首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The neutralization epitopes of human and simian rotavirus protein VP7 were studied by producing six neutralizing monoclonal antibodies (N-MAbs) and using these N-MAbs to select antigenic mutants that resisted neutralization by the N-MAbs used for their selection. Cross-neutralization tests between the N-MAbs and the antibody-selected antigenic mutants identified one cross-reactive and five distinct serotype-specific neutralization epitopes which operationally overlapped one another and constituted a single antigenic site. In addition, the amino acid substitutions in human rotavirus VP7 that are responsible for the antigenic alterations in the mutants selected with anti-VP7 cross-reactive or serotype-specific N-MAbs were identified. All the amino acid substitutions in the antigenic mutants occurred in one of two variable regions: amino acids 87 to 101 and 208 to 221.  相似文献   

2.
The VP7 and VP4 genes of seven antigenic mutants of simian rotavirus SA11 4fM (serotype 3) selected after 39 passages in the presence of SA11 4fM hyperimmune antiserum, were sequenced. Nucleotide sequence analysis indicated the following. (i) Twice as many amino acid substitutions occurred in the VP7 protein than in VP4, which has a molecular weight twice that of VP7. (ii) Most amino acid changes that occurred clustered in six variable regions of VP7 and in two variable regions of VP4; these variable regions may represent immunodominant epitopes. (iii) Most amino acid substitutions that occurred in VP7 and VP4 of these mutants were also observed in antigenic mutants selected with neutralizing monoclonal antibodies (NMAbs); however, some amino acid substitutions occurred that were not selected for NMAbs. (iv) On VP7, some of the neutralization epitopes appeared to be interrelated because amino acid substitution in one site affected binding of specific NMAbs to other sites, while other neutralization epitopes on VP7 appeared to be independent, in that amino acid substitution in one site did not affect the binding of NMAbs to another distant site.  相似文献   

3.
Recombinant rotavirus (RV) with cDNA-derived chimeric VP4 was generated using recently developed reverse genetics for RV. The rescued virus, KU//rVP4(SA11)-II(DS-1), contains SA11 (simian RV strain, G3P[2])-based VP4, in which a cross-reactive neutralization epitope (amino acids 381 to 401) on VP5* is replaced by the corresponding sequence of a different P-type DS-1 (human RV strain, G2P[4]). Serological analyses with a panel of anti-VP4- and -VP7-neutralizing monoclonal antibodies revealed that the rescued virus carries a novel antigenic mosaic of cross-reactive neutralization epitopes on its VP4 surface. This is the first report of the generation of a recombinant RV with artificial amino acid substitutions.  相似文献   

4.
M Ciarlet  Y Hoshino    F Liprandi 《Journal of virology》1997,71(11):8213-8220
A panel of single and double neutralization-resistant escape mutants of serotype G11 porcine rotavirus strains A253 and YM, selected with G11 monotype- and serotype-specific neutralizing monoclonal antibodies (MAbs) to VP7, was tested in neutralization assays with hyperimmune sera raised against rotavirus strains of different serotypes. Escape mutants with an amino acid substitution in antigenic region A (amino acids [aa] 87 to 101) resulting in a residue identical or chemically similar to those present at the same positions in serotype G3 strains, at positions 87 for strain A253 and 96 for strain YM, were significantly more sensitive than the parental strains to neutralization with sera against some serotype G3 strains. Also, one YM antigenic variant (YM-5E6.1) acquired reactivity by enzyme-linked immunosorbent assay with MAbs 159, 57/8, and YO-1E2, which react with G3 strains, but not with the serotype G11 parental strain YM. Cross-adsorption studies suggested that the observed cross-neutralization by the G3-specific sera was due to the sera containing antibodies reactive with the parental strain plus antibodies reactive with the epitope(s) on the antigenic variant that mimick the serotype G3 specific one(s). Moreover, antibodies reactive with antigenic region F (aa 235 to 242) of VP7 might also be involved since cross-reactivity to serotype G3 was decreased in double mutants carrying an additional mutation, which creates a potential glycosylation site at position 238. Thus, single point mutations can affect the serotype reactivity of G11 porcine rotavirus strains with both monoclonal and polyclonal antibodies and may explain the origin of rotavirus strains with dual serotype specificity based on sequence divergence of VP7.  相似文献   

