首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel cDNA encoding a putative Ser/Thr protein kinase was isolated from a human skeletal muscle cDNA library. It contains an open reading frame that extends from nt 104 to 1510 and codes for a protein of 469 amino acids. A catalytic domain containing the conserved residues of the Ser/Thr protein kinase, especially human ribosome protein S6 kinase (RSK), was found to be located in the C-terminal end of the deduced protein. The gene was mapped to human chromosome 12q12-q13.1 by fluorescence in situ hybridization, and this result was confirmed with the Radiation Hybrid GB4 panel. Northern hybridization showed that the novel gene is expressed in all 16 human tissues tested with especially strong expression in testis, skeletal muscle, and brain, whereas weak expression was detected in kidney, thymus, small intestine, liver, lung, heart, and colon.  相似文献   

2.
We characterized a human cDNA clone encoding a 36-kDa carboxyl terminal LIM domain protein with a PDZ domain at the amino terminal. This full-length cDNA clone has a predicted open reading frame (ORF) of 329 amino-acid residues. The ORF of this cDNA encodes the human homolog of rat CLP36, and the putative protein is named human 36-kDa carboxyl terminal LIM domain protein (hCLIM1, nomenclature approved by the HUGO/GDB Nomenclature Committee). The hCLIM1 probe was used to hybridize with poly(A)+ RNA of various human tissues. Strong signals were detected in heart and skeletal muscle; moderate signals were detected in spleen, small intestine, colon, placenta, and lung; weaker levels were detected in liver, thymus, kidney, prostate, and pancreas; and no observable signals were detected in brain, testis, ovary, and peripheral blood leukocytes. The hCLIM1 gene was studied by fluorescence in situ hybridization (FISH), somatic cell hybrid analysis, and radiation hybrid mapping, and it is located at the human chromosome 10q26.  相似文献   

3.
We earlier identified the GTPBP1 gene which encodes a putative GTPase structurally related to peptidyl elongation factors. This finding was the result of a search for genes, the expression of which is induced by interferon-gamma in a macrophage cell line, THP-1. In the current study, we probed the expressed sequence tag database with the deduced amino acid sequence of GTPBP1 to search for partial cDNA clones homologous to GTPBP1. We used one of the partial cDNA clones to screen a mouse brain cDNA library and identified a novel gene, mouse GTPBP2, encoding a protein consisting of 582 amino acids and carrying GTP-binding motifs. The deduced amino acid sequence of mouse GTPBP2 revealed 44.2% similarity to mouse GTPBP1. We also cloned a human homologue of this gene from a cDNA library of the human T cell line, Jurkat. GTPBP2 protein was found highly conserved between human and mouse (over 99% identical), thereby suggesting a fundamental role of this molecule across species. On Northern blot analysis of various mouse tissues, GTPBP2 mRNA was detected in brain, thymus, kidney and skeletal muscle, but was scarce in liver. Level of expression of GTPBP2 mRNA was enhanced by interferon-gamma in THP-1 cells, HeLa cells, and thioglycollate-elicited mouse peritoneal macrophages. In addition, we determined the chromosomal localization of GTPBP1 and GTPBP2 genes in human and mouse. The GTPBP1 gene was mapped to mouse chromosome 15, region E3, and human chromosome 22q12-13.1, while the GTPBP2 gene is located in mouse chromosome 17, region C-D, and human chromosome 6p21-12.  相似文献   

4.
Members of the Bcl-2 family of apoptosis-regulating proteins contain at least one of the four evolutionarily conserved domains, termed BH1, BH2, BH3, or BH4. Here, we report the identification, cloning, physical mapping, and expression pattern of BCL2L12, a novel gene that encodes a BCL2-like proline-rich protein. Proline-rich sites have been shown to interact with Src homology region 3 (SH3) domains of several tyrosine kinases, mediating their oncogenic potential. This new gene maps to chromosome 19q13.3 and is located between the IRF3 and the PRMT1/HRMT1L2 genes, close to the RRAS gene. BCL2L12 is composed of seven coding exons and six intervening introns, spanning a genomic area of 8.8 kb. All of the exon-intron splice sites conform to the consensus sequence for eukaryotic splice sites. The BCL2L12 protein is composed of 334 amino acids, with a calculated molecular mass of 36.8 kDa and an isoelectric point of 9.45. The BCL2L12 protein contains one BH2 homology domain, one proline-rich region similar to the TC21 protein and, five consensus PXXP tetrapeptide sequences. BCL2L12 is expressed mainly in breast, thymus, prostate, fetal liver, colon, placenta, pancreas, small intestine, spinal cord, kidney, and bone marrow and to a lesser extent in many other tissues. We also identified one splice variant of BCL2L12 that is primarily expressed in skeletal muscle.  相似文献   

