首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A ventrally localized melanization inhibiting factor (MIF) has been suggested to play an important role in the establishment of the dorsal-ventral pigment pattern in Xenopus laevis [Fukuzawa and Ide:Dev. Biol., 129:25-36, 1988]. To examine the possibility that melanoblast expression might be controlled by local putative MIF and melanogenic factors, the effects of alpha-melanocyte stimulating hormone (alpha-MSH), a serum melanization factor (SMF) from X. laevis or Rana pipiens, and MIF on the "outgrowth" and "melanization" of Xenopus neural crest cells were studied. Outgrowth represents the number of neural crest cells emigrating from cultured neural tubes, and melanization concerns the percentage of differentiated melanophores among the emigrated cells. MSH or SMF stimulate both outgrowth and melanization. The melanogenic effect of Xenopus serum in this system is more than twice that of Rana serum. The actions of MSH and Xenopus serum on melanization seem to be different: 1) Stronger melanization is induced by Xenopus serum than by MSH, and the onset of melanization occurs earlier with Xenopus serum; 2) MSH stimulates melanization only in the presence of added tyrosine; and 3) MSH causes young melanophores to assume a prominent state of melanophore dispersion during culture, while Xenopus serum (10%) had only a slight dispersing effect and not until day 3. A fraction of Xenopus serum presumably containing molecules of a smaller molecular weight (MW less than 30 kDa) than that of a pigment promoting factor reported in calf serum [Jerdan et al.: J. Cell Biol., 100:1493-1498, 1985] produces the same remarkable melanogenic effects as does intact serum. While this fraction stimulates outgrowth, another fraction presumably containing larger molecules (MW greater than 100 kDa) does not. MIF contained in Xenopus ventral skin conditioned medium (VCM) inhibits both outgrowth and melanization dose dependently. When VCM is used in combination with MSH, the stimulating effects of MSH on both outgrowth and melanization are completely inhibited. In contrast, the stimulatory effects of Xenopus serum are not completely inhibited when combined with VCM, although melanization is reduced to approximately 40% that of controls. MIF activity was also found to be present in ventral, but not in dorsal, skin conditioned media of R. pipiens when tested in the Xenopus neural crest system.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Consistent with the concept that specific pigment patterns of amphibians might result from the highly localized distribution of stimulators and inhibitors of pigment cell expression in the skin, the spot pattern of the leopard frog, Rana pipiens, was examined through the use of the Xenopus neural tube explant assay system (Fukuzawa and Ide, 1988). Media conditioned with pieces of skin from dorsal black spotted areas promoted melanization of neural crest cells at a significantly higher level than did media conditioned with dorsal interspot skin in the absence of extra tyrosine. All conditioned media contained exceedingly low concentrations of tyrosine. With the addition of supplemental tyrosine, the melanization capacity of conditioned media from the interspot areas was elevated to that of the spotted skin. Control media conditioned with ventral frog skin inhibited melanization, as usual, because of the presumed presence of melanization inhibiting factor (MIF). It is considered that dorsal skin contains a melanization stimulating factor (MSF) which is present in significantly higher levels in spotted skin than in interspot areas and that expression of the particular pigmentary pattern of this leopard frog is regulated by the relative distribution of MIF, MSF, and possibly other intrinsic substances present in the skin.  相似文献   

3.
The pigment pattern expression resides in the chromatoblasts of the embryonic skin. The differentiation of these chromatoblasts is influenced by specific local factors such a melanization inhibiting factor (MIF) and a melanization-stimulating factor (MSF). We reveal the presence of these factors by means of a series of experiments on the skin of the marine species of fish Dicertranchus labrax and Mugil cephalus, each with different pigment pattern, the former having a light skin and the latter a darker one. Media conditioned by exposure to dorsal and/or ventral skin, stimulates the melanization of Xenopus laevis neural crest cells throughout a 3 day assay period. Similarly conditioned culture media tested on B16-F10 murine malignant melanocytes, revealed a considerable influence in enzymatic activities: dopachrome tautomerase (DCT), tyrosine hydroxylase and dopa oxidase. The use of media in a dose response basis suggests that the conditioned media may contain both melanophore stimulating and inhibiting factors. The results obtained may actually reflect the resultant activity of the two factors present.  相似文献   

