首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new helical, alkaliphilic, gram-negative, chemoorganotrophic bacterium designated strain Z4T was isolated from Haoji soda lake in Inner Mongolia Autonomous Region, China. The isolate grows at salinities between 0.2% and 5.0% (w/v) NaCl and pH range 7.0-11.0, with an optimum at 2.0% (w/v) NaCl and pH 9.5. Its growth temperature ranges from 8 degrees to 49 degrees C with an optimum at 37 degrees C. The G+C content of the DNA is 46.8 mol%. The major isoprenoid quinone is ubiquinone 8 (Q-8). Phylogenetic analyses based on 16S rDNA sequence comparison indicates that strain Z4T is a member of the genus Marinospirillum. Phenotypic features and DNA-DNA homology of less than 20% with the described species of Marinospirillum support the view that strain Z4T represents a new species of the genus Marinospirillum. Strain Z4T (= AS 1.2746) is proposed as the type strain of a new species, named Marinospirillum alkaliphilum sp. nov.  相似文献   

2.
Strains of Halobacteria from an Algerian culture collection were screened for their lipolytic activity against p-nitrophenyl butyrate (PNPB) and p-nitrophenyl palmitate (PNPP). Most strains were active on both esters and 12% hydrolyzed olive oil. A strain identified as Natronococcus sp. was further studied. It grew optimally at 3.5 M NaCl, pH 8 and 40 degrees C. An increase in temperature shifted the optimum salt concentration range for growth from a wider range of 2-4 M, obtained at 25-30 degrees C, to a narrower range of 3.5-4 M, obtained at 35-40 degrees C. At 45 degrees C the optimum salt concentration was 2 M. These results show a clear correlation between salt and temperature requirement. The optimum conditions for the production of hydrolytic activity during growth were: 3.5 M NaCl and pH 8 for PNPB hydrolytic activity and 4 M NaCl and pH 7.5 for PNPP hydrolytic activity; both at 40 degrees C. The clear supernatant of cells grown at 4 M NaCl showed olive oil hydrolysis activity (in presence of 4 M NaCl) demonstrating the occurrence of a lipase activity in this strain. To our knowledge, this is the first report of a lipase activity at such high salt concentration.  相似文献   

3.
A psychrotrophic pseudomonad isolated from iced fish oxidized alanine at temperatures close to 0 degrees C and grew over the range 0 degrees C-35 degrees C. The rate of oxidation of alanine, measured manometrically, by cells grown at 2 degrees C was lower than that of cells grown at 22 degrees C. However, the consumption of oxygen after heat treatment at 35 degrees for 35 min was reduced considerably by 2 degrees C grown cells. Alanine oxidase activity was tested in an extract from cells grown at 2 degrees C and 22 degrees C with alanine as the sole carbon, nitrogen, and energy source. Cells grown at 2 degrees C produced an alanine oxidase with a temperature optimum of 35 degrees C and pH optimum of 8, which lost about 80% activity by heat treatment at 40 degrees C for 30 min. There was no change in activity after dialysis at pH 7, 8, or 9. Extracts from cells grown at 22 degrees C contained an alanine oxidase system with an optimum temperature of 45 degrees C, a pH optimum above 8, and only about 30% reduction of activity after heat treatment. This enzyme activity was concentrated in the 0.5 M elution fraction from a Sephadex column, and dialysis reduced the activity at pH 7 and 8. Mesophilic enzyme synthesis apparently started around a growth temperature of 10 degrees C. The crude alanine oxidase systems of Pseudomonas aeruginosa derived from cells grown at 13 degrees C and 37 degrees C had a common optimum temperature of 45 degrees C. These data suggest that one mechanism of psychrophilic growth by psychrotrophic bacteria may be the induction of enzymes with low optimum temperatures in response to low temperature conditions.  相似文献   

