首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Systematic analysis of synthetic lethality (SL) constitutes a critical tool for systems biology to decipher molecular pathways. The most accepted mechanistic explanation of SL is that the two genes function in parallel, mutually compensatory pathways, known as between-pathway SL. However, recent genome-wide analyses in yeast identified a significant number of within-pathway negative genetic interactions. The molecular mechanisms leading to within-pathway SL are not fully understood. Here, we propose a novel mechanism leading to within-pathway SL involving two genes functioning in a single non-essential pathway. This type of SL termed within-reversible-pathway SL involves reversible pathway steps, catalyzed by different enzymes in the forward and backward directions, and kinetic trapping of a potentially toxic intermediate. Experimental data with recombinational DNA repair genes validate the concept. Mathematical modeling recapitulates the possibility of kinetic trapping and revealed the potential contributions of synthetic, dosage-lethal interactions in such a genetic system as well as the possibility of within-pathway positive masking interactions. Analysis of yeast gene interaction and pathway data suggests broad applicability of this novel concept. These observations extend the canonical interpretation of synthetic-lethal or synthetic-sick interactions with direct implications to reconstruct molecular pathways and improve therapeutic approaches to diseases such as cancer.  相似文献   

2.
Genetic interactions help map biological processes and their functional relationships. A genetic interaction is defined as a deviation from the expected phenotype when combining multiple genetic mutations. In Saccharomyces cerevisiae, most genetic interactions are measured under a single phenotype - growth rate in standard laboratory conditions. Recently genetic interactions have been collected under different phenotypic readouts and experimental conditions. How different are these networks and what can we learn from their differences? We conducted a systematic analysis of quantitative genetic interaction networks in yeast performed under different experimental conditions. We find that networks obtained using different phenotypic readouts, in different conditions and from different laboratories overlap less than expected and provide significant unique information. To exploit this information, we develop a novel method to combine individual genetic interaction data sets and show that the resulting network improves gene function prediction performance, demonstrating that individual networks provide complementary information. Our results support the notion that using diverse phenotypic readouts and experimental conditions will substantially increase the amount of gene function information produced by genetic interaction screens.  相似文献   

3.
To take full advantage of high-throughput genetic and physical interaction mapping projects, the raw interactions must first be assembled into models of cell structure and function. PanGIA (for physical and genetic interaction alignment) is a plug-in for the bioinformatics platform Cytoscape, designed to integrate physical and genetic interactions into hierarchical module maps. PanGIA identifies 'modules' as sets of proteins whose physical and genetic interaction data matches that of known protein complexes. Higher-order functional cooperativity and redundancy is identified by enrichment for genetic interactions across modules. This protocol begins with importing interaction networks into Cytoscape, followed by filtering and basic network visualization. Next, PanGIA is used to infer a set of modules and their functional inter-relationships. This module map is visualized in a number of intuitive ways, and modules are tested for functional enrichment and overlap with known complexes. The full protocol can be completed between 10 and 30 min, depending on the size of the data set being analyzed.  相似文献   

4.
Yeast two-hybrid screens are an important method for mapping pairwise physical interactions between proteins. The fraction of interactions detected in independent screens can be very small, and an outstanding challenge is to determine the reason for the low overlap. Low overlap can arise from either a high false-discovery rate (interaction sets have low overlap because each set is contaminated by a large number of stochastic false-positive interactions) or a high false-negative rate (interaction sets have low overlap because each misses many true interactions). We extend capture-recapture theory to provide the first unified model for false-positive and false-negative rates for two-hybrid screens. Analysis of yeast, worm, and fly data indicates that 25% to 45% of the reported interactions are likely false positives. Membrane proteins have higher false-discovery rates on average, and signal transduction proteins have lower rates. The overall false-negative rate ranges from 75% for worm to 90% for fly, which arises from a roughly 50% false-negative rate due to statistical undersampling and a 55% to 85% false-negative rate due to proteins that appear to be systematically lost from the assays. Finally, statistical model selection conclusively rejects the Erd?s-Rényi network model in favor of the power law model for yeast and the truncated power law for worm and fly degree distributions. Much as genome sequencing coverage estimates were essential for planning the human genome sequencing project, the coverage estimates developed here will be valuable for guiding future proteomic screens. All software and datasets are available in and , -, and -, and are also available from our Web site, http://www.baderzone.org.  相似文献   