5.
The sorting nexin (SNX) protein family is implicated in the regulation of receptor degradation and membrane traffic in the cell. With the aim of identifying novel genes involved in receptor degradation and recycling, we have cloned a new member of the sorting nexin gene family, human sorting nexin L, SNX-L (or SNX21). This gene includes 4 exons and 3 introns, and is located on chromosome 20q12-13.1 region, encompassing 8 kb. The full-length cDNA of SNX-L is 1,811 bp, with an open reading frame of 1,092 bp. The protein consists of 364 amino acids and encodes a 40 kDa protein. The SNX-L protein has a common PX domain shared by all SNX family members. The similarity of SNX-L PX domain to the PX consensus sequence is over 40%. PX domains have been shown to associate with specific phospholipids and membrane compartments. Expression analysis of SNX-L mRNA indicates that SNX-L is distinctly and highly expressed in fetus liver, but only weakly expressed in brain, muscle (skeleton muscle, smooth muscle, and cardiac muscle), kidney, and adrenal gland. Strong liver expression of SNX-L is maintained from 12 to 25 weeks during human fetus development, suggesting that SNX-L may be a regulatory gene involved in receptor protein degradation during embryonic liver development.  相似文献   

6.
7.
Novel gene hKCNE4 slows the activation of the KCNQ1 channel   总被引:6,自引:0,他引:6  
The KCNE genes encode small, single transmembrane domain peptides that associate with pore-forming potassium channel subunits to form mixed complexes with unique characteristics. We have identified a novel member of the human KCNE gene family, hKCNE4. The hKCNE4 gene encodes 170 amino acid protein and is localized to chromosome 2q35-36. The protein sequence shows 90% homology to mouse KCNE4 and 38% identity to human KCNE1. Northern blot analysis revealed that hKCNE4 is expressed strongly in heart, skeletal muscle, and kidney, less in placenta, lung, and liver, and weakly in brain and blood cells. Electrophysiological study showed that hKCNE4 modulates the activation of the KCNQ1 channel.  相似文献   

8.
9.
Serum from an infertile male with high-titer anti-sperm antibodies was used to identify a novel human sperm antigen by screening of a testis expression library. The clone, initially designated Repro-SA-1 (HUGO-approved symbol SPAG6), was found to encode a sequence highly enriched in testis. The deduced amino acid sequence of the full-length cDNA revealed striking homology to the product of the Chlamydomonas reinhardtii PF16 locus, which encodes a protein localized to the central pair of the flagellar axoneme. The human gene encodes 1.8- and 2.8-kb mRNAs highly expressed in testis but not in prostate, ovary, spleen, thymus, small intestine, colon, peripheral blood leukocytes, heart, brain, placenta, liver, muscle, kidney, and pancreas. The gene was mapped to chromosome 10p11.2-p12. Antibodies raised against SPAG6 sequences localized the protein to the tails of permeabilized human sperm. Both the Chlamydomonas protein and SPAG6 contain eight contiguous armadillo repeats, which place them in a family of proteins known to mediate protein-protein interactions. The cloning of the human homologue of the Chlamydomonas PF16 locus provides a new avenue to explore the role of the axoneme central pair in human sperm function.  相似文献   