4.
Oxidative DNA damage is caused by reactive oxygen species formed in cells as by products of aerobic metabolism or of oxidative stress. The 8-oxoguanine (8-oxoG) DNA glycosylase from Archaeoglobus fulgidus (Afogg), which excises an oxidatively-damaged form of guanine, was overproduced in Escherichia coli, purified and characterized. A. fulgidus is a sulfate-reducing archaeon, which grows at between 60 and 95 degrees C, with an optimum growth at 83 degrees C. The Afogg enzyme has both DNA glycosylase and apurinic/apyrimidinic (AP) lyase activities, with the latter proceeding through a Schiff base intermediate. As expected for a protein from a hyperthermophilic organism, the enzyme activity is optimal near pH 8.5 and 60 degrees C, denaturing at 80 degrees C, and is thermally stable at high levels of salt (500mM). The Afogg protein efficiently cleaves oligomers containing 8-oxoG:C and 8-oxoG:G base pairs, and is less effective on oligomers containing 8-oxoG:T and 8-oxoG:A mispairs. While the catalytic action mechanism of Afogg protein is likely similar to the human Ogg1 (hOgg1), the DNA recognition mechanism and the basis for 8-oxoG substrate specificity of Afogg differ from that of hOgg.  相似文献   

5.
The gene ( inuA) encoding exo-inulinase (EC 3.2.1.80) was cloned from the thermophilic Geobacillus stearothermophilus ( Bacillus stearothermophilus) KP 1289 growing at between 41 degrees C and 69 degrees C. The inuA gene consisted of 1,482 bp encoding a protein of 493 amino acids. The deduced polypeptide of molecular mass ( M) 56,744 Da showed strong sequence similarity to Pseudomonas mucidolens exo-inulinase, Bacillus subtilis levanase, Paenibacillus polymyxa ( Bacillus polymyxa) fructosyltransferase, and so on, indicating that the enzyme belonged to glycosyl hydrolase family 32. The M of the purified exo-inulinase, expressed in Escherichia coli HB101, was estimated as approximately 54,000 Da by both SDS-PAGE and gel filtration. These results suggested that the active form of the enzyme is a monomer. The enzyme was active between 30 and 75 degrees C with an optimum at 60 degrees C. The properties were identical to those of the native enzyme. Additionally, for the first time for a prokaryotic GH32 protein, crystals of the recombinant enzyme were obtained.  相似文献   

6.
75-kDa chitinase, which showed potential as a biocontrol agent against Japanese pine sawyer, was characterized after purification from the integument of the fifth instar larvae of Bombyx mori by chromatography on diethylaminoethyl (DEAE)-Toyoperal 650 (M), hydroxylapatite, and Fractogel EMD DEAE 650 (M) columns. The optimum pH was 6.0 toward N-acetylchitopentaose (GlcNAc5) and 10 toward glycolchitin. The optimum temperature was 60 degrees C toward GlcNAc5 and 25 degrees C toward glycolchitn. The enzyme was stable at pH 7-10 and below 40 degrees C. Kinetic analysis and reaction-pattern analysis using glycolchitin and N-acetylchitooligosacchraides as substrates indicated that 75-kDa chitinase is an endo- or random-type hydrolytic enzyme to produce the beta anomeric product and that it prefers the longer N-acetylchitooligosaccharides, suggesting, together with the N-terminal amino acid sequence, that the 75-kDa chitinase belongs to family 18 of glycosyl hydrolases.  相似文献   

7.
A thermostable alkaline alpha-amylase producing Bacillus sp. A3-15 was isolated from compost samples. There was a slight variation in amylase synthesis within the pH range 6.0 and 12.0 with an optimum pH of 8.5 (8mm zone diameter in agar medium) on starch agar medium. Analyses of the enzyme for molecular mass and amylolytic activity were carried out by starch SDS-PAGE electrophoresis, which revealed two independent bands (86,000 and 60,500 Da). Enzyme synthesis occurred at temperatures between 25 and 65 degrees C with an optimum of 60 degrees C on petri dishes. The partial purification enzyme showed optimum activity at pH 11.0 and 70 degrees C. The enzyme was highly active (95%) in alkaline range of pH (10.0-11.5), and it was almost completely active up to 100 degrees C with 96% of the original activity remaining after heat treatment at 100 degrees C for 30 min. Enzyme activity was enhanced in the presence of 5mM CaCl2 (130%) and inhibition with 5mM by ZnCl2, NaCl, Na-sulphide, EDTA, PMSF (3mM), Urea (8M) and SDS (1%) was obtained 18%, 20%, 36%, 5%, 10%, 80% and 18%, respectively. The enzyme was stable approximately 70% at pH 10.0-11.0 and 60 degrees C for 24h. So our result showed that the enzyme was both, highly thermostable-alkaline, thermophile and chelator resistant. The A3-15 amylase enzyme may be suitable in liquefaction of starch in high temperature, in detergent and textile industries and in other industrial applications.  相似文献   