5.
6.
Greedily building protein networks with confidence   总被引:2,自引:0,他引:2  
MOTIVATION: With genome sequences complete for human and model organisms, it is essential to understand how individual genes and proteins are organized into biological networks. Much of the organization is revealed by proteomics experiments that now generate torrents of data. Extracting relevant complexes and pathways from high-throughput proteomics data sets has posed a challenge, however, and new methods to identify and extract networks are essential. We focus on the problem of building pathways starting from known proteins of interest. RESULTS: We have developed an efficient, greedy algorithm, SEEDY, that extracts biologically relevant biological networks from protein-protein interaction data, building out from selected seed proteins. The algorithm relies on our previous study establishing statistical confidence levels for interactions generated by two-hybrid screens and inferred from mass spectrometric identification of protein complexes. We demonstrate the ability to extract known yeast complexes from high-throughput protein interaction data with a tunable parameter that governs the trade-off between sensitivity and selectivity. DNA damage repair pathways are presented as a detailed example. We highlight the ability to join heterogeneous data sets, in this case protein-protein interactions and genetic interactions, and the appearance of cross-talk between pathways caused by re-use of shared components. SIGNIFICANCE AND COMPARISON: The significance of the SEEDY algorithm is that it is fast, running time O[(E + V) log V] for V proteins and E interactions, a single adjustable parameter controls the size of the pathways that are generated, and an associated P-value indicates the statistical confidence that the pathways are enriched for proteins with a coherent function. Previous approaches have focused on extracting sub-networks by identifying motifs enriched in known biological networks. SEEDY provides the complementary ability to perform a directed search based on proteins of interest. AVAILABILITY: SEEDY software (Perl source), data tables and confidence score models (R source) are freely available from the author.  相似文献   

7.
Large-scale protein interaction networks (PINs) have typically been discerned using affinity purification followed by mass spectrometry (AP/MS) and yeast two-hybrid (Y2H) techniques. It is generally recognized that Y2H screens detect direct binary interactions while the AP/MS method captures co-complex associations; however, the latter technique is known to yield prevalent false positives arising from a number of effects, including abundance. We describe a novel approach to compute the propensity for two proteins to co-purify in an AP/MS data set, thereby allowing us to assess the detected level of interaction specificity by analyzing the corresponding distribution of interaction scores. We find that two recent AP/MS data sets of yeast contain enrichments of specific, or high-scoring, associations as compared to commensurate random profiles, and that curated, direct physical interactions in two prominent data bases have consistently high scores. Our scored interaction data sets are generally more comprehensive than those of previous studies when compared against four diverse, high-quality reference sets. Furthermore, we find that our scored data sets are more enriched with curated, direct physical associations than Y2H sets. A high-confidence protein interaction network (PIN) derived from the AP/MS data is revealed to be highly modular, and we show that this topology is not the result of misrepresenting indirect associations as direct interactions. In fact, we propose that the modularity in Y2H data sets may be underrepresented, as they contain indirect associations that are significantly enriched with false negatives. The AP/MS PIN is also found to contain significant assortative mixing; however, in line with a previous study we confirm that Y2H interaction data show weak disassortativeness, thus revealing more clearly the distinctive natures of the interaction detection methods. We expect that our scored yeast data sets are ideal for further biological discovery and that our scoring system will prove useful for other AP/MS data sets.  相似文献   

8.
Recent analyses of biological and artificial networks have revealed a common network architecture, called scale-free topology. The origin of the scale-free topology has been explained by using growth and preferential attachment mechanisms. In a cell, proteins are the most important carriers of function, and are composed of domains as elemental units responsible for the physical interaction between protein pairs. Here, we propose a model for protein–protein interaction networks that reveals the emergence of two possible topologies. We show that depending on the number of randomly selected interacting domain pairs, the connectivity distribution follows either a scale-free distribution, even in the absence of the preferential attachment, or a normal distribution. This new approach only requires an evolutionary model of proteins (nodes) but not for the interactions (edges). The edges are added by means of random interaction of domain pairs. As a result, this model offers a new mechanistic explanation for understanding complex networks with a direct biological interpretation because only protein structures and their functions evolved through genetic modifications of amino acid sequences. These findings are supported by numerical simulations as well as experimental data.  相似文献   

9.

Background

Minimotifs are short contiguous peptide sequences in proteins that have known functions. At its simplest level, the minimotif sequence is present in a source protein and has an activity relationship with a target, most of which are proteins. While many scientists routinely investigate new minimotif functions in proteins, the major web-based discovery tools have a high rate of false-positive prediction. Any new approach that reduces false-positives will be of great help to biologists.

Methods and Findings

We have built three filters that use genetic interactions to reduce false-positive minimotif predictions. The basic filter identifies those minimotifs where the source/target protein pairs have a known genetic interaction. The HomoloGene genetic interaction filter extends these predictions to predicted genetic interactions of orthologous proteins and the node-based filter identifies those minimotifs where proteins that have a genetic interaction with the source or target have a genetic interaction. Each filter was evaluated with a test data set containing thousands of true and false-positives. Based on sensitivity and selectivity performance metrics, the basic filter had the best discrimination for true positives, whereas the node-based filter had the highest sensitivity. We have implemented these genetic interaction filters on the Minimotif Miner 2.3 website. The genetic interaction filter is particularly useful for improving predictions of posttranslational modifications such as phosphorylation and proteolytic cleavage sites.

