首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mating system can impact the frequency of hybridization and therefore the maintenance of species diversity. I evaluate the effects of weak self-incompatibility (SI) in Phlox cuspidata and SI in Phlox drummondii on mating success within species and on hybridization dynamics between species under controlled conditions. The effects of SI on hybridization frequency were assessed by manipulating the relatedness of conspecific pollen and the relative timing of pollen deposition in mixed-donor interspecific pollinations. Selfing as opposed to outcrossing increased hybridization by 16% in P. cuspidata maternal plants and by 48% in P. drummondii maternal plants because self pollen did not compete as well against heterospecific pollen. The relative timing of conspecific versus heterospecific pollen deposition also impacted hybridization. In self-compatible P. cuspidata, the deposition of self pollen 5 h earlier than heterospecific pollen decreased hybridization by 28%. In self-incompatible P. drummondii, a 5 h delay in the deposition of compatible conspecific pollen increased hybridization by 32%. In this hybrid system, early self-pollination can decrease hybridization (but increase inbreeding) by P. cuspidata maternal plants, and SI may increase hybridization by P. drummondii maternal plants.  相似文献   

2.
Plants of the red- and pink-flowered P. drummondii were introduced into a natural population of P. cuspidata. Their seeds were progeny-tested, and the percentage hybrid seed determined for each variant. Thirty-eight percent of the seed from the pink variant were hybrid compared to 13% of the red. The difference in hybrid production is best explained by corolla color. The self- and cross-compatibility of nine sympatric and nine allopatric populations were studied in the greenhouse. On the average, sympatric populations are more self-compatible than allopatric populations. Pollen germination is 13.7% vs. 7.3%, the difference being statistically significant. The self-compatibility differential was accompanied by a self seedset differential. On the average, sympatric populations are more cross-compatible with P. cuspidata than are allopatric populations. The germination of P. cuspidata pollen on sympatric P. drummondii stigmas was 13.3% vs. 9.8% on allopatric stigmas. However, the difference is not statistically significant. The presence of P. cuspidata has promoted reproductive character divergence in P. drummondii. The shift in corolla color and the increase in self-compatibility reduce the potential for gametic wastage and interspecific hybridization.  相似文献   

3.
4.
Natural F1 hybrids between the outcrossingPhlox drummondii and the predominantly selfingP. cuspidata were examined to ascertain the proportion of hybrid individuals mothered by each species. Species-specific restriction fragment patterns (both nrDNA and cpDNA) were established as markers, and synthetic hybrids of known parentage were utilized to determine that the chloroplast genome is maternally inherited. Of 89 mature natural hybrids examined, approximately two thirds were mothered byP. drummondii, the outcrosser. That the outcrosser should mother most hybrids is expected since it is dependent upon incoming pollen for fertilization, and hybrids may result when heterospecific pollen is received. The fact that the highly selfingP. cuspidata mothered nearly one third of the hybrids is surprising, and may be related to both pre-zygotic and post-zygotic factors. Which species mothers hybrids has important implications for the potential for introgression as well as its direction.  相似文献   

5.
Postpollination mechanisms of reproductive isolation can critically influence the amount of gene flow between hybridizing species. While much evidence exists for genetically based pollen-pistil incompatibility, we show that environmental variation also influences the postpollination performance of heterospecific pollen in the annual Phlox hybrid system. Thus, the environmental segregation of species can influence hybridization dynamics. We found that P. cuspidata was restricted to soils of low Ca concentrations in the field and performed better under experimentally low Ca; P. drummondii was able to inhabit high-Ca soils and sometimes performed better in this environment. To determine whether soil Ca influenced pollen-pistil compatibility in a manner that alters pollen siring success, single-donor pollinations were performed in a completely factorial crossing design between species, maternal Ca environments, and paternal Ca environments. Maternal and paternal environments interacted in their effects on pollen-pistil compatibility for both inter- and intraspecific crosses, such that pollen performance was highest when mothers and fathers were grown in different soil Ca environments. These results suggest that when Phlox species predictably inhabit different environments, environmental heterogeneity can impede the processes of speciation and local adaptation by enhancing the performance of pollen dispersed across species and environments.  相似文献   

