首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hypothesis that body size and swimming velocity affect proximate body composition, wet mass and size‐selective mortality of fasted fish was evaluated using small (107 mm mean total length, L T) and medium (168 mm mean L T) juvenile rainbow trout Oncorhynchus mykiss that were sedentary or swimming ( c . 1 or 2 body length s−1) and fasted for 147 days. The initial amount of energy reserves in the bodies of fish varied with L T. Initially having less lipid mass and relatively higher mass‐specific metabolic rates caused small rainbow trout that were sedentary to die of starvation sooner and more frequently than medium‐length fish that were sedentary. Swimming at 2 body length s−1 slightly increased the rate of lipid catabolism relative to 1 body length s−1, but did not increase the occurrence of mortality among medium fish. Death from starvation occurred when fish had <3·2% lipid remaining in their bodies. Juvenile rainbow trout endured long periods without food, but their ability to resist death from starvation was limited by their length and initial lipid reserves.  相似文献   

2.
Effect of temperature on swimming performance of sea bass juveniles   总被引:1,自引:0,他引:1  
At four temperatures ( T= 15, 20, 25 and 28° C) swimming performance of Dicentrarchus labrax was significantly correlated with total length (23–43 mm L T); r2=0.623–0.829). The relative critical swimming speed ( RU crit= U crit L T−1), where U crit is the critical swimming speed, was constant throughout the L T range studied. The significant effect of temperature on the relative critical swimming speed was described binomially: RU crit=−0.0323T2+ 1.578 T −10.588 (r2=1). The estimated maximum RU crit (8.69 L T s−1) was achieved at 24.4° C, and the 90% performance level was estimated between 19.3 and 29.6° C.  相似文献   

3.
The swimming performance of Platycephalus bassensis at steady speed was assessed with an emphasis on hydrodynamics. The minimum swimming speed to maintain hydrostatic equilibrium for P. bassensis of 0·271 m total length ( L T) was calculated to be 1·06 L T s−1. At this speed, the required lift to support the mass of the fish was equivalent to 6·6% of the fish mass; 82·7% of which was created by the body as a hydrofoil, and the rest of which was created by the pelvic fins as hydrofoils. The minimum swimming speed decreased with the L T of the fish and ranged from 1·15 L T s−1 for a fish of 0·209 m to 0·89 L T s−1 for a fish of 0·407 m. The forward movement per tail-beat cycle ( i.e. stride length) was described with an equation including quantities of morphological and hydro-mechanical relevance. This equation explained that stride length was increased by the effect of turbulence characterized by the Reynolds number and demonstrated the morphological and hydro-mechanical functional design of the fish for maximizing thrust and minimizing drag. The larger span of the caudal fin and caudal tail-beat amplitude was associated with larger stride length, whereas greater frictional drag was associated with smaller stride length.  相似文献   

4.
Decreased critical swimming speed and increased oxygen consumption (     ) was found for externally tagged Atlantic cod Gadus morhua swimming at a high speed of 0·9 body length (total length, L T) s−1. No difference was found in the standard metabolic rate, indicating that the higher     for tagged cod was due to drag force rather than increased costs to keep buoyancy.  相似文献   

5.
Routine oxygen consumption ( M o 2) was 35% higher in 1 day starved and 21% higher in 4 day starved adult transgenic coho salmon Oncorhynchus kisutch relative to end of migration ocean-ranched coho salmon. Critical swimming speed ( U crit) and M o 2 at U crit ( M o 2max) were significantly lower in 4 day starved transgenic coho salmon (1·25 BL s−1; 8·79 mg O2 kg−1 min−1) compared to ocean-ranched coho salmon (1·60 BL s−1; 9·87 mg O2 kg−1 min−1). Transgenic fish swam energetically less efficiently than ocean-ranched fish, as indicated by a poorer swimming economy at U crit ( M o 2max     ). Although M o 2max was lower in transgenic coho salmon, the excess post-exercise oxygen consumption (EPOC) measured during the first 20 min of recovery was significantly larger in transgenic coho salmon (44·1 mg O2 kg−1) compared with ocean-ranched coho salmon (34·2 mg O2 kg−1), which had a faster rate of recovery.  相似文献   