Conclusions

Genetic interaction data sets can be used to reduce false-positive minimotif predictions. Minimotif prediction in known genetic interactions can help to refine the mechanisms behind the functional connection between genes revealed by genetic experimentation and screens.  相似文献   

10.
Genetic screens have identified many novel components of various biological processes, such as components required for cell cycle and cell division. While forward genetic screens typically generate unstructured ‘hit’ lists, genetic interaction mapping approaches can identify functional relations in a systematic fashion. Here, we discuss a recent study by our group demonstrating a two-step approach to first screen for regulators of the mitotic cell cycle, and subsequently guide hypothesis generation by using genetic interaction analysis. The screen used a high-content microscopy assay and automated image analysis to capture defects during mitotic progression and cytokinesis. Genetic interaction networks derived from process-specific features generate a snapshot of functional gene relations in those processes, which follow a temporal order during the cell cycle. This complements a recently published approach, which inferred directional genetic interactions reconstructing hierarchical relationships between genes across different phases during mitotic progression. In conclusion, this strategy leverages unbiased, genome-wide, yet highly sensitive and process-focused functional screening in cells.  相似文献   

11.
Despite the emerging experimental techniques for perturbing multiple genes and measuring their quantitative phenotypic effects, genetic interactions have remained extremely difficult to predict on a large scale. Using a recent high-resolution screen of genetic interactions in yeast as a case study, we investigated whether the extraction of pertinent information encoded in the quantitative phenotypic measurements could be improved by computational means. By taking advantage of the observation that most gene pairs in the genetic interaction screens have no significant interactions with each other, we developed a sequential approximation procedure which ranks the mutation pairs in order of evidence for a genetic interaction. The sequential approximations can efficiently remove background variation in the double-mutation screens and give increasingly accurate estimates of the single-mutant fitness measurements. Interestingly, these estimates not only provide predictions for genetic interactions which are consistent with those obtained using the measured fitness, but they can even significantly improve the accuracy with which one can distinguish functionally-related gene pairs from the non-interacting pairs. The computational approach, in general, enables an efficient exploration and classification of genetic interactions in other studies and systems as well.  相似文献   

12.
Cancer genomes often harbor hundreds of molecular aberrations. Such genetic variants can be drivers or passengers of tumorigenesis and create vulnerabilities for potential therapeutic exploitation. To identify genotype‐dependent vulnerabilities, forward genetic screens in different genetic backgrounds have been conducted. We devised MINGLE, a computational framework to integrate CRISPR/Cas9 screens originating from different libraries building on approaches pioneered for genetic network discovery in model organisms. We applied this method to integrate and analyze data from 85 CRISPR/Cas9 screens in human cancer cells combining functional data with information on genetic variants to explore more than 2.1 million gene‐background relationships. In addition to known dependencies, we identified new genotype‐specific vulnerabilities of cancer cells. Experimental validation of predicted vulnerabilities identified GANAB and PRKCSH as new positive regulators of Wnt/β‐catenin signaling. By clustering genes with similar genetic interaction profiles, we drew the largest genetic network in cancer cells to date. Our scalable approach highlights how diverse genetic screens can be integrated to systematically build informative maps of genetic interactions in cancer, which can grow dynamically as more data are included.  相似文献   

13.
Pollock DD  Larkin JC 《Genetics》2004,168(1):489-502
Large-scale screens for loss-of-function mutants have played a significant role in recent advances in developmental biology and other fields. In such mutant screens, it is desirable to estimate the degree of "saturation" of the screen (i.e., what fraction of the possible target genes has been identified). We applied Bayesian and maximum-likelihood methods for estimating the number of loci remaining undetected in large-scale screens and produced credibility intervals to assess the uncertainty of these estimates. Since different loci may mutate to alleles with detectable phenotypes at different rates, we also incorporated variation in the degree of mutability among genes, using either gamma-distributed mutation rates or multiple discrete mutation rate classes. We examined eight published data sets from large-scale mutant screens and found that credibility intervals are much broader than implied by previous assumptions about the degree of saturation of screens. The likelihood methods presented here are a significantly better fit to data from published experiments than estimates based on the Poisson distribution, which implicitly assumes a single mutation rate for all loci. The results are reasonably robust to different models of variation in the mutability of genes. We tested our methods against mutant allele data from a region of the Drosophila melanogaster genome for which there is an independent genomics-based estimate of the number of undetected loci and found that the number of such loci falls within the predicted credibility interval for our models. The methods we have developed may also be useful for estimating the degree of saturation in other types of genetic screens in addition to classical screens for simple loss-of-function mutants, including genetic modifier screens and screens for protein-protein interactions using the yeast two-hybrid method.  相似文献   