4.
A ventrally localized melanization inhibiting factor (MIF) has been suggested to play an important role in the establishment of the dorsal-ventral pigment pattern in Xenopus laevis [Fukuzawa and Ide: Dev. Biol., 129:25–36, 1988]. To examine the possibility that melanoblast expression might be controlled by local putative MIF and melanogenic factors, the effects of α-melanocyte stimulating hormone (α-MSH), a serum melanization factor (SMF) from X. laevis or Rana pipiens, and MIF on the “outgrowth” and “melanization” of Xenopus neural crest cells were studied. Outgrowth represents the number of neural crest cells emigrating from cultured neural tubes, and melanization concerns the percentage of differentiated melanophores among the emigrated cells. MSH or SMF stimulate both outgrowth and melanization. The melanogenic effect of Xenopus serum in this system is more than twice that of Rana serum. The actions of MSH and Xenopus serum on melanization seem to be different: 1) Stronger melanization is induced by Xenopus serum than by MSH, and the onset of melanization occurs earlier with Xenopus serum; 2) MSH stimulates melanization only in the presence of added tyrosine; and 3) MSH causes young melanophores to assume a prominent state of melanophore dispersion during culture, while Xenopus serum (10%) had only a slight dispersing effect and not until day 3. A fraction of Xenopus serum presumably containing molecules of a smaller molecular weight (MW <30 kDa) than that of a pigment promoting factor reported in calf serum [Jerdan et al.: J. Cell Biol., 100:1493–1498, 1985] produces the same remarkable melanogenic effects as does intact serum. While this fraction stimulates outgrowth, another fraction presumably containing larger molecules (MW > 100 kDa) does not. MIF contained in Xenopus ventral skin conditioned medium (VCM) inhibits both outgrowth and melanization dose dependently. When VCM is used in combination with MSH, the stimulating effects of MSH on both outgrowth and melanization are completely inhibited. In contrast, the stimulatory effects of Xenopus serum are not completely inhibited when combined with VCM, although melanization is reduced to approximately 40% that of controls. MIF activity was also found to be present in ventral, but not in dorsal, skin conditioned media of R. pipiens when tested in the Xenopus neural crest system. We suggest that ventrally localized MIF plays an important role in amphibian pigment pattern formation and that the interacting effects of MIF and melanogenic factors influence melanoblast differentiation, migration, and/or proliferation of neural crest cells to effect the expression of pigmentary patterns.  相似文献   

5.
In keeping with the concept that local factors in the vertebrate integument affect the expression of pigment cells, the present study was directed toward demonstrating the existence of such factors in the skin of the channel catfish, Ictalurus punctatus. This species has a dark dorsal surface in marked contrast to an almost white midventral surface. Pieces of skin from these two surfaces were used to condition culture media, which were in turn bioassayed using the Xenopus neural tube explant system (Fukuzawa and Ide, 1988, Dev. Biol. 129:25). A certain number of neural crest cells grow out from the explant, and many of these are melanized in a culture medium of Steinberg's basic salt solution (BSS). When the BSS was conditioned with either dorsal or ventral skin, a profound increase in both the number of crest cells emigrated from the neural tubes and the percentage of melanized cells was observed. The effects of dorsal skin were stronger than those of ventral skin and were evident on a dose/response basis. Initial fractionation of conditioned BSS with DEAE ion exchange chromatography produced fractions of particular potency in the stimulation of melanogenesis. A similarly conditioned medium based upon Leibovitz's L-15 was used in the primary culture of mature chromatophores, namely, melanophores, iridophores, and xanthophores from tadpoles of Rana pipiens. Both dorsal and ventral conditioned media stimulated iridophores and xanthophores, but seemed to have little or no effect on tadpole melanophores. A melanization inhibiting factor (MIF) from the ventral surface of adult frogs has been suggested as the basis for the light colored ventrum of amphibians, and although the present experiments were not designed to study catfish MIF, the possible existence of such a factor in this species was supported by the results. The total results of this investigation are discussed in the light of the possible presence of a melanization inhibiting factor (MIF) of greater prevalence in the ventrum and a melanization stimulatory factor (MSF) of greater prevalence in the dorsal integument. It is suggested that the light-colored ventral surface of the catfish and other poikilotherms may result from the presence of higher levels of MIF than MSF. Thus, the expression of melanophores is inhibited while that of iridophores is enhanced. In contrast, higher levels of MSF over MIF in the dark dorsal surface would result in melanophore stimulation and inhibition of iridophore expression.  相似文献   