10.
Expression studies of neogenin and its ligand hemojuvelin in mouse tissues.   总被引:3,自引:0,他引:3  
Juvenile hemochromatosis is a severe hereditary iron overload disease caused by mutations in the HJV (hemojuvelin) and HAMP (hepcidin) genes. Hepcidin is an important iron regulatory hormone, and hemojuvelin may regulate hepcidin synthesis via the multifunctional membrane receptor neogenin. We explored the expression of murine hemojuvelin and neogenin mRNAs and protein. Real-time RT-PCR analysis of 18 tissues from male and female mice was performed to examine the mRNA expression profiles. To further study protein expression and localization we used immunohistochemistry on several tissues from three mouse strains. Mouse Neo1 mRNA was detectable in the 18 tissues tested, the highest signals being evident in the ovary, uterus, and testis. Neogenin protein was observed in the brain, skeletal muscle, heart, liver, stomach, duodenum, ileum, colon, renal cortex, lung, testis, ovary, oviduct, and uterus. The spleen, thymus, and pancreas were negative for neogenin. The highest signals for Hjv mRNA were detectable in the skeletal muscle, heart, esophagus, and liver. The results indicate that Neo1 mRNA is widely expressed in both male and female mouse tissues with the highest signals detected in the reproductive system. Moreover, Hjv and Neo1 mRNAs are simultaneously expressed in skeletal muscle, heart, esophagus, and liver.  相似文献   

11.
12.
13.
Sarcomeric mitochondrial creatine kinase catalyzes the reversible transfer of a high energy phosphate between ATP and creatine. To study cellular distribution of the kinase, we performed immunocytochemical studies using a peptide antiserum specific for the kinase protein. Our results demonstrated that the sarcomeric mitochondrial creatine kinase gene is abundantly expressed in heart and skeletal muscle, with no protein detected in other tissues examined, including brain, lung, liver, spleen, kidney, bladder, testis, stomach, intestine, and colon. RNA blot study showed that there is no detectable expression of the kinase mRNA in the thymus gland. In heart and skeletal muscle, the kinase protein is expressed in atrial and ventricular cardiomyocytes and a subpopulation of skeletal myofibres. In skeletal muscle, fast myosin heavy chain co-localization studies demonstrated that the sarcomeric mitochondrial creatine kinase is highly expressed in type 1, slow-oxidative and type 2A, fast-oxidative-glycolytic myofibres. We conclude that the kinase gene is abundantly expressed in oxidative myocytes of heart and skeletal muscle and may contribute to oxidative capacity of these cells.  相似文献   

14.
We have cloned and sequenced cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. The cDNA, 16,532 base pairs in length, encodes a protein of 4,969 amino acids with a Mr of 564,711. The deduced amino acid sequence is 66% identical with that of the skeletal muscle ryanodine receptor, but analysis of predicted secondary structures and hydropathy plots suggests that the two isoforms exhibit the same topology in both transmembrane and cytoplasmic domains. A potential ATP binding domain was identified at residues 2619-2652, a potential phosphorylation site at residue 2809, and potential calmodulin binding sites at residues 2775-2807, 2877-2898, and 2998-3016. We suggest that a modulator binding domain in the protein lies between residues 2619 and 3016. Northern blot analysis of mRNA from a variety of tissues demonstrated that the cardiac isoform is expressed in heart and brain, while the skeletal muscle isoform is expressed in both fast- and slow-twitch muscle. No ryanodine receptor mRNA was detected in extracts from smooth muscle or any other non-muscle tissue examined. The two receptors are clearly the products of separate genes, and the gene encoding the cardiac muscle ryanodine receptor was localized to chromosome 1.  相似文献   

15.
Present work reported the cloning and characterization of a human novel RNA binding gene Partner of NOB1 (PNO1), with a length of 1637bp and a putative open reading frame of 759 bp, isolated from human kidney. It is composed of seven exons and is localized on chromosome 2p14. Western blot showed that the molecular weight of PNO1 is about 35kDa. RT-PCR results in 16 human tissues indicated that PNO1 is expressed mainly in liver, lung, spleen and kidney, slightly in thymus, testis, ovary, respectively, but not in heart, brain, skeletal muscle, placenta, pancreas, prostate, small intestine, colon and peripheral blood leukocytes. GFP fusion expression in mammalian cells exhibited its localization in the nucleus, especially in nucleoli. Subcellular localization of thirteen GFP fusion PNO1 deletion proteins showed that the region of 92-230 aa is solely responsible for its nucleolar retention, and KH domain alone is not sufficient for nucleolar retention. The PNO1 family shows significant conservation in both eukaryotes and prokaryotes.  相似文献   