6.
Marcus T. Brock 《Oecologia》2009,161(2):241-251
Prezygotic reproductive barriers limit interspecific gene flow between congeners. Here, I examine the strength of floral isolation and interspecific pollen-pistil barriers between an invasive apomictic, Taraxacum officinale, and the indigenous sexual alpine dandelion, Taraxacum ceratophorum. Experimental arrays of either native inflorescences or a mixture of native and exotic inflorescences were used to examine insect preference and to track movement of a pollen analog. Using hand-pollinations, conspecific and heterospecific pollen germination success on native stigmas was compared. To additionally test for interspecific pollen competition, T. ceratophorum plants received one of three possible hand-pollinations: control conspecific pollination, concomitant conspecific and heterospecific pollination (mixed), or conspecific pollen followed by heterospecific pollen 15 min later (staggered). Floral isolation was negligible as no insect preference was detected. On a presence/absence basis, florets on native inflorescences received slightly less pollen analog from heterospecific donors than from conspecific donors; however, the amount of dye particles transferred from either Taraxacum species to stigmas on recipient T. ceratophorum inflorescences was equivalent. In contrast to weak floral isolation, strong pollen germination and pollen competition barriers should reduce the potential for hybridization. Heterospecific T. officinale pollen exhibited reduced germination success on T. ceratophorum stigmas in comparison to conspecific pollen. Furthermore, a significant pollen-competition effect on the percentage of hybrid offspring was detected only when T. officinale preceded T. ceratophorum pollen by 15 min. This result indicates that conspecific pollen out-competes heterospecific pollen but further suggests that biotic and abiotic factors reducing pollen accrual rates may partially remove barriers to natural hybridization.  相似文献   

7.
Phlox cuspidata (n = 7) and P. drummondii subsp. drummondii (n = 7) are closely related annuals which are indigenous to eastern and central Texas. The species typically occupy different ecological niches but may form contiguous or confluent populations in disturbed habitats and hybridize therein. On the basis of correlative interpretations of exomorphic, chromatographic and fertility information, hybridizing populations can be segregated into three distinct classes: (1) highly fertile plants with the morphological and phenolic attributes of P. drummondii; (2) highly fertile plants with the morphological and chemical attributes of P. cuspidata; (3) sterile plants with manifestly intermediate morphology and complementary chromatographic patterns. These data strongly suggest that hybridizing populations of P. drummondii and P. cuspidata are tritypic, being composed of “pure” or essentially “pure” parental species and a group of plants which has all of the attributes characteristic of an F1 hybrid.  相似文献   

8.
Abstract The sympatric legumes Dillwynia hispida, Dillwynia uncinata and Pultenaea densifolia overlap in flowering phenology, floral characters and native bee pollinators. Tests for pollen-limitation were conducted to determine whether or not the overlap in pollinator use was detrimental to individuals of these species. Pollen limitation was only detected in D. hispida. Pollen loads on bees were examined and it was found that pollen loads from Dillwynia and P. densifolia were spatially segregated on the pollinator's body reducing the likelihood of pollen transfer between these species. The pollen of D. hispida and D. uncinata overlapped on the heads of bees suggesting that interspecific pollinations may be responsible for lowered fruit-set in D. hispida. However, hand pollinations involving heterospecific pollen and controlled floral visits by bees to the two Dillwynia species revealed that heterospecific pollen loads did not significantly depress fruit-set in either D. hispida or D. uncinata. Pollinator preferences were examined in detail and it was found that D. uncinata flowers received twice as many bees in a day compared with D. hispida and P. densifolia. Competition through pollinator preference is implicated here as a mechanism of competition. Intraspecific competition is also implicated as D. hispida was pollen limited in the absence of D. uncinata and P. densifolia.  相似文献   