6.
A two step fractionation of conditioned media made from the darkly pigmented dorsal skin of the channel catfish, Ictalurus punctatus, has produced fractions that contain a melanization stimulating factor (MSF). Isolated neural tubes of Xenopus laevis embryos exposed to conditioned media and to specific fractions exhibit greater melanization (increased numbers of melanized cells and elevated percentages of melanized cells), a greater number of dendrites per melanized cell, and a greater number of emigrated neural crest cells than control neural tubes. The presence of MSF activity in the darkly pigmented dorsal integument suggests a role for a molecule or molecules in the development and maintenance of the dorsal/ventral pigment pattern of this piscine species and possibly of other vertebrates.  相似文献   

7.
The presence of a melanization-stimulating factor (MSF) was discovered in dorsal and/or ventral skin of Sparus auratus. Skin from this marine species was used to condition Steinberg's balanced salt solution (BSS), which was subsequently tested with the neural tube assay. BBS conditioned by dorsal and/or ventral skin of S. auratus at 25% and 50% concentrations had a profound stimulatory effect on the percentage of melanization of neural crest cells throughout the 3day assay period. In some cases 90% melanization occurred within the first 24 hr. Such stimulated cells showed a doubling of the number of dendrites per cell. assess the effects of MSF on other indices of melanization, dorsal and/or ventral skin was used to condition MEM used in the culture of B16-F10 murine melanoma cells. During the first 24 hr, B16-F10 murine melanoma cells responded to conditioned media by demonstrating a considerable increase in activities of tyrosine hydroxylase, dopa oxidase, and dopachrome tautomerase, but no effect was observed on melanin content. In contrast, melanin content increased after 48 hr of incubation, whereas the enzymatic activities were inhibited during this period. It seems that MSF activity, expressed in several ways, may be present generally among marine species.  相似文献   

8.
We have investigated cell-cell and cell-substratum adhesion of Xenopus laevis neural crest cells at various stages of melanophore differentiation. Single-cell suspensions were obtained by trypsinization and aggregated in a cell-cell adhesion assay. Unpigmented cells did not adhere while the rate of adhesion of melanophores correlated with the degree of melanization. Melanophore cell-cell adhesion decreased significantly in the presence of beta-galactosidase, which suggests that cell-surface galactose is involved. Beta-galactoside-binding lectin has been isolated and purified from embryos at the stage of neural crest migration. When added to aggregating cells smaller, looser clusters formed compared to controls. When lectin was added to cells in stationary culture to test cell-substratum adhesion, melanophores spread more smoothly and formed more regular spacing patterns. These results suggest that this lectin can modulate receptors used in cell-cell and cell-substratum adhesion of melanophores.  相似文献   

9.
We have studied the development of Xenopus laevis tail melanophores and the effects on these cells on confrontation with endogenous X. laevis galactoside-binding lectin or its sugar hapten inhibitor thiodigalactoside (TDG). An initial population of unpigmented cells differentiates into melanophores on the dorsal surface of the neural tube, and on the dorsal and ventral apices of the myotomes, forming the larval pattern. Melanophores secondarily populate the flank, forming a spaced arrangement which is later transformed into a dorsal and ventral strip. A technique has been developed for confrontation of premigratory neural crest with purified lectin or TDG. These molecules impact on tail melanophores. With lectin treatment melanophore numbers decrease, and cell morphologies and arrangements change. TDG treatment, however, primarily affects pigment cell morphology. These results suggest that both galactoside-bearing receptors for this lectin and the lectin itself can affect melanophores in this species of frog.  相似文献   

10.
This study was undertaken to determine whether premigratory neural crest cells of the axolotl embryo differentiate autonomously into chromatophores, or whether stimuli from the environment, particularly from the extracellular matrix, are required for this process. Neural crest cells were excised from the dorsal part of the premigratory crest cord and cultured alone, either in a serum-free salt solution or in the presence of fetal calf serum (FCS), and together with explants of the neural tube or dorsal epidermis. A "microcarrier" technique was developed to assay the possible effects of subepidermal extracellular matrix (ECM) on chromatophore differentiation. ECM was adsorbed in vivo onto microcarriers prepared from Nuclepore filters, by inserting such carriers under the dorsolateral epidermis in the embryonic trunk. Neural crest cells were then cultured on the substrate of ECM deposited on the carriers. Melanophores were detected by DOPA incubation, revealing phenol oxidase activity, or by externally visible accumulation of melanin. Prospective xanthophores were visualized before they became overtly differentiated by alkali-induced pteridine fluorescence. Isolated premigratory neural crest cells did not transform autonomously into any of these phenotypes. Conversely, coculture with the neural tube or the dorsal epidermis, and also the initial presence or later addition of FCS during incubation, resulted in differentiation of neural crest cells into chromatophores. Both chromatophore phenotypes were also expressed on the ECM substrate deposited on the microcarriers. The results indicate that neural crest cells do not differentiate autonomously into melanophores and xanthophores, but that interactions with components of, or factors associated with the extra cellular matrix surrounding the premigratory neural crest and present along the dorsolateral migratory pathway are crucial for the expression of these chromatophore phenotypes in the embryo.  相似文献   