5.
We have previously described the use of an uncoating inhibitor, WIN 51711, to select drug-resistant mutants of the Sabin strain of poliovirus type 3. Two-thirds of the mutants proved to be dependent on the drug for plaque formation because of extreme thermolability (A. G. Mosser and R. R. Rueckert, J. Virol. 67:1246-1254, 1993). Here we report the responsible mutations; all were traced to single amino acid substitutions. Mutations conferring dependence and thermolability occurred in all four capsid proteins (VP1 to VP4), but all were clustered near residue 53 of VP4 at the inner capsid surface. Amino acid substitutions of the remaining non-drug-dependent mutants were mapped to three distinct loci: (i) on or near the inner capsid surface, at VP4 residue 46 or VP1 residue 129, in the vicinity of the drug dependence substitutions; (ii) at residues 192, 194, and 260 in the lining of the VP1 beta barrel, which is the drug-binding site; and (iii) at VP1 residue 105 on the edge of the canyon surrounding the fivefold axis of symmetry, the putative receptor-binding site. All of the mutations increased the eclipse rate of cell-attached virus. Such mutants help identify parts of the capsid that play a role in viral uncoating functions.  相似文献   

6.
The group A rotaviruses are composed of at least seven serotypes. Serotype specificity is defined mainly by an outer capsid protein, VP7. In contrast, the other surface protein, VP3 (775 amino acids), appears to be associated with both serotype-specific and heterotypic immunity. To identify the cross-reactive and serotype-specific neutralization epitopes on VP3 of human rotavirus, we sequenced the VP3 gene of antigenic mutants resistant to each of seven anti-VP3 neutralizing monoclonal antibodies (N-MAbs) which exhibited heterotypic or serotype 2-specific reactivity, and we defined three distinct neutralization epitopes on VP3. The mutants sustained single amino acid substitutions at position 305, 392, 433, or 439. Amino acid position 305 was critical to epitope I, whereas amino acid position 433 was critical to epitope III. In contrast, epitope II appeared to be more dependent upon conformation and protein folding because both amino acid positions 392 and 439 appeared to be critical. These four positions clustered in a relatively limited area of VP5, the larger of the two cleavage products of VP3. At the positions where amino acid substitutions occurred, there was a correlation between amino acid sequence homology among different serotypes and the reactivity patterns of various viruses with the N-MAbs used for selection of mutants. A synthetic peptide (amino acids 296 to 313) which included the sequence of epitope I reacted with its corresponding N-MAb, suggesting that the region contains a sequential antigenic determinant. These data may prove useful in current efforts to develop vaccines against human rotavirus infection.  相似文献   

7.
We examined the antigenic structure of human hepatitis A virus (HAV) by characterizing a series of 21 murine monoclonal-antibody-resistant neutralization escape mutants derived from the HM175 virus strain. The escape phenotype of each mutant was associated with reduced antibody binding in radioimmunofocus assays. Neutralization escape mutations were identified at the Asp-70 and Gln-74 residues of the capsid protein VP3, as well as at Ser-102, Val-171, Ala-176, and Lys-221 of VP1. With the exception of the Lys-221 mutants, substantial cross-resistance was evident among escape mutants tested against a panel of 22 neutralizing monoclonal antibodies, suggesting that the involved residues contribute to epitopes composing a single antigenic site. As mutations at one or more of these residues conferred resistance to 20 of 22 murine antibodies, this site appears to be immunodominant in the mouse. However, multiple mutants selected independently against any one monoclonal antibody had mutations at only one or, at the most, two amino acid residues within the capsid proteins, confirming that there are multiple epitopes within this antigenic site and suggesting that single-amino-acid residues contributing to these epitopes may play key roles in the binding of individual antibodies. A second, potentially independent antigenic site was identified by three escape mutants with different substitutions at Lys-221 of VP1. These mutants were resistant only to antibody H7C27, while H7C27 effectively neutralized all other escape mutants. These data support the existence of an immunodominant neutralization site in the antigenic structure of hepatitis A virus which involves residues of VP3 and VP1 and a second, potentially independent site involving residue 221 of VP1.  相似文献   

8.
We have studied the functional expression of antigenic poliovirus fragments carried by various hybrid hepatitis B surface antigen (HBsAg) particles. Several constructions were made by using two different insertion sites in the HBsAg molecule (amino acid positions 50 and 113) and two different sequences, one derived from poliovirus type 1 (PV-1) and the other from PV-2. The inserted fragments each encompassed residues 93 to 103 of the capsid protein VP1, a segment which includes the linear part of the neutralization antigenic site 1 of the poliovirus. The antigenicity and immunogenicity of the hybrid particles were evaluated and compared in terms of poliovirus neutralization. A high level of antigenic and immunogenic activity of the PV-1 fragment was obtained by insertion at position 113 but not at position 50 of HBsAg. However, a cooperative effect was observed when two PV-1 fragments were inserted at both positions of the same HBsAg molecule. Antibodies elicited by the PV-2 fragment inserted at amino acid position 113 did not bind or neutralize the corresponding poliovirus strain. They did, however, bind a chimeric poliovirus in which the homologous antigenic fragment of PV-1 had been replaced by that of PV-2. The only virions that were neutralized by these antibodies were certain mutants carrying amino acid substitutions within the PV-2 fragment. These results show that position, constraints from the carrier protein, and nature of the inserted sequences are critically important in favoring or limiting the expression of antigenic fragments as viral neutralization immunogens.  相似文献   