8.
A cold-active beta-galactosidase of Antarctic marine bacterium Pseudoalteromonas sp. 22b was synthesized by an Escherichia coli transformant harboring its gene and immobilized on glutaraldehyde-treated chitosan beads. Unlike the soluble enzyme the immobilized preparation was not inhibited by glucose, its apparent optimum temperature for activity was 10 degrees C higher (50 vs. 40 degrees C, respectively), optimum pH range was wider (pH 6-9 and 6-8, respectively) and stability at 50 degrees C was increased whilst its pH-stability remained unchanged. Soluble and immobilized preparations of Antarctic beta-galactosidase were active and stable in a broad range of NaCl concentrations (up to 3 M) and affected neither by calcium ions nor by galactose. The activity of immobilized beta-galactosidase was maintained for at least 40 days of continuous lactose hydrolysis at 15 degrees C and its shelf life at 4 degrees C exceeded 12 months. Lactose content in milk was reduced by more than 90% over a temperature range of 4-30 degrees C in continuous and batch systems employing the immobilized enzyme.  相似文献   

9.
Among the widely applied buffered media, the HSAG (hepes-salt-albumin-gelatin) medium at pH 5.75--6.25 was found to be the most favourable for B.K. virus haemagglutinin titration. The optimum temperature was at 4 degrees C. The haemagglutinin was not affected by temperatures up to 37 degrees C, pHs between 5.5 and 9.5, and NaCl concentrations between 0.063 M and 2.56 M. When incubated at 56 degrees C, the haemagglutinin shows a time and pH dependent decline in titre. No significant time dependent titre fall occurred at 56 degrees C if NaCl molarity was varied between 1.31 and 2.56.  相似文献   

10.
We report here the first overexpression and characterization of a thermostable mevalonate kinase from an archae, Methanococcus jannaschii, a strict anaerobe, which produces methane and grows at pressure of 200 atm and an optimum temperature near 85 degrees C. PCR-derived DNA fragments containing the structural gene for mevalonate kinase were cloned into an expression vector, pET28a, to form pETMVK. The mevalonate kinase was overexpressed from Escherichia coli pETMVK/BL21(DE3) (15-20% of total soluble protein) when induced with isopropyl beta-d-thiogalactopyranoside. The protein was purified by heat treatment (to denature E. coli proteins), followed by metal-affinity chromatography on Talon metal-affinity resin column. The purified protein had a dimeric structure composed of identical subunits, and the M(r) of the enzyme determined by gel chromatography was 68K. Based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the subunit M(r) was 36, 000. The pI for mevalonate kinase was 7.8. The Michaelis constant (K(m)) for (RS)-mevalonate was 68.5 microM and was 92 microM for ATP. The V(max) was 387 units mg(-1). The optimal temperature for mevalonate kinase activity was 70-75 degrees C.  相似文献   

11.
Cell-free extracts of Thiobacillus acidophilus catalysed the quantitative conversion of trithionate (S3O6(2-) to thiosulphate and sulphate. A continuous assay for quantification of experimental results was based on the difference in absorbance between trithionate and thiosulphate at 220 nm. Trithionate hydrolase was purified to near homogeneity from cell-free extracts of T. acidophilus. The molecular masses of the native enzyme and the subunit were 99 kDa (gel filtration) and 34 kDa (SDS/PAGE). The purified enzyme has a pH optimum of 3.5-4.5 and a temperature optimum of 70 degrees C. Enzyme activity was stimulated by sulphate. The stimulation of the enzyme activity by sulphate was half maximal at a concentration of 0.23 M. The Km for trithionate is 70 microM at 30 degrees C and 270 microM at 70 degrees C. Enzyme activity was lost after 36 days at 0 degrees C, 27 days at 70 degrees C; but after 97 days at 30 degrees C, 40% of the initial activity was still present: The enzyme activity was inhibited by mercury chloride, N-ethylmaleimide, thiosulphate and tetrathionate. Tetrathionate S4O6(2-) was not hydrolysed by trithionate hydrolase.  相似文献   