11.
That embryonic ventral truck tissue might play a role in expression of the periodic albino mutant phenotype (ap/ap) in Xenopus laevis was suggested from the experiments of MacMillan (1980). In contrast, the present experiments, involving the culture of isolated regions of Xenopus embryos, have demonstrated that both mutant and wild-type melanoblasts differentiate independently of a ventral trunk factor. A similar conclusion, that mutant melanoblasts differentiate independently of a ventral trunk factor, is derived from observations on neural crest cultures, wherein melanization of neural crest cells in both wild-type and mutant cultures occurred in a manner consistent with their genotype.  相似文献   

12.
Summary Neural crest cells from both white mutant and dark (wildtype) axolotls (Ambystoma mexicanum) were cultured in increasing concentrations of fetal bovine serum (FBS; 2 to 20%). For each explant, the total number of cells that migrated and the percent of differentiated melanophores were recorded. At concentrations of FBS above 2% melanophore differentiation was essentially equivalent (32 to 59%) for both the white and dark neural crest cultures, but subtle differences in cell behavior and differentiation were found between the two phenotypes. By contrast there was a significant difference in the percent melanization of cells in serum-free control cultures, wherein melanophore differentiation in dark neural crest cultures was, on average, 18% compared to 5% in white cultures. Thus, contrary to all previously published work, white and dark neural crest cells are not intrinsically equivalent. Our culture results are discussed with regard to the probable in vivo conditions that cause the white phenotype. This research was supported by grant AR 34478 from the National Institutes of Health, Bethesda, MD, and a University of Kansas Biomedical Science support grant.  相似文献   

13.
Clonal cultures were performed with the use of neural crest cells and their derivatives, chromatophores, from Xenopus laevis in order to elucidate the state of commitment in early embryogenesis. Neural crest cells that outgrew from neural tube explants were isolated and plated at clonal density. Cloned neural crest cells differentiated and gave rise to colonies that consisted of 1) only melanophores, 2) only xanthophores, or 3) melanophores and xanthophores. Xanthophores and iridophores, which differentiated in vitro, were also isolated and cloned. Cloned xanthophores proliferated in a stable fashion and did not lose their properties. On the other hand, cloned iridophores converted into melanophores as they proliferated. These results suggest that there is heterogeneity in the state of commitment of neural crest cells immediately after migration with regard to chromatophore differentiation and that iridophore determination is relatively labile (at least in vitro), whereas melanophore and xanthophore phenotypes are stable.  相似文献   

14.
While flatfish in the wild exhibit a pronounced countershading of the dorso-ventral pigment pattern, malpigmentation is commonly observed in reared animals. In fish, the dorso-ventral pigment polarity is achieved because a melanization inhibition factor (MIF) inhibits melanoblast differentiation and encourages iridophore proliferation in the ventrum. A previous work of our group suggested that asip1 is the uncharacterized MIF concerned. In order to further support this hypothesis, we have characterized asip1 mRNAs in both turbot and sole and used deduced peptide alignments to analyze the evolutionary history of the agouti-family of peptides. The putative asip precursors have the characteristics of a secreted protein, displaying a putative hydrophobic signal. Processing of the potential signal peptide produces mature proteins that include an N-terminal region, a basic central domain with a high proportion of lysine residues as well as a proline-rich region that immediately precedes the C-terminal poly-cysteine domain. The expression of asip1 mRNA in the ventral area was significantly higher than in the dorsal region. Similarly, the expression of asip1 within the unpigmented patches in the dorsal skin of pseudoalbino fish was higher than in the pigmented dorsal regions but similar to those levels observed in the ventral skin. In addition, the injection/electroporation of asip1 capped mRNA in both species induced long term dorsal skin paling, suggesting the inhibition of the melanogenic pathways. The data suggest that fish asip1 is involved in the dorsal-ventral pigment patterning in adult fish, where it induces the regulatory asymmetry involved in precursor differentiation into mature chromatophore. Adult dorsal pseudoalbinism seems to be the consequence of the expression of normal developmental pathways in an inaccurate position that results in unbalanced asip1 production levels. This, in turn, generates a ventral-like differentiation environment in dorsal regions.  相似文献   

