首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We have analyzed a GAL1 mutant (gal1-r strain) of the yeast Kluyveromyces lactis which lacks the induction of beta-galactosidase and the enzymes of the Leloir pathway in the presence of galactose. The data show that the K. lactis GAL1 gene product has, in addition to galactokinase activity, a function required for induction of the lactose system. This regulatory function is not dependent on galactokinase activity, as it is still present in a galactokinase-negative mutant (gal1-209). Complementation studies in Saccharomyces cervisiae show that K. lactis GAL1 and gal1-209, but not gal1-r, complement the gal3 mutation. We conclude that the regulatory function of GAL1 in K. lactis soon after induction is similar to the function of GAL3 in S. cerevisiae.  相似文献   

3.
Bhat PJ  Venkatesh KV 《FEBS letters》2005,579(3):597-603
In Saccharomyces cerevisiae, a recessive mutation in the signal transducer encoded by GAL3 leads to a significant lag in the induction of GAL genes, referred to as long term adaptation phenotype (LTA). Further, gal3 mutation in combination with other genetic defects leads to the non-inducibility of GAL genes. It was shown that the expression of GAL1 encoded galactokinase, a redundant GAL3 like signal transducer, eventually substitutes for the lack of GAL3 signal transduction function. However, how GAL1 gets induced in the absence of GAL3 is not clear. We hypothesize that GAL1 induction in gal3 cells exposed to galactose is due to a stochastic decrease in the repressor, Gal80p concentration, leading to heterogeneity in the population. This observation explains not only LTA observed in gal3 cells but also explains the non-inducibility of gal3 mutants in combination with other genetic defects. By recruiting a dedicated signal transducer, GAL3, S. cerevisiae GAL switch has evolved to overcome the fortuitous induction, which occurs due to low signal to noise ratio in certain mutants of Escherichia coli and Kluveromyces lactis.  相似文献   

4.
5.
6.
Temperature-sensitive (ts) mutants for the gal80 and gal4 genes of Saccharomyces cerevisiae were isolated and characterized. These mutants were classified into two categories; one showed thermolability (TL) and the other showed temperature-sensitive synthesis (TSS) of the respective products. Both the TL and TSS gal80 mutants are constitutive for galactokinase activity at 35 degrees C and, because they are derived from a dominant super-repressible GAL80s mutant, are uninducible at 25 degrees C. Both the TL and TSS gal4 mutants are galactose negative at 35 degrees C and galactose positive at 25 degrees C. None of the ts gal4 mutations affected the thermolability of galactokinase activity in cell extracts. Induction of galactokinase activity was studied with these mutants. The results indicate that the gal80 gene codes for a repressor and the gal4 gene codes for a positive factor indispensable for the expression of the structural genes or their products. However, striking evidence that the expression of the gal4 gene is constitutive and not under the control of gal80 was provided by a kinetic study with the TL gal4 mutant. The TL gal4 mutant pregrown in glycerol nutrient medium at 35 degrees C showed a prolonged lag period (35 min) in the induction of galactokinase activity at 25 degrees C, whereas the same mutant pregrown at 25 degrees C showed the same lag period as those observed in the wild-type strain and a revertant clone derived from the TL gal4 mutant (15 min).  相似文献   

7.
A total of 37 recessive mutations showing enhanced resistance to the glucose repression of galactokinase synthesis have been isolated by a selection procedure with a GAL81 gal7 double mutant. These mutations were grouped into three different complementation classes. One class, reg1, contains mutants arising from mutations at a site close to, but complementing, the gal3 locus. The reg1 mutant also showed resistance to the glucose repression of invertase synthesis but not to that of alpha-D-glucosidase. The two other classes were identified as arising from recessive mutations at the GAL82 locus and the GAL83 locus, respectively, at which various dominant mutations were isolated previously. When in a constitutive background due to the GAL81 or gal80 mutation, the GAL82 and GAL83 mutations did not show a mutually additive effect on the resistance to glucose repression of galactokinase synthesis, while the reg1 and GAL82 (or GAL83) mutations did. Based upon the specific behavior of cells with various genotypes for the above genes in response to the concentration of galactose and glucose in the medium, we propose a model involving three independent circuits for glucose signals in the regulation of the structural genes for the galactose pathway enzymes.  相似文献   

8.
9.
10.
11.
The gene encoding the galactose permease of Saccharomyces cerevisiae (GAL2) was cloned. The clone restores galactose permease activity to gal2 yeasts and is regulated by galactose in a manner similar to other GAL gene products (GAL1, -7, and -10). Experiments with temperature-conditional secretory mutants indicated that transport of the GAL2 gene product to the cell surface requires a functional secretory pathway. In addition, gene fusions were constructed between the GAL2 gene and the Escherichia coli lacZ gene. The GAL2-lacZ gene fusions code for galactose-regulated beta-galactosidase activity in yeasts. The beta-galactosidase activity was found to be membrane bound.  相似文献   

12.
Seven dominant mutations showing greatly enhanced resistance to the glucose repression of galactokinase synthesis have been isolated from GAL81 mutants, which have the constitutive phenotype but are still strongly repressible by glucose for the synthesis of the Leloir enzymes. These glucose-resistant mutants were due to semidominant mutations at either of two loci, GAL82 and GAL83. Both loci are unlinked to the GAL81- gal4, gal80, or gal7 X gal10 X gal1 locus or to each other. The GAL83 locus was mapped on chromosome V at a site between arg9 and cho1. The GAL82 and GAL83 mutations produced partial resistance of galactokinase to glucose repression only when one or both of these mutations were combined with a GAL81 or a gal80 mutation. The GAL82 and GAL83 mutations are probably specific for expression of the Leloir pathway and related enzymes, because they do not affect the synthesis of alpha-D-glucosidase, invertase, or isocitrate lyase.  相似文献   

13.
14.
15.
Cloning and characterization of the previously described Saccharomyces cerevisiae IMP1 gene, which was assumed to be a nuclear determinant involved in the nucleomitochondrial control of the utilization of galactose, demonstrate allelism to the GAL2 gene. Galactose metabolism does not necessarily involve the induction of the specific transport system coded by GAL2/IMP1, because a null mutant takes up galactose and grows on it. Data on galactose uptake are presented, and the dependence on ATP for constitutive and inducible galactose transport is discussed. These results can account for the inability of imp1/gal2 mutants to grow on galactose in a respiration-deficient background. Under these conditions, uptake was affected at the functional level but not at the biosynthetic level.  相似文献   

16.
The induction process of the galactose regulon has been intensively studied, but until now the nature of the inducer has remained unknown. We have analyzed a delta gal7 mutant of the yeast Kluyveromyces lactis, which lacks the galactotransferase activity and is able to express the genes of the Gal/Lac regulon also in the absence of galactose. We found that this expression is semiconstitutive and undergoes a strong induction during the stationary phase. The gal1-209 mutant, which has a reduced kinase activity but retains its positive regulatory function, also shows a constitutive expression of beta-galactosidase, suggesting that galactose is the inducer. A gal10 deletion in delta gal7 or gal1-209 mutants reduces the expression to under wild-type levels. The presence of the inducer could be demonstrated in both delta gal7 crude extracts and culture medium by means of a bioassay using the induction in gal1-209 cells. A mutation in the transporter gene LAC12 decreases the level of induction in gal7 cells, indicating that galactose is partly released into the medium and then retransported into the cells. Nuclear magnetic resonance analysis of crude extracts from delta gal7 cells revealed the presence of 50 microM galactose. We conclude that galactose is the inducer of the Gal/Lac regulon and is produced via UDP-galactose through a yet-unknown pathway.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号