12.
Strain Z-0024, a psychrotolerant aerobic heterotrophic representative of the prosthecate bacteria of the genus Caulobacter, was isolated from a methanotrophic enrichment obtained from Russian polar tundra soil. The cells of the new isolate are vibrios (0.5-0.6 x 1.3-1.8 microm) with a polar stalk. The organism grows in a temperature range from 5 to 36 degrees C, with an optimum at 20 degrees C. The pH range for growth is from 4.5 to 7.0 with an optimum at pH 6.0. Strain Z-0024 utilizes a wide range of organic compounds: sugars, amino acids, volatile fatty acids, and primary alcohols. It tolerates a NaCl concentration in the medium of up to 15 g/l. The G + C content of DNA is 66.6 mol %. The 16S rRNA gene sequence analysis revealed that strain Z-0024 belongs to the cluster of Caulobacter species, showing a 98.8-99.2% sequence similarity to them. DNA-DNA hybridization revealed a low level of homology (24%) between strain Z-0024 and C. vibrioides ATCC 15252. The new isolate is described as Caulobacter sp. Z-0024.  相似文献   

13.
The haloalkaliphilic methylotrophic bacterium (strain Kr3) isolated from material scraped off the deteriorating marble of the Moscow Kremlin masonry has been found to be able to utilize methanol, methylamine, trimethylamine, and fructose as carbon and energy sources. Its cells are gram-negative motile rods multiplying by binary fission. Spores are not produced. The isolate is strictly aerobic and requires vitamin B12 and Na+ ions for growth. It is oxidase- and catalase-positive and reduces nitrates to nitrites. Growth occurs at temperatures between 0 and 42 degrees C (with the optimum temperatures being 20-32 degrees C), pH values between 6 and 11 (with the optimum at 8-9), and NaCl concentrations between 0.05 and 3 M (with the optimum at 0.5-1.5 M). The dominant cellular phospholipids are phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin. The major cellular fatty acids are palmitic (C16:0), palmitoleic (C16:1), and octadecenoic (C18:1) acids. The major ubiquinone is Q8. The isolate accumulates ectoine and glutamate, as well as a certain amount of sucrose, to function as osmoprotectants and synthesizes an exopolysaccharide composed of carbohydrate and protein components. It is resistant to heating at 70 degrees C, freezing, and drying; utilizes methanol, with the resulting production of formic acid, which is responsible for the marble-degrading activity of the isolate; and implements the 2-keto-3-deoxy-6-phosphogluconate variant of the ribulose monophosphate pathway. The G+C content of its DNA is 44.6 mol%. Based on 16S rRNA gene sequencing and DNA-DNA homology levels (23-41%) with neutrophilic and alkaliphilic methylobacteria from the genus Methylophaga, the isolate has been identified as a new species, Methylophaga murata (VKM B-2303T = NCIMB 13993T).  相似文献   

14.
Myxococcus coralloides D produced cell-bound deoxyribonucleases (DNases) during the exponential phase of growth in liquid medium. DNase activity was much higher than that detected in other myxobacterial strains and was fractionated into three different peaks by filtration through Sephadex G-200. The DNases were named G, M and P. The optimum temperatures were 37 degrees C, 33 degrees C and 25 degrees C respectively, although high activities were recorded over the temperature range 20-45 degrees C. The pH range of high activity was between 6.0 and 9.0, with an optimum for each DNase at 8.0. DNases M and P were strongly inhibited by low concentrations of NaCl, but activity of DNase G was less affected by NaCl. The three activities required divalent metal ions as cofactors (especially Mg2+ and Mn2+); however, other metal ions (Fe2+, Ni2+, Zn2+) were inhibitors. The molecular weights were estimated by gel filtration chromatography and SDS-PAGE as 44 kDa (DNase G), 49 kDa (DNase M) and 39 kDa (DNase P).  相似文献   