9.
  • Pollen‐pistil interactions are a fundamental process in the reproductive biology of angiosperms and play a particularly important role in maintaining incipient species that exist in sympatry. However, the majority of previous studies have focused on species with syncarpous gynoecia (fused carpels) and not those with apocarpous gynoecia (unfused carpels).
  • In the present study, we investigated the growth of conspecific pollen tubes compared to heterospecific pollen tubes in Sagittaria species, which have apocarpous gynoecia. We conducted controlled pollinations between S. pygmaea and S. trifolia and observed the growth of conspecific and heterospecific pollen tubes under a fluorescence microscope.
  • Heterospecific and conspecific pollen tubes arrived at locules within the ovaries near simultaneously. However, conspecific pollen tubes entered into the ovules directly, whereas heterospecific tubes passed through the carpel base and adjacent receptacle tissue, to ultimately fertilize other unfertilized ovules. This longer route taken by heterospecific pollen tubes therefore caused a delay in the time required to enter into the ovules. Furthermore, heterospecific pollen tubes displayed similar growth patterns at early and peak pollination. The growth pattern of heterospecific pollen tubes at late pollination was similar to that of conspecific pollen tubes at peak pollination.
  • Heterospecific and conspecific pollen tubes took different routes to fertilize ovules. A delayed entry of heterospecific pollen into ovules may be a novel mechanism of conspecific pollen advantage (CPA) for apocarpous species.
  相似文献   

10.
The cumulative (season-long) incidence of heterospecific pollen transfer (HPT) was examined using nine sympatric species in a midsuccessional old field. Inflorescences were collected weekly during the flowering season, and the proportion of foreign pollen/stigma was recorded. Flowering phenologies of sympatric species and ovule and seed counts of study species were also recorded. Heterospecific pollen was detected on some stigmas of each species. Medicago sativa (Fabaceae) received the most foreign pollen; in some cases, all of the grains on a stigma were heterospecific. Lotus corniculatus (Fabaceae) received the least amount of foreign pollen; the incidence of heterospecific pollen was near zero in most cases. The mean and range of foreign pollen received varied by as much as an order of magnitude between species. The six species with zygomorphic flowers, all Fabaceae, received more heterospecific pollen than the three species with actinomorphic flowers, Potentilla recta and P. simplex (Rosaceae) and Ranunculus acris (Ranunculaceae). This probably reflects a bias because our data were analyzed on a cumulative basis and the Fabaceae had longer flowering phenologies. HPT was not correlated with the species' relative abundance within the community. Proportion of foreign pollen received varied temporally within species, and this variation generally was not related to phenology of any sympatric taxa or the species' own phenology. Pollen grain diameter was positively related to levels of foreign pollen received by species. This might be caused by poor adhesion of large pollen grains to small stigmatic papillae or if generalist pollinators carrying large amounts of heterospecific pollen visit the large-grained species and specialists with little foreign pollen visit the small-grained species. The large proportions of heterospecific pollen on stigmas of many species indicate that HPT occurs frequently in the community we studied and the implications may include reduced seed set because of occlusion by foreign grains. As yet, however, it is unclear how important a factor HPT is in mediating pollen limitation of reproductive success.  相似文献   

11.
In natural populations where interfertile species coexist, conspecific and heterospecific pollen can be delivered to the stigmas. Post-pollination mechanisms might determine the seed siring success of different pollen donors within species as well as the chances for hybridization between species. Nicotiana longiflora and N. plumbaginifolia occur in sympatry in Northwest Argentina, where they have overlapping flowering seasons and share floral visitors. We explored (1) pollen tube growth rates for outcross versus self pollen in single-donor pollinations; (2) siring success of self versus outcross pollen donors in competitive pollinations, and (3) possibilities for hybridization by performing two- (outcross conspecific vs. heterospecific) and three-pollen donor (self vs. outcross vs. heterospecific) crosses. In N. longiflora, both pollen tube growth rate and siring success favored outcross pollen over self pollen and strong rejection of heterospecific pollen. In N. plumbaginifolia, pollen tube growth rate was similar for self and outcross pollen, self pollen sired similar numbers of offspring than outcross pollen and heterospecific pollen sired roughly the same number of progeny than self pollen. Results suggest that in natural sympatric populations, interspecific crosses would likely lead to unidirectional hybridization with N. plumbaginifolia as the seed parent.  相似文献   

12.