15.
The distribution of the extracellular matrix (ECM) glycoprotein, tenascin, has been compared with that of fibronectin in neural crest migration pathways of Xenopus laevis, quail and rat embryos. In all species studied, the distribution of tenascin, examined by immunohistochemistry, was more closely correlated with pathways of migration than that of fibronectin, which is known to be important for neural crest migration. In Xenopus laevis embryos, anti-tenascin stained the dorsal fin matrix and ECM along the ventral route of migration, but not the ECM found laterally between the ectoderma and somites where neural crest cells do not migrate. In quail embryos, the appearance of tenascin in neural crest pathways was well correlated with the anterior-to-posterior wave of migration. The distribution of tenascin within somites was compared with that of the neural crest marker, HNK-1, in quail embryos. In the dorsal halves of quail somites which contained migrating neural crest cells, the predominant tenascin staining was in the anterior halves of the somites, codistributed with the migrating cells. In rat embryos, tenascin was detectable in the somites only in the anterior halves. Tenascin was not detectable in the matrix of cultured quail neural crest cells, but was in the matrix surrounding somite and notochord cells in vitro. Neural crest cells cultured on a substratum of tenascin did not spread and were rounded. We propose that tenascin is an important factor controlling neural crest morphogenesis, perhaps by modifying the interaction of neural crest cells with fibronectin.  相似文献   

16.
This study examines the pathways of migration followed by neural crest cells in Xenopus embryos using two recently described cell marking techniques. The first is an interspecific chimera created by grafting Xenopus borealis cells into Xenopus laevis hosts. The cells of these closely related species can be distinguished by their nuclear dimorphism. The second type of marker is created by microinjection of lysinated dextrans into fertilized eggs which can then be used for intraspecific grafting. These recently developed fluorescent dyes are fixable and identifiable in both living and fixed embryos. After grafting labeled donor neural tubes into unlabeled host embryos, the distribution of neural crest cells at various stages after grafting was used to define the pathways of neural crest migration. To control for possible grafting artifacts, fluorescent lysinated dextran was injected into a single blastomere which gives rise to a large number of neural crest cells, thereby labeling the neural crest without grafting. By all three techniques, Xenopus neural crest cells were observed along two predominant pathways in the trunk. The majority of neural crest cells were observed along a "ventral" route, between the neural tube and somite, the notochord and somite, and along the dorsal mesentery. A second group of neural crest cells was observed "dorsally" where they populated the dorsal fin. A third minor "lateral" pathway was observed primarily in borealis/laevis chimerae and in blastomere-injected embryos; some neural crest cells were observed underneath the ectoderm lateral to the neural tube. Along the rostrocaudal axis, neural crest cells were not continuously distributed but were primarily located across from the caudal two-thirds of the somite. Fewer than 3% of the neural crest cells were observed across from the rostral third of each somite. When grafted to ventral locations, neural crest cells were not able to migrate dorsally but migrated laterally along the dorsal mesentery. Labeled neural crest cells gave rise to cells of the spinal, sympathetic, and enteric ganglia as well as to adrenal chromaffin cells, Schwann cells, pigment cells, mesenchymal cells of the dorsal fin, and some cells in the integuments and in the region of the pronephros. These results show that the neural crest migratory pathways in Xenopus differ from those in the avian embryo. In avians NC cells migrate as a closely associated sheet of cells while in Xenopus they migrate as individual cells. Both species exhibit a metamerism in the neural crest cell distribution pattern along the rostrocaudal axis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Summary Neural crest cells from quail embryos grown in standard culture dishes differentiate almost entirely into melanocytes within 4 or 5 days when chick embryo extract (CEE) or occasional lots of fetal calf serum (FCS) are included in the medium. Gel fractionation showed that the pigment inducing factor(s) present in these media is of high molecular weight (> 400 K daltons). In the absence of CEE, the neural tube can also stimulate melanocyte differentiation. Culture medium supplemented by selected lots of FCS permits crest cell proliferation but little overt differentiation after up to 2 weeks in culture if the neural tube is removed within 18 h of explantation in vitro. Subsequent addition of CEE to such cultures promotes complete melanocyte differentiation. Crest cells from White leghorn chick embryos also differentiate into melanocytes in the presence of CEE, but do not survive well in its absence. Melanocyte differentiation of crest cells from both quail and chick embryos can by suppressed by culturing under a dialysis membrane, even in the presence of the neural tube and CEE, but neuronal differentiation appears greatly enhanced.  相似文献   