15.
A cellobiosidase with unique characteristics from the extracellular culture fluid of the anaerobic gram-negative cellulolytic rumen bacterium Bacteroides succinogenes grown on microcrystalline cellulose (Avicel) in a continuous culture system was purified to homogeneity by column chromatography. The enzyme was a glycoprotein with a molecular weight of approximately 75,000 and an isoelectric point of 6.7. When assayed at 39 degrees C and pH 6.5, the activity of the enzyme with p-nitrophenyl-beta-D-cellobioside as the substrate was stimulated by chloride, bromide, fluoride, iodide, nitrate, and nitrite, with maximum activation (approximately sevenfold) occurring at concentrations ranging from 1.0 mM (Cl-) to greater than 0.75 M (F-). The presence of chloride (0.2 M) did not affect the Km but doubled the Vmax. In the presence of chloride (0.2 M), the pH optimum of the enzyme was broadened, and the temperature optimum was increased from 39 to 45 degrees C. The enzyme released terminal cellobiose from cellotriose and cellobiose and cellotriose from longer-chain-length cellooligosaccharrides and acid-swollen cellulose, but it had no activity on cellobiose. The enzyme showed affinity for cellulose (Avicel) but did not hydrolyze it. It also had a low activity on carboxymethyl cellulose.  相似文献   

16.
The nuclear inclusion protein a (NIa) of turnip mosaic potyvirus is a protease responsible for processing the viral polyprotein into functional proteins. The NIa protease exhibits an unusual optimum proteolytic activity at about 16 degrees C. In order to understand the origin of the low-temperature optimum activity, the effects of temperature and salt ions on the catalytic activity and the structure of the NIa protease have been investigated. The analysis of the temperature dependence of k(cat) and K(m) revealed that K(m) decreases more drastically than k(cat) as temperature decreases. The thermodynamic analysis showed that the decrease of K(m) is driven entropically, suggesting a possibility that the substrate binding might need a large entropy cost. The secondary structure of the NIa protease was significantly perturbed at temperatures between 20 and 40 degrees C and the protease was unfolded at very low concentrations of guanidine hydrochloride with a transition midpoint of 0.8 M. These results suggest that the NIa protease is highly flexible in structure. Interestingly, salt ions including NaCl, KCl, CaCl(2) and MgCl(2) stimulated the proteolytic activity by 2-6-fold and increased the optimum temperature to 20-25 degrees C. This stimulatory effect of the salt ions was due to the lowering of K(m). The salt ions promoted the structural rigidity as evidenced in the higher resistance to the heat-induced unfolding in the presence of the salt ions. The increase in rigidity may lead to the lowering of K(m) possibly by reducing the entropic cost for substrate binding. Taken together, these results suggest that the NIa protease is highly flexible in structure and the low-temperature optimum activity might possibly be attributed to lowered entropy cost for substrate binding at lower temperatures.  相似文献   

17.
Methanococcus igneus, a hyperthermophilic marine methanogen (optimum growth temperature of 88 degrees C) with a 25-min doubling time, synthesizes an unusual inositol phosphodiester which is present at high intracellular concentrations along with l-alpha-glutamate and beta-glutamate. Identification of this compound as a dimeric inositol phosphodiester (di-myo-inositol-1,1'-phosphate) was provided by two-dimensional nuclear magnetic resonance methods. The intracellular levels of all three negatively charged solutes (l-alpha-glutamate, beta-glutamate, and the inositol phosphodiester) increase with increasing levels of external NaCl, although the inositol compound shows much smaller increases with increasing NaCl levels than the glutamate isomers. The turnover of these solutes was examined by CO(2)-pulse-CO(2)-chase experiments. The results indicated that both the beta-glutamate and the inositol phosphodiester behaved as compatible solutes and were not efficiently metabolized by cells as was l-alpha-glutamate. At a fixed external NaCl concentration, lower ammonium levels increased the fraction of the inositol dimer present in extracts. The most pronounced changes in di-myo-inositol-1,1'-phosphate occurred as a function of cell growth temperature. While the organism grows over a relatively wide temperature range, the phosphodiester accumulated only when M. igneus was grown at temperatures of >/=80 degrees C. Thus, this unusual compound is a non-nitrogen-containing osmolyte preferentially synthesized at high growth temperatures.  相似文献   