Reproductive interference (RI), an interspecific mating interaction that reduces the fitness of at least one of the species involved, can lead to exclusive distributions in closely related species. A hypothesis previously proposed is that RI in plants may occur by ovule usurpation, in which pistils lack interspecific incompatibility and mistakenly accept heterospecific pollen, thereby losing an opportunity for conspecific pollen fertilization. However, few comparative studies have evaluated the consistency of the inferred mechanism within and among individuals and populations. We conducted hand-pollination experiments in six populations of three native Taraxacum species that suffered from different levels of RI from an alien congener, T. officinale, and compared pollen–pistil interactions among populations. We also investigated the interactions for eight individual T. japonicum plants whose response to heterospecific pollen deposition had been previously measured. Our results revealed that pollen tubes often penetrated native ovaries following heterospecific pollination in populations suffering from strong RI, whereas they seldom did in populations suffering from marginal RI. However, the relative frequency of the pollen tube penetration was not significantly related to the strength of alien RI. Not all pistils on an individual plant showed the same pollen receptivity following heterospecific pollination; rather, some accepted and some refused the pollen tubes. The relationship between pollen tube penetration following heterospecific pollination and the strength of the alien RI was also not significant among individuals. Our present results generally support the ovule usurpation hypothesis, but suggest that other factors, such as competition for pollinator services, variation in the effects of heterospecific pollen donors, and condition of the native inflorescences, might also affect the observed RI strength.

  相似文献   

13.
Plant–plant interspecific competition via pollinators occurs when the flowering seasons of two or more plant species overlap and the pollinator fauna is shared. Negative sexual interactions between species (reproductive interference) through improper heterospecific pollen transfer have recently been reported between native and invasive species demonstrating pollination‐driven competition. We focused on two native Impatiens species (I. noli‐tangere and I. textori) found in Japan and examined whether pollinator‐mediated plant competition occurs between them. We demonstrate that I. noli‐tangere and I. textori share the same pollination niche (i.e., flowering season, pollinator fauna, and position of pollen on the pollinator's body). In addition, heterospecific pollen grains were deposited on most stigmas of both I. noli‐tangere and I. textori flowers that were situated within 2 m of flowers of the other species resulting in depressed fruit set. Further, by hand‐pollination experiments, we show that when as few as 10% of the pollen grains are heterospecific, fruit set is decreased to less than half in both species. These results show that intensive pollinator‐mediated competition occurs between I. noli‐tangere and I. textori. This study suggests that intensive pollinator‐mediated competition occurs in the wild even when interacting species are both native and not invasive.  相似文献   

14.
Variation of 20 quantitative characters was examined within and among 10 populations of the predominantly outcrossing Phlox drummondii and 4 populations of the predominantly selfing P. cuspidata grown in a greenhouse. Multivariate analysis of variance, considering all characters simultaneously, indicated that there were significant differences among populations in both species while analysis of individual characters demonstrated that there were significant population differences for 19 characters in P. drummondii and 13 characters in P. cuspidata. On average, 16% of the total phenotypic variation in P. drummondii occurred among populations compared to less than 4% of the total variation in P. cuspidata. In addition, P. drummondii exhibited significant differences among families within populations more frequently than P. cuspidata. Most observed variation in both species occurred within families where environmental and genetic sources of variation could not be partitioned. There was a trend for P. drummondii to have higher heritabilities than P. cuspidata for most characters even when assumptions about breeding systems were relaxed. Thus, the outbreeding species exhibited larger genetic differences among populations and among families within populations than the selfing species in the greenhouse environment. These data suggest that P. drummondii has the greater evolutionary potential of the two species and are consistent with the hypothesis that differences in population structure result from differences in the breeding systems of the two species.  相似文献   