18.
Neural induction of ectoderm cells has been reconstituted and examined in a microculture system derived from dissociated early gastrula cells of Xenopus laevis. We have used monoclonal antibodies as specific markers to monitor cellular differentiation from three distinct ectoderm lineages in culture (N1 for CNS neurons from neural tube, Me1 for melanophores from neural crest and E3 for skin epidermal cells from epidermal lineages). CNS neurons and melanophores differentiate when deep layer cells of the ventral ectoderm (VE, prospective epidermis region; 150 cells/culture) and an appropriate region of the marginal zone (MZ, prospective mesoderm region; 5-150 cells/culture) are co-cultured, but not in cultures of either cell type on their own; VE cells cultured alone yield epidermal cells as we have previously reported. The extent of inductive neural differentiation in the co-culture system strongly depends on the origin and number of MZ cells initially added to culture wells. The potency to induce CNS neurons is highest for dorsal MZ cells and sharply decreases as more ventrally located cells are used. The same dorsoventral distribution of potency is seen in the ability of MZ cells to inhibit epidermal differentiation. In contrast, the ability of MZ cells to induce melanophores shows the reverse polarity, ventral to dorsal. These data indicate that separate developmental mechanisms are used for the induction of neural tube and neural crest lineages. Co-differentiation of CNS neurons or melanophores with epidermal cells can be obtained in a single well of co-cultures of VE cells (150) and a wide range of numbers of MZ cells (5 to 100). Further, reproducible differentiation of both neural lineages requires intimate association between cells from the two gastrula regions; virtually no differentiation is obtained when cells from the VE and MZ are separated in a culture well. These results indicate that the inducing signals from MZ cells for both neural tube and neural crest lineages affect only nearby ectoderm cells.  相似文献   

19.
A series of microsurgical operations was performed in chick embryos to study the factors that control the polarity, position and differentiation of the sympathetic and dorsal root ganglion cells developing from the neural crest. The neural tube, with or without the notochord, was rotated by 180 degrees dorsoventrally to cause the neural crest cells to emerge ventrally. In some embryos, the notochord was ablated, and in others a second notochord was implanted. Sympathetic differentiation was assessed by catecholamine fluorescence after aldehyde fixation. Neural crest cells emerging from an inverted neural tube migrate in a ventral-to-dorsal direction through the sclerotome, where they become segmented by being restricted to the rostral half of each sclerotome. Both motor axons and neural crest cells avoid the notochord and the extracellular matrix that surrounds it, but motor axons appear also to be attracted to the notochord until they reach its immediate vicinity. The dorsal root ganglia always form adjacent to the neural tube and their dorsoventral orientation follows the direction of migration of the neural crest cells. Differentiation of catecholaminergic cells only occurs near the aorta/mesonephros and in addition requires the proximity of either the ventral neural tube (floor plate/ventral root region) or the notochord. Prior migration of presumptive catecholaminergic cells through the sclerotome, however, is neither required nor sufficient for their adrenergic differentiation.  相似文献   

20.
The product of the Drosophila gene tribbles inhibits cell division in the ventral furrow of the embryo and thereby allows the normal prosecution of gastrulation. Cell division is also absent in involuting dorsal mesoderm during gastrulation in Xenopus, and to ask whether the two species employ similar mechanisms to coordinate morphogenesis and the cell cycle, we isolated a putative Xenopus homologue of tribbles which we call Xtrb2. Extensive cDNA cloning identified long and short forms of Xtrb2, termed Xtrb2-L and Xtrb2-S, respectively. Xtrb2 is expressed maternally and in mesoderm and ectoderm at blastula and gastrula stages. Later, it is expressed in dorsal neural tube, eyes, and cephalic neural crest. Time-lapse imaging of GFP-tagged Xtrb2-L suggests that during cell division, it is associated with mitotic spindles. Knockdown of Xtrb2 by antisense morpholino oligonucleotides (MOs) disrupted synchronous cell divisions during blastula stages, apparently as a result of delayed progression through mitosis and cytokinesis. At later stages, tissues expressing the highest levels of Xtrb2 were most markedly affected by morpholino knockdown, with perturbation of neural crest and eye development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号