18.
The nickel enzyme methyl-coenzyme M reductase (MCR) catalyzes the terminal step of methane formation in the energy metabolism of all methanogenic archaea. In this reaction methyl-coenzyme M and coenzyme B are converted to methane and the heterodisulfide of coenzyme M and coenzyme B. The crystal structures of methyl-coenzyme M reductase from Methanosarcina barkeri (growth temperature optimum, 37 degrees C) and Methanopyrus kandleri (growth temperature optimum, 98 degrees C) were determined and compared with the known structure of MCR from Methanobacterium thermoautotrophicum (growth temperature optimum, 65 degrees C). The active sites of MCR from M. barkeri and M. kandleri were almost identical to that of M. thermoautotrophicum and predominantly occupied by coenzyme M and coenzyme B. The electron density at 1.6 A resolution of the M. barkeri enzyme revealed that four of the five modified amino acid residues of MCR from M. thermoautotrophicum, namely a thiopeptide, an S-methylcysteine, a 1-N-methylhistidine and a 5-methylarginine were also present. Analysis of the environment of the unusual amino acid residues near the active site indicates that some of the modifications may be required for the enzyme to be catalytically effective. In M. thermoautotrophicum and M. kandleri high temperature adaptation is coupled with increasing intracellular concentrations of lyotropic salts. This was reflected in a higher fraction of glutamate residues at the protein surface of the thermophilic enzymes adapted to high intracellular salt concentrations.  相似文献   

19.
Liquefying-type Bacillus stearothermophilus alpha-amylase was characterized. The coding gene was cloned in Bacillus subtilis and the enzyme was produced in three different host organisms: B. stearothermophilus, B. subtilis, and Escherichia coli. Properties of the purified enzyme were similar irrespective of the host. Temperature optimum was at 70-80 degrees C and pH optimum at 5.0-6.0. The enzyme was stable for 1 h in the pH range 6.0-7.5 at 80 degrees C. The enzyme was stabilized by Ca2+, Na+, and bovine serum albumin. About 50% of the activity remained after heating at 70 degrees C for 5 days or 45 min at 90 degrees C. Metal ions Cd2+, Cu2+, Hg2+, Pb2+, and Zn2+ were inhibitory, whereas EDTA, ethylene glycol bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid, and Tendamistat were without effect. The enzyme was fully active after treatment in acetone or ethanol at 55 or 70 degrees C, respectively, for 30 min. Sodium dodecyl sulfate (1%) did not affect stability, whereas 6 M urea denatured totally at 70 degrees C. The Km value for soluble starch was 14 mg/ml. Mr is 59,000 and pI 8.8. The only difference between the enzymes produced in different hosts was in signal peptide processing.  相似文献   

20.
Pyrococcus furiosus is a strictly anaerobic hyperthermophilic archaebacterium with an optimal growth temperature of about 100 degrees C. When this organism was grown in the presence of certain complex carbohydrates, the production of several amylolytic enzymes was noted. These enzymes included an alpha-glucosidase that was located in the cell cytoplasm. This alpha-glucosidase has been purified 310-fold and corresponded to a protein band of 125 kilodaltons as resolved by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme exhibited optimum activity at pH 5.0 to 6.0 and over a temperature range of 105 to 115 degrees C. Kinetic analysis conducted at 108 degrees C revealed hydrolysis of the substrates p-nitrophenyl-alpha-D-glucopyranoside (PNPG), methyl-alpha-D-glucopyranoside, maltose, and isomaltose. Trace activity was detected towards p-nitrophenyl-beta-D-glucopyranoside, and no activity could be detected towards starch or sucrose. Inhibition studies conducted at 108 degrees C with PNPG as the substrate and maltose as the inhibitor yielded a Ki for maltose of 14.3 mM. Preincubation for 30 min at 98 degrees C in 100 mM dithiothreitol and 1.0 M urea had little effect on enzyme activity, whereas preincubation in 1.0% sodium dodecyl sulfate and 1.0 M guanidine hydrochloride resulted in significant loss of enzyme activity. Purified alpha-glucosidase from P. furiosus exhibited remarkable thermostability; incubation of the enzyme at 98 degrees C resulted in a half life of nearly 48 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号