15.
Summary We studied bumblebee foraging on two sympatrically and simultaneously flowering species, Melampyrum pratense (Scrophulariaceae) and Viscaria vulgaris (Caryophyllaceae) during the flowering season of Viscaria in south-west Sweden. We distinguished between healthy and Ustilago-infected Viscaria plants. Both species shared the main insect visitor, queens of Bombus hortorum, which collected nectar from both species but pollen from Melampyrum only. The pattern of visitation changed over the season: bumblebees preferred Viscaria early on, but changed to Melampyrum later in the season, probably because of the higher sugar content of Melampyrum nectar and the possibility of collecting both nectar and pollen from the same flower. Pollen collecting is probably of increasing importance since the need of pollen for the developing larvae will increase with time. Flowers of Viscaria received fewer visits in plots with other species than in pure Viscaria plots during one year and received more visits early than late in the season during both years. Melampyrum flowers received similar amounts of visits in mixed and pure environments. They also received more visits early than late, although this was probably a result of pollinator satiation since Melampyrum became very abundant with time. Ustilago-infected plants received far fewer visits but because of its long flowering time the proportion of open flowers receiving visits was still high. Viscaria flowers received significantly more visits than flowers of other species when bumblebees made heterospecific flower visits from Ustilago-infected plants; thus Ustilago spores were probably effectively dispersed from infected to healthy plants by the pollinators. The mechanism behind competition for pollination in this system was competition through pollinator preference, since the visitation rate to Viscaria actually decreased, but also competition through improper pollen transfer (grains of both species were found on the bodies of bumblebees) since the incidence of switching between the two species increased, probably resulting in an increased misplacement of conspecific pollen grains with time.  相似文献   

16.
Summary Fruiting and seed set in two bumblebee-pollinated herbs, Melampyrum pratense L. (annual, Scrophulariaceae) and Viscaria vulgaris Bernh. (perennial, Caryophyllaceae) were studied on a dry meadow in southwestern Sweden in June 1986 and 1988. Both species produced seeds by self-fertilization. In Melampyrum (homogamous) fruiting and seed set by selfing were much lower than by natural pollination; in Viscaria (protandrous) fruiting by selfing and by natural polination were similar, but seed set per flower was lower by selfing than by natural pollination. Sequential hand pollinations increased seed set in Melampyrum, but not in Viscaria. Thus, the number of pollinations is important for high seed set in Melampyrum, and number of pollen grains deposited one pollination is important for high seed set in Viscaria. Late flowering resulted in the production of fewer seeds in both species, although the visitation rate in pure Viscaria stands was sufficient, because of limited resources. Pollen was the limiting resource in Viscaria, because hand pollination increased natural seed set. In Melampyrum pollen was limiting in 1988 but so were consumable resources, because the seedset decreased with time despite hand pollination. Pure stands of Viscaria had sced set similar to plants in mixed stands (with Melampyrum and Rhinanthus), although plants in mixed stands received fewer visits. Many seeds produced late in the season are the result of self pollination; emasculated Viscaria flowers had a very low seedset late in the season. Pollen loads containing approximately 50% heterospecific grains did not affect seed set in either species. Application of heterospecific (Lupinus) pollen to receptive Viscaria styles 6 h before conspecific pollen did not affect seed set.  相似文献   

17.
A plant species immigrating into a community may experience a rarity disadvantage due to competition for the services of pollinators. These negative reproductive interactions have the potential to lead to competitive displacement or exclusion of a species from a site. In this study, we used one‐ and two‐species arrays of potted plants to test for density and frequency dependence in pollinator‐mediated and above‐ground intraspecific and interspecific competition between two species of Limnanthes that have overlapping ranges, but rarely occur in close sympatry. There were asymmetric competitive effects; the species responded differently to their frequency within 16‐plant replacement series arrays. Limnanthes douglasii rosea experienced stronger reductions in lifetime and per‐flower fertility, likely due to pollinator‐mediated competition with Limnanthes alba. This effect may be linked to asymmetrical competition through heterospecific pollen transfer. This study demonstrates that pollinator‐mediated competition may discourage establishment of L. d. rosea in sites already occupied by its congener.  相似文献   