9.
DA strain of Theiler's murine encephalomyelitis virus produces a persistent demyelinating infection. We previously produced escape mutant viruses that are resistant to a neutralizing monoclonal antibody and have a mutation in VP1 amino acid residue 268 in a neutralization site (Y. Ohara, A. Senkowski, J. Fu, L. Klaman, J. Goodall, M. Toth, and R.P. Roos, J. Virol. 62:3527-3529, 1988). In contrast to wild-type DA strain, these escape mutants produce little if any demyelinating disease after inoculation into weanling mice.  相似文献   

10.
Immunity to poliomyelitis is largely dependent on humoral neutralizing antibodies, both after natural (wild virus or vaccine) infection and after inactivated poliovirus vaccine inoculation. Although the production of local secretory immunoglobulin A (IgA) antibody in the gut mucosa may play a major role in protection, most of information about the antigenic determinants involved in neutralization of polioviruses derives from studies conducted with humoral monoclonal antibodies (MAbs) generated from parenterally immunized mice. To investigate the specificity of the mucosal immune response to the virus, we have produced a library of IgA MAbs directed at Sabin type 1 poliovirus by oral immunization of mice with live virus in combination with cholera toxin. The epitopes recognized by 13 neutralizing MAbs were characterized by generating neutralization-escape virus mutants. Cross-neutralization analysis of viral mutants with MAbs allowed these epitopes to be divided into four groups of reactivity. To determine the epitope specificity of MAbs, virus variants were sequenced and the mutations responsible for resistance to the antibodies were located. Eight neutralizing MAbs were found to be directed at neutralization site N-AgIII in capsid protein VP3; four more MAbs recognized site N-AgII in VP1 or VP2. One IgA MAb selected a virus variant which presented a unique mutation at amino acid 138 in VP2, not previously described. This site appears to be partially related with site N-AgII and is located in a loop region facing the VP2 N-Ag-II loop around residue 164. Only 2 of 13 MAbs proved able to neutralize the wild-type Mahoney strain of poliovirus. The IgA antibodies studied were found to be produced in the dimeric form needed for recognition by the polyimmunoglobulin receptor mediating secretory antibody transport at the mucosal level.  相似文献   

11.
C Reynolds  D Birnby    M Chow 《Journal of virology》1992,66(3):1641-1648
Poliovirus mutants in neutralizing antigenic site 3B were constructed by replacing the glutamic acid residue at amino acid 74 of capsid protein VP2 (VP2074E), using site-specific mutagenesis methods. All viable mutants display small-plaque phenotypes. Characterization of these mutants indicates that capsid assembly is perturbed. Although the defect in capsid assembly reduces the yield of mutant virus particles per cell, the resultant assembled particle is wild-type-like in structure and infectivity. Analyses of capsid assembly intermediates show a transient accumulation of the unprocessed capsid protein precursor, P1, indicating that cleavage of the mutant P1 by the 3CD protease is retarded. The mutant VP0-VP3-VP1 complex generated upon P1 cleavage appears assembly competent, forming pentamer and empty capsid assembly intermediates and infectious virion particles. Although the structure of the infectious mutant virus is virtually identical with that of the wild-type virus, the thermal stability of the mutant virus is dramatically increased over that of the wild-type virus. Thus, mutations at this residue are pleiotropic, altering the kinetics of capsid assembly and generating a virus that is more thermostable and more resistant to neutralization by the site 3B monoclonal antibodies.  相似文献   

12.
13.
Major neutralization antigenic sites have been previously mapped by us on VP1, the largest capsid protein of poliovirus type 1. Here we report the first identification of the primary sequence of a neutralization antigenic site on capsid protein VP2. Inspection of the amino acid sequence of VP2 led to the selection and synthesis of a peptide (n = 12) that, after linking to a carrier protein, induced an antiviral neutralizing antibody response in rabbits. The response was augmented by a single subsequent inoculation of intact virus; thus, the peptide was also capable of priming the production of neutralizing antibodies. These antibodies were directed only against the site specified by the synthetic peptide. Although the VP2-specific neutralization antigenic site appears not to be strongly immunogenic in the intact virion, it can nevertheless contribute to neutralization of poliovirus. This observation may be important for the development of peptide vaccines.  相似文献   