6.
Endurance swimming of European eel   总被引:2,自引:0,他引:2  
A long‐term swim trial was performed with five female silver eels Anguilla anguilla of 0·8–1·0 kg ( c . 80 cm total length, L T) swimming at 0·5 body lengths (BL) s−1, corresponding to the mean swimming speed during spawning migration. The design of the Blazka‐type swim tunnel was significantly improved, and for the first time the flow pattern of a swim tunnel for fish was evaluated with the Laser‐Doppler method. The velocity profile over three different cross‐sections was determined. It was observed that 80% of the water velocity drop‐off occurred over a boundary layer of 20 mm. Therefore, swim velocity errors were negligible as the eels always swam outside this layer. The fish were able to swim continuously day and night during a period of 3 months in the swim tunnel through which fresh water at 19° C was passed. The oxygen consumption rates remained stable at 36·9 ± 2·9 mg O2 kg−1 h−1 over the 3 months swimming period for all tested eels. The mean cost of transportation was 28·2 mg O2 kg−1 km−1. From the total energy consumption the calculated decline in fat content was 30%. When extrapolating to 6000 km this would have been 60%, leaving only 40% of the total energy reserves for reproduction after arriving at the spawning site. Therefore low cost of transport combined with high fat content are crucial for the capacity of the eel to cross the Atlantic Ocean and reproduce.  相似文献   

7.
Domestication has been shown to have an effect on morphology and behaviour of Atlantic salmon ( Salmo salar ). We compared swimming costs of three groups of juvenile Atlantic salmon subject to different levels of domestication: (1) wild fish; (2) first generation farmed fish origination from wild genitors; and (2) seventh generation farmed fish originating from Norwegian aquaculture stocks. We assessed swimming costs under two types of turbulent flow (one mean flow velocity of 23 cm s−1 and two standard deviations of flow velocity of 5 and 8 cm s−1). Respirometry experiments were conducted with fish in a mass range of 5–15 g wet at a water temperature of 15° C. Our results confirm (1) that net swimming costs are affected by different levels of turbulence such that, for a given mean flow velocity, fish spent 1·5‐times more energy as turbulence increased, (2) that domesticated fish differed in their morphology (having deeper bodies and smaller fins) and in their net swimming costs (being up to 30·3% higher than for wild fish) and (3) that swimming cost models developed for farmed fish may be also be applied to wild fish in turbulent environments.  相似文献   

8.
Parasitism with Myxobolus arcticus did not affect smolt size of sockeye salmon or their osmocompetence, but had a deleterious effect ( P <0.001) on the swimming speed of naturally infected smolts. Parasitized fish had a mean swimming speed of 2.89 fork length s−1 (LF s−1) compared with 4.37 L F s−1 for unparasitized fish. The parasite probably impairs swimming ability by affecting the central nervous system, but this effect does not appear severe enough to limit the parasite's usefulness in stock separation.  相似文献   

9.
Endurance swimming of diploid and triploid Atlantic salmon   总被引:1,自引:0,他引:1  
When groups of diploid (mean ±  s . e . fork length, L F) 33·0 ± 1·4 cm and triploid (35·3 ± 0·5 cm) Atlantic salmon Salmo salar were forced to swim at controlled speeds in a carefully monitored 10 m diameter 'annular' tank no significant difference was found between the maximum sustained swimming speeds ( U ms, maintainable for 200 min) where the fish swam at the limit of their aerobic capability. Diploids achieved 2·99 body lengths per second (bl s−1)(0·96 m s−1) and triploids sustained 2·91 bl s−1(1·02 m s−1). The selection of fish for the trials was based on their ability to swim with a moving pattern projected from a gantry rotating at the radius of the tank and the selection procedure did not prove to be significant by ploidy. A significant difference was found between the anaerobic capabilities of the fish measured as endurance times at their prolonged swimming speeds. During the course of the experimentation the voluntary swimming speed selected by the fish increased and the schooling behaviour improved. The effect of the curvature of the tank on the fish speeds was calculated (removing the curved effect of the tank increased the speed in either ploidy by 5·5%). Implications of the endurance times and speeds are discussed with reference to the aquaculture of triploid Atlantic salmon.  相似文献   

10.
A flow-through respirometer and swim tunnel was used to estimate the gait transition speed ( U p-c) of striped surfperch Embiotoca lateralis , a labriform swimmer, and to investigate metabolic costs associated with gait transition. The U p-c was defined as the lowest speed at which fish decrease the use of pectoral fins significantly. While the tail was first recruited for manoeuvring at relatively low swimming speeds, the use of the tail at these low speeds [as low as 0·75 body (fork) lengths s−1, L F s−1) was rare (<10% of the total time). Tail movements at these low speeds appeared to be associated with occasional slow manoeuvres rather than providing power. As speed was increased beyond U p-c, pectoral fin (PF) frequencies kept increasing when the tail was not used, while they did not when PF locomotion was aided by the tail. At these high speeds, the tail was employed for 40–50% of the time, either in addition to pectoral fins or during burst-and-coast mode. Oxygen consumption increased exponentially with swimming speeds up to gait transition, and then levelled off. Similarly, cost of transport ( C T) decreased with increasing speed, and then levelled off near U p-c. When speeds ≥ U p-c are considered, C T is higher than the theoretical curve extrapolated for PF swimming, suggesting that PF swimming appears to be higher energetically less costly than undulatory swimming using the tail.  相似文献   

11.
Cannulated, seawater‐acclimated coho salmon Oncorhynchus kisutch were swum to exhaustion in a seawater tunnel (10° C, mean U crit 50 cm s−1), resulting in metabolic acidosis and increased plasma electrolyte and cortisol concentrations, which were corrected during a 4 h recovery. Because the swimming and physiological performance data were similar to those of other salmonids, it was concluded that life‐history limitations, besides their exercise capabilities in upwelling zones, probably explain declining coho salmon populations.  相似文献   

12.
At 14° C, standard metabolic rate (75·1 mg O2 h−1 kg−1), routine metabolic rate (108.8 mg O2 h−1 kg−1), active metabolic rate ( c . 380 mg O2 h−1 kg−1), critical swimming speed (Ucrit 1·7 BL s−1), heart rate 47 min−1), dorsal aortic pressure (3·2 kPa) and ventilation frequency (63 min−1) for triploid brown trout Salmo trutta were within the ranges reported for diploid brown trout and other salmonids at the same temperature. During prolonged swimming ( c . 80% U crit), cardiac output increased by 2·3-fold due to increases in heart rate (1·8-fold) and stroke volume (1·2-fold). At 18° C, although standard and routine metabolic rates, as well as resting heart rate and ventilation frequency increased significantly, active metabolic rate and certain cardiorespiratory variables during exercise did not differ from those values for fish acclimated to 14° C. As a result, factorial metabolic scope was reduced (2·93-fold at 18° C v . 5·13-fold at 14° C). Therefore, it is concluded that cardiorespiratory performance in triploid brown trout was not unusual at 18° C, but that reduced factorial metabolic scope may be a contributing factor to the mortality observed in triploid brown trout at temperatures near 18° C.  相似文献   

13.
Sustained swimming of bluefin tuna was analysed from video recordings made of a captive patrolling fish school [lengths (L) 1.7–3.3 m, body mass (M) 54–433 kg]. Speeds ranged from 0.6 to 1.2 L s−1 (86–260 km day−1) while stride length during steady speed swimming varied between 0.54 and 0.93 L. Maximum swimming speed was estimated by measuring twitch contraction of the anaerobic swimming muscle in pithed fish 5 min after death. Muscle contraction time increased from the shortest just behind the head (30–50 ms at 20% L) to the longest at the tail peduncle (80–90 ms at 80% L) (all at 28°C). A fish (L = 2.26 m) with a muscle contraction time of 50 ms at 25% L can have a maximum tail beat frequency of 10 Hz and maximum swimming speed of 15m s−1 (54km h−1) with a stride length of 0.65L. With a stride length of 1 L a speed of 22.6 m s−1 (81.4 km h−1) is possible. Power used at maximum speed was estimated for this fish at between 10 and 40 kW, with corresponding values for the drag coefficient at a Reynolds number of 4.43 × 107 of 0.0007 and 0.0027.  相似文献   

14.
White sturgeon, Acipenser transmontanus (Richardson), are at risk of entrainment from dredging, with young-of-the-year fish at greatest risk. To evaluate this entrainment risk, swimming performance trials were conducted in a laboratory swim tunnel with hatchery-reared juvenile white sturgeon with varying experience levels including: naïve (only tested once), tested (re-tested after being kept in no flow) and trained (re-tested after kept in flow for nearly three weeks). Individuals of various sizes (80–100 mm TL) and all experience levels were strongly rheotactic (> 80%), but endurance was highly variable among fish. Small juveniles [< 82 mm total length (TL)] had lower escape speeds (< 40 cm s−1) than medium (82–92 mm TL) and large (> 93 mm TL) naïve fish (42–45 cm s−1), all of which had lower escape speeds than trained fish (72 cm s−1). Behavior was also highly variable among fish. Overall, benthic station-holding behaviors were least frequent in small fish, intermediate in medium and large fish, and most frequent in trained large fish. Probability of entrainment of juvenile white sturgeon can be reduced by maintaining dredge head flow fields at less than 45 cm s−1 for wild-spawned fish or by rearing hatchery fish to > 93 mm TL and exposing the fish to moderate flow velocities (10–12 cm s−1) prior to their release.  相似文献   

15.
The endurance of threespine sticklebacks, Gasterosteus aculeatus , swimming with pectoral fin locomotion at 20° C in a laboratory flume was measured. Each trial lasted a maximum of 480 min. At a speed of 4 body lengths per sec (L s−1) all fish were still swimming at the end of the trial, but endurance decreased at higher speeds. At speeds of 5 or 6 L s−1 (20–30 cm s−1) a few fish still maintained labriform locomotion for the 480 min. However, at a speed of 7 L s−1 all fish furled their pectoral fins and used body and caudal fin propulsion but fatigued rapidly. During sustained swimming, fish could cover distances of 6 km or more. No significant differences between males and females were found.  相似文献   

16.
When swimming at low speeds, steelhead trout and bluegill sunfish tilted the body at an angle to the mean swimming direction. Trout swam using continuous body/caudal fin undulation, with a positive (head-up) tilt angle ( 0 , degrees) that decreased with swimming speed ( u , cm s−1) according to: 0 =(164±96).u(−1.14±0.41) (regression coefficients; mean±2 s.e. ). Bluegill swimming gaits were more diverse and negative (head down) tilt angles were usual. Tilt angle was −3·0 ± 0.9° in pectoral fin swimming at speeds of approximately 0.2–1.7 body length s−1 (Ls−1; 3–24 cm s−1), −4.5 ±2.6° during pectoral fin plus body/caudal fin swimming at 1·2–1·7 L s−1 (17–24cm s−1), and −5.0± 1.0° during continuous body/caudal fin swimming at 1.6 and 2.5 L s−1 (22 and 35cm s−1). At higher speeds, bluegill used burst-and-coast swimming for which the tilt angle was 0.1±0.6°. These observations suggest that tilting is a general phenomenon of low speed swimming at which stabilizers lose their effectiveness. Tilting is interpreted as an active compensatory mechanism associated with increased drag and concomitant increased propulsor velocities to provide better stabilizing forces. Increased drag associated with trimming also explains the well-known observation that the relationship between tail-beat frequency and swimming speed does not pass through the origin. Energy dissipated because of the drag increases at low swimming speeds is presumably smaller than that which would occur with unstable swimming.  相似文献   

17.
The effect of feeding level ( F L; 0·5 to 4% dry diet mass per wet fish body mass) and feeding frequency (once every 4 days to twice per day) on postprandial metabolic response was investigated in southern catfish Silurus meridionalis at 27·5° C. The results showed that there was no significant difference in the specific dynamic action (SDA) coefficient among the groups of different feeding levels ( P  > 0·05). The duration increased from 26·0 to 40·0 h and the peak metabolic rate increased from 207·8 to 378·8 mg O2 kg−1 h−1 when the feeding level was increased from 0·5 to 4%. The relationship between the peak metabolic rate ( R P, mg O2 kg−1 h−1) and F L could be described as: R P = 175·4 + 47·3 F L( r 2 = 0·943, n  = 40, P  < 0·001). The relationship between the SDA duration ( D , h) and F L could be described as D =30·97 F L0·248 ( r 2=0·729, n =40, P  < 0·001).  相似文献   

18.
Negatively-buoyant Atlantic mackerel, Scomber scombrus L., (fork length 30–39 cm) tilt their bodies with the head up while swimming at speeds below 0.8 body length per second (B.L. s−1). This behaviour is quantitatively described by the body attack angle and swimming speed measured from film records. The maximum recorded body attack angle was 27° in a 32 cm-long fish swimming at 0.45 B.L. s−1 while its nose followed a course close to the horizontal. In general, larger body attack angles were shown at lower swimming speeds and were associated with denser bodies at each speed. We consider that this behaviour pattern allows the fish to maintain a chosen swimming depth while its body creates lift by acting as a hydrofoil. Lift from the fins is insufficient at low swimming speeds.  相似文献   

19.
Saithe Pollachius virens , tracked diurnally with a split-beam echosounder, showed no relationship between size and swimming speed. The average and the median swimming speeds were 1·05 m s−1(±0·09 m s−1) and 0·93 m s−1, respectively. However, ping-to-ping speeds up to 3·34 m s−1 were measured for 25–29 cm fish, whose swimming speeds were significantly higher at night (1·08 m s−1) than during the day (0·72 m s−1). The high average swimming speed could be related to the foraging or streaming part of the population and not to potential weakness of the methodology. However, the uncertainty of target location increased with depth and resulted in calculated average swimming speeds of 0·15 m s−1 even for a stationary target. With increasing swimming speed the average error decreased to 0 m s−1 for speeds >0·34 m s−1. Species identity was verified by trawling in a pelagic layer and on the bottom.  相似文献   

20.
Endurance and swimming speed were measured in mackerel, herring and saithe when they were induced by the optomotor response to swim at prolonged speeds along a 28-m circular track through still water in a 10-m diameter gantry tank. The maximum sustained swimming speed ( U ms was measured as body lengths per second ( b.l.s −1) for each species and for saithe of different size groups. Herring with U ms of 4.06 b.l.s −1 (25.3 cm, 13.5°C) were the fastest, mackerel U ms was 3.5 b.l.s 1 (33 cm, 11.7°C) and saithe (14.4°C) showed a size effect where U ms at 25 cm was 3.5 b.l.s 1 and at 50 cm 2.2 b.l.s 1. When swimming at speeds higher that U ms, all three species showed reduced endurance as speed increased. How the curved track reduces the swimming speed is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号