18.
Pollinator activity and competition for pollinators lead to quantitative and qualitative pollen limitations on seed production and affect the reproductive success of plant species, depending on their breeding system (e.g., self‐compatibility and heterospecific compatibility) and genetic load (e.g., inbreeding depression and hybrid inviability). In alpine ecosystems, snowmelt regimes determine the distribution and phenology of plant communities. Plant species growing widely along a snowmelt gradient often grow with different species among local populations. Their pollinators also vary in their abundance, activity, and behavior during the season. These variations may modify plant–pollinator and plant–plant interactions. We integrated a series of our studies on the alpine dwarf shrub, Phyllodoce aleutica (Ericaceae), to elucidate the full set of intrinsic (species‐specific breeding system) and extrinsic factors (snow condition, pollinator activity, and interspecific competition) acting on their reproductive process. Seasonality of pollinator activity led to quantitative pollen limitation in the early‐blooming populations, whereas in the late‐blooming populations, high pollinator activity ensured pollination service, but interspecific competition for pollinators led to qualitative and quantitative pollen limitation in less competitive species. However, negative effects of illegitimate pollen receipt on seed‐set success might be reduced when cryptic incompatibility systems (i.e., outcross pollen grains took priority over self‐ and heterospecific pollen grains) could effectively prevent ovule and seed discounting. Our studies highlight the importance of species‐specific responses of plant reproduction to changing pollinator availability along environmental gradients to understand the general features of pollination networks in alpine ecosystems.  相似文献   

19.
Invasive plants may threaten the reproductive success of native sympatric plants by modifying the pollination process. One potential mechanism takes place through the deposition of invasive pollen onto native stigmas when pollinators are shared among species. We explore how pollen from the invasive plant Brassica nigra influences pre- and post-fertilization stages in the native plant Phacelia parryi, through a series of hand pollination experiments. These two species share pollinators to a high degree. P. parryi flowers were hand-pollinated with either pure conspecific pollen (the control) or with B. nigra pollen applied prior to, simultaneously with, or following conspecific pollen. Application of B. nigra pollen lowered seed set, with the simultaneous application resulting in the highest reduction. Pollen tube growth was also influenced by the presence of invasive pollen, with fewer conspecific pollen tubes reaching the base of P. parryi styles in treatments where B. nigra pollen was applied prior to or simultaneously with conspecific pollen. The deleterious effects of invasive pollen on native seed set in this study are likely not due to loss of stigmatic receptivity since seed set was less affected when heterospecific pollen was applied prior to conspecific pollen, but may instead involve interactions between interspecific pollen grains on the stigma or within the style. Our study highlights the importance of timing of foreign pollen deposition on native stigmas and suggests that interspecific pollen transfer between native and exotic plants may be an important mechanism of competition for pollination in invaded plant communities.  相似文献   

20.
In plants, selfing and outcrossing may be affected by maternal mate choice and competition among pollen and zygotes. To evaluate this in Silene nutans, we pollinated plants with mixtures of (1) self‐ and outcross pollen and (2) pollen from within a population and from another population. Pollen fitness and zygote survival was estimated from the zygote survival and paternity of seeds. Self pollen had a lower fitness than outcross pollen, and selfed zygotes were less likely, or as likely, to develop into seeds. Hybrid zygotes survived as frequently or more than local zygotes, and pollen from one of the populations fertilized most ovules in both populations. Our results thus indicate strong maternal discrimination against selfing, whereas the success of outbreeding seems mostly affected by divergent pollen performance. The implications for the evolution of maternal mate choice are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号