14.
Using four neutralizing monoclonal antibodies which presumably bind to the same antigenic site on the CVS glycoprotein (antigenic site III as defined by cross-neutralization tests), we isolated 58 mutants of the CVS strain of rabies virus. These mutants were highly resistant to the selecting antibodies and grew efficiently in cell cultures. We classified them into five groups on the basis of the pattern of resistance to the four antibodies. We determined pathogenicities of the mutants for adult mice by intracerebral inoculation. Group 2 mutants were nonpathogenic or had attenuated pathogenicity. On the contrary, mutants from the other groups were pathogenic, causing paralysis and death as does CVS. We determined the nucleotide alterations of representative mutants from each group by using the dideoxy method of RNA sequencing. In the glycoproteins of eight nonpathogenic or attenuated mutants, we identified an amino acid substitution at position 333. Arginine 333 was replaced by either glutamine or glycine. In the glycoprotein of eight pathogenic mutants, we identified an amino acid substitution at lysine 330, asparagine 336, or isoleucine 338. Thus, although all substitutions affected neutralization and were located close to each other in the glycoprotein sequence, only substitutions at position 333 affected pathogenicity.  相似文献   

15.
16.
The plaque size and hemagglutination characteristics of five cloned wild-type strains of polyomavirus were determined. The strains fell into two groups, those with large or small plaques, each with distinctive hemagglutination behavior at different temperatures and pHs. The nucleotide sequence of VP1, the major capsid protein of the virus, was determined for each of the viral strains. The PTA (large-plaque) and RA (small-plaque) strains differed only at residue 92 of VP1, where there is a glutamic acid or glycine, respectively (R. Freund, A. Calderone, C. J. Dawe, and T. L. Benjamin, J. Virol. 65:335-341, 1991). The same amino acid difference in VP1 correlated with plaque size and hemagglutination properties of the other sequenced viruses. Mutagenesis converting amino acid 92 from glutamic acid to glycine converted the plaque size and hemagglutination behavior of the large-plaque PTA strain to that of a small-plaque strain. Furthermore, PTA and RA VP1 proteins produced in Escherichia coli behaved as their parental viruses did in hemagglutination assays. These results demonstrate that amino acid residue 92 of VP1 is involved in determining the plaque size and hemagglutination behavior of polyomavirus and strongly suggest that this region of the VP1 polypeptide interacts directly with cell receptors.  相似文献   

17.
Dan M  Chantler JK 《Journal of virology》2005,79(14):9285-9295
Coxsackievirus B3 (CVB3) is a common human pathogen that is endemic throughout the world. There is currently no vaccine available, although the virus is known to be highly lethal to newborns and has been associated with heart disease and pancreatitis in older children and adults. Previously, we showed that the virulence of CVB3 is reduced by a lysine-to-arginine substitution in the capsid protein VP2 (K2168R) or a glutamic acid-to-glycine substitution in VP3 (E3060G). In this report, we show that the double mutant virus CVB3(KR/EG) displays additional attenuation, particularly for the pancreas, in A/J mice. In addition, two other attenuating mutations have been identified in the capsid protein VP1. When either the aspartic acid residue D1155 was replaced with glutamic acid or the proline residue P1126 was replaced with methionine, the resulting mutant also possessed an attenuated phenotype. Moreover, when either of these mutations was incorporated into CVB3(KR/EG), the resulting triple mutant viruses, CVB3(KR/EG/DE) and CVB3(KR/EG/PM), were completely noncardiovirulent and caused only small foci of damage to the pancreas, even at a high dose. Both triple mutants were found to be immunogenic, and a single injection of young A/J mice with either was found to protect them from a subsequent lethal challenge with wild-type CVB3. These findings indicate that the triple mutants could be exploited for the development of a live attenuated vaccine against CVB3.  相似文献   

18.
In our previous study (K. Taniguchi, Y. Morita, T. Urasawa, and S. Urasawa, J. Virol. 62:2421-2426, 1987) in which the cross-reactive neutralization epitopes on VP4 of human rotaviruses were analyzed, one strain, K8, was found to bear unique VP4 neutralization epitopes. This strain, which belongs to subgroup II and serotype 1, was not neutralized by any of six anti-VP4 neutralizing monoclonal antibodies which reacted with human rotavirus strains of serotypes 1, 3, and 4 or serotypes 1 through 4. We determined the complete nucleotide sequence of the gene encoding VP4 of strain K8 by primer extension. The VP4 gene is 2,359 base pairs in length, with 5' and 3' noncoding regions of 9 and 25 nucleotides, respectively. The gene contains a long open reading frame of 2,325 bases capable of coding for a protein of 775 amino acids. When compared with those of other human rotaviruses, VP4 of strain K8 had an insertion of one amino acid after residue 135, as found in simian rotavirus strains, and in addition, it had a deletion of one amino acid (residue 575). The amino acid homology of VP4 of strain K8 and those of other virulent human rotaviruses was only 60 to 70%. This was unusual, since over 90% VP4 homology has been found among the other virulent human rotavirus strains. In contrast, the VP7 amino acid sequence of the K8 strain was quite similar (