14.
15.
Integrating physical and genetic maps: from genomes to interaction networks   总被引:4,自引:0,他引:4  
Physical and genetic mapping data have become as important to network biology as they once were to the Human Genome Project. Integrating physical and genetic networks currently faces several challenges: increasing the coverage of each type of network; establishing methods to assemble individual interaction measurements into contiguous pathway models; and annotating these pathways with detailed functional information. A particular challenge involves reconciling the wide variety of interaction types that are currently available. For this purpose, recent studies have sought to classify genetic and physical interactions along several complementary dimensions, such as ordered versus unordered, alleviating versus aggravating, and first versus second degree.  相似文献   

16.

Background  

In recent years, mammalian protein-protein interaction network databases have been developed. The interactions in these databases are either extracted manually from low-throughput experimental biomedical research literature, extracted automatically from literature using techniques such as natural language processing (NLP), generated experimentally using high-throughput methods such as yeast-2-hybrid screens, or interactions are predicted using an assortment of computational approaches. Genes or proteins identified as significantly changing in proteomic experiments, or identified as susceptibility disease genes in genomic studies, can be placed in the context of protein interaction networks in order to assign these genes and proteins to pathways and protein complexes.  相似文献   

17.
Protein interactions are central to most biological processes, and are currently the subject of great interest. Yet despite the many recently developed methods for interaction discovery, little attention has been paid to one of the best sources of data: complexes of known three-dimensional (3D) structure. Here we discuss how such complexes can be used to study and predict protein interactions and complexes, and to interrogate interaction networks proposed by methods such as two-hybrid screens or affinity purifications.  相似文献   

18.
Homotypic and heterotypic protein interactions are crucial for all levels of cellular function, including architecture, regulation, metabolism, and signaling. Therefore, protein interaction maps represent essential components of post-genomic toolkits needed for understanding biological processes at a systems level. Over the past decade, a wide variety of methods have been developed to detect, analyze, and quantify protein interactions, including surface plasmon resonance spectroscopy, NMR, yeast two-hybrid screens, peptide tagging combined with mass spectrometry and fluorescence-based technologies. Fluorescence techniques range from co-localization of tags, which may be limited by the optical resolution of the microscope, to fluorescence resonance energy transfer-based methods that have molecular resolution and can also report on the dynamics and localization of the interactions within a cell. Proteins interact via highly evolved complementary surfaces with affinities that can vary over many orders of magnitude. Some of the techniques described in this review, such as surface plasmon resonance, provide detailed information on physical properties of these interactions, while others, such as two-hybrid techniques and mass spectrometry, are amenable to high-throughput analysis using robotics. In addition to providing an overview of these methods, this review emphasizes techniques that can be applied to determine interactions involving membrane proteins, including the split ubiquitin system and fluorescence-based technologies for characterizing hits obtained with high-throughput approaches. Mass spectrometry-based methods are covered by a review by Miernyk and Thelen (2008; this issue, pp. 597–609 ). In addition, we discuss the use of interaction data to construct interaction networks and as the basis for the exciting possibility of using to predict interaction surfaces.  相似文献   

19.
Li D  Li J  Ouyang S  Wang J  Wu S  Wan P  Zhu Y  Xu X  He F 《Proteomics》2006,6(2):456-461
High-throughput screens have begun to reveal protein interaction networks in several organisms. To understand the general properties of these protein interaction networks, a systematic analysis of topological structure and robustness was performed on the protein interaction networks of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster. It shows that the three protein interaction networks have a scale-free and high-degree clustering nature as the consequence of their hierarchical organization. It also shows that they have the small-world property with similar diameter at 4-5. Evaluation of the consequences of random removal of both proteins and interactions from the protein interaction networks suggests their high degree of robustness. Simulation of a protein's removal shows that the protein interaction network's error tolerance is accompanied by attack vulnerability. These fundamental analyses of the networks might serve as a starting point for further exploring complex biological networks and the coming research of "systems biology".  相似文献   

20.
Protein–protein interactions mediate essentially all biological processes. Despite the quality of these data being widely questioned a decade ago, the reproducibility of large-scale protein interaction data is now much improved and there is little question that the latest screens are of high quality. Moreover, common data standards and coordinated curation practices between the databases that collect the interactions have made these valuable data available to a wide group of researchers. Here, I will review how protein–protein interactions are measured, collected and quality controlled. I discuss how the architecture of molecular protein networks has informed disease biology, and how these data are now being computationally integrated with the newest genomic technologies, in particular genome-wide association studies and exome-sequencing projects, to improve our understanding of molecular processes perturbed by genetics in human diseases. This article is part of a Special Issue entitled: From Genome to Function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号