spleens of normal mice, there are limited studies on how they can be activated or expanded in vivo. We found that oral administration of OVA to OVA TCR transgenic mice resulted in a modification of the ratio of CD25(+)CD4(+) to CD25(-)CD4(+) cells with an increase of CD25(+)CD4(+) T cells accompanied by a decrease of CD25(-)CD4(+) T cells. The relative increase in CD25(+)CD4(+) T cells persisted for as long as 4 wk post feeding. We also found that CTLA-4 was dominantly expressed in CD25(+)CD4(+) T cells and there was an increase in the percentage of CD25(+)CD4(+) T cells expressing CTLA-4 in OVA-fed mice. In contrast to CD25(-)CD4(+) cells, CD25(+)CD4(+) cells from fed mice proliferated only minimally to OVA or anti-CD3 and secreted IL-10 and elevated levels of TGF-beta(1) following anti-CD3 stimulation. CD25(+)CD4(+) cells from fed mice suppressed the proliferation of CD25(-)CD4(+) T cells in vitro more potently than CD25(+)CD4(+) T cells isolated from unfed mice, and this suppression was partially reversible by IL-10 soluble receptor or TGF-beta soluble receptor and high concentration of anti-CTLA-4. With anti-CD3 stimulation, CD25(+)CD4(+) cells from unfed mice secreted IFN-gamma, whereas CD25(+)CD4(+) cells from fed mice did not. Adoptive transfer of CD25(+)CD4(+) T cells from fed mice suppressed in vivo delayed-type hypersensitivity responses in BALB/c mice. These results demonstrate an Ag-specific in vivo method to activate CD25(+)CD4(+) regulatory T cells and suggest that they may be involved in oral tolerance.  相似文献   

16.
Dendritic cells (DCs) are critical in initiating immune responses by cross-priming of tumor Ags to T cells. Previous results showed that NK cells inhibited DC-mediated cross-presentation of tumor Ags both in vivo and in vitro. In this study, enhanced Ag presentation was observed in draining lymph nodes in TRAIL(-/-) and DR5(-/-) mice compared with that of wild-type mice. NK cells inhibit DC cross-priming of tumor Ags in vitro, but not direct presentation of endogenous Ags. NK cells lacking TRAIL, but not perforin, were not able to inhibit DC cross-priming of tumor Ags. DCs that lack expression of TRAIL receptor DR5 were less susceptible to NK cell-mediated inhibition of cross-priming, and cross-linking of DR5 receptor led to reduced generation of MHC class I-Ag peptide complexes, followed by attenuated cross-priming of CD8(+) T cells. In addition, key molecules involved in the TRAIL/DR5 pathway during DC/NK cell interactions were determined. In summary, these data indicate a novel alternative pathway for DC/NK cell interactions in antitumor immunity and may reflect homeostasis of both DCs and NK cells for regulation of CD8(+) T cell function in physiological conditions.  相似文献   

17.
Natural CD25(+)CD4(+) regulatory T cells (Treg) are essential for self-tolerance and for the control of T cell-mediated immune pathologies. However, the identification of Tregs in an ongoing immune response or in inflamed tissues remains elusive. Our experiments indicate that TIRC7, T cell immune response cDNA 7, a novel membrane molecule involved in the regulation of T lymphocyte activation, identifies two Treg subsets (CD25(low)TIRC7(+) and CD25(high)TIRC7(-)) that are characterized by the expression of Foxp3 and a suppressive activity in vitro and in vivo. We also showed that the CD25(low)TIRC7(+) subset represents IL-10-secreting Tregs in steady state, which is accumulated intratumorally in a tumor-bearing mice model. Blockade of the effect of IL-10 reversed the suppression imposed by the CD25(low)TIRC7(+) subset. Interestingly, these IL-10-secreting cells derived from the CD25(high)TIRC7(-) subset, both in vitro and in vivo, in response to tumoral Ags. Our present results strongly support the notion that, in the pool of natural Tregs, some cells can recognize foreign Ags and that this recognition is an essential step in their expansion and suppressive activity in vivo.  相似文献   

18.
19.
The immune regulatory function of macrophages (M?s) in mixed chimeras has not been determined. In the present study, with a multi-lineage B6-to-BALB/c mixed chimeric model, we examined the ability of donor-derived splenic M?s in the induction of regulatory T cells (Treg). B6 splenic M?s from mixed chimeras induced significantly less cell proliferation, more IL-10 and TGF-β, and less IL-2 and IFN-γ productions of CD4(+) T cells from BALB/c mice than naive B6 M?s did, whereas they showed similar stimulatory activity to the third part C3H CD4(+) T cells. Importantly, highly purified donor F4/80(+)CD11c(-) M?s efficiently induced recipient CD4(+)Foxp3(+) Treg cells from CD4(+)CD25(-)Foxp3(-) T cells. Furthermore, donor M?s of mixed chimeras produced more IL-10 and less IFN-γ than those of naive mice when cultured with BALB/c but not the third party C3H CD4(+) T cells. Induction of recipient CD4(+) Treg cells by donor M?s was significantly blocked by anti-IL-10, but not by anti-TGF-β mAb. Therefore, donor M?s have the ability to induce recipient CD4(+)Foxp3(+) Treg cells in a donor antigen-specific manner, at least partially, via an IL-10-dependent pathway. This study for the first time showed that, in mixed allogeneic chimeras, donor M?s could be specifically tolerant to recipients and gained the ability to induce recipient but not the third party Foxp3(+) Treg cells. Whether this approach is involved in transplant immune tolerance needs to be determined.  相似文献   

20.
CD4(+)CD25(+) regulatory T cells (Tregs) are essential for maintaining self-tolerance and immune homeostasis. Here we characterize a novel subset of CD4(+)CD25(+) Tregs that express latency-associated peptide (LAP) on their cell surface (CD4(+)CD25(+)LAP(+) cells). CD4(+)CD25(+)LAP(+) cells express elevated levels of Foxp3 and Treg-associated molecules (CTLA4, glucocorticoid-induced TNFR-related gene), secrete TGFbeta, and express both cell surface TGFbeta and surface receptors for TGFbeta. In vitro, the suppressive function of CD4(+)CD25(+)LAP(+) cells is both cell contact and soluble factor dependent; this contrasts with CD4(+)CD25(+)LAP(-) cells, which are mainly cell contact dependent. In a model of experimental autoimmune encephalomyelitis, CD4(+)CD25(+)LAP(+) cells exhibit more potent suppressive activity than CD4(+)CD25(+)LAP(-) cells, and the suppression is TGFbeta dependent. We further show that CD4(+)CD25(+)LAP(+) cells suppress myelin oligodendrocyte glycoprotein-specific immune responses by inducing Foxp3 and by inhibiting IL-17 production. Our findings demonstrate that CD4(+)CD25(+) Tregs are a heterogeneous population and that the CD4(+)CD25(+) subset that expresses LAP functions in a TGFbeta-dependent manner and has greater in vivo suppressive properties. Our work helps elucidate the ambiguity concerning the role of TGFbeta in CD4(+)CD25(+) Treg-mediated suppression and indicates that LAP is an authentic marker able to identify a TGFbeta-expressing CD4(+)CD25(+) Treg subset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号