16.
17.
To discover causes of infertility and potential contraceptive targets, we used in silico subtraction and genomic database mining to identify conserved genes with germ cell-specific expression. In silico subtraction identified an expressed sequence tag (EST) present exclusively in a newborn mouse ovary library. The full-length cDNA sequence corresponding to this EST encodes a novel protein containing four ankyrin (ANK) repeats, a sterile-alpha motif (SAM), and a putative basic leucine zipper (bZIP) domain. Northern blot and semiquantitative RT-PCR analyses demonstrated that the mRNA is exclusively expressed in the mouse testis and ovary. The expression sites were localized by in situ hybridization to pachytene spermatocytes in the testis and oocytes in the ovary. Immunohistochemistry showed that the novel protein is localized to the cytoplasm in pachytene spermatocytes and early spermatids, oocytes at all stages of oogenesis, and in early preimplantation embryos. Based on its germ cell-specific expression and the presence of ANK, SAM, and basic leucine zipper domains, we have termed this novel protein GASZ. The mouse Gasz gene, which consists of 13 exons and spans 60 kb, is located on chromosome 6 between the Wnt2 and cystic fibrosis transmembrane conductance regulator (Cftr) genes. Using genomic database mining, orthologous genes encoding GASZ were identified in the rat, cow, baboon, chimpanzee, and human. Phylogenetic analyses reveal that the GASZ proteins are highly conserved among these species. Human and mouse GASZ proteins share 85.3% amino acid identity, and human and chimpanzee GASZ proteins differ by only 3 out of 475 amino acids. In humans, the GASZ gene resides on chromosome 7 and is similarly composed of 13 exons. Because both ANK repeats and the SAM domain function as protein-protein interaction modules that mediate signal transduction cascades in some systems, GASZ may represent an important cytoplasmic signal transducer that mediates protein-protein interactions during germ cell maturation in both males and females and during preimplantation embryogenesis.  相似文献   

18.
We report here the cloning and characterization of a novel human SPRYD4 gene which encodes a SPRY domain containing protein. The SPRYD4 gene is isolated from the human brain cDNA library, and mapped to 12q13.2 by searching the UCSC genomic database. The SPRYD4 cDNA is 1201 base pairs in length and contains an open reading frame encoding 207 amino acids. The SPRYD4 gene consists of two exons and encodes a putative protein with a SPRY domain ranging from 86 to 203 amino acids. The RT-PCR analysis reveals that SPRYD4 is ubiquitously expressed in 18 human tissues. However, it is strongly expressed in kidney, bladder, brain, thymus and stomach, while weakly expressed liver, testis, uterus, spleen and lung. Subcellular localization demonstrates that SPRYD4 protein is localized in the nuclear when overexpressed in COS-7 cell.  相似文献   

19.
From the human fetal brain cDNA library constructed by our lab, a novel variant cDNA of a human gene was successfully cloned and identified. Because the gene has been named N-acetylneuraminate pyruvate lyase (NPL), accordingly we term our splice variant NPL_v2. The cDNA of NPL_v2 has a full-length open reading frame (ORF) from the nucleotide position 320 to 1225 that encodes a protein comprising 301 amino acids. SMART analysis showed that our hypothetical protein has one dihydrodipicolinate synthase (DHDPS) domain. Phosphorylation analysis of the deduced protein show that there are five phosphorylation sites including three "serine" and two "threonine" at the region that are not found in other splice variant. RT-PCR experiment revealed that our splice variant of the gene is mainly expressed in human placenta, liver, kidney, pancreas, spleen, thymus, ovary, small intestine and peripheral blood leukocyte.  相似文献   

20.
Leucine-rich acidic nuclear protein (LANP) is a member of the leucine-rich repeats (LRRs) superfamily. Here we report on a human homologue of LANP, encoded by the gene ANP32E (alias LANPL). The gene was cloned and identified during large-scale sequencing analysis of a human fetal brain cDNA library. The human protein shared 70% amino acid identity with rat LANP. According to bioinformatics analysis, ANP32E is located on chromosome 1q22. RT-PCR analysis indicates that ANP32E was expressed in human peripheral blood leukocytes, colon, small intestine, prostate, thymus, spleen, skeletal muscle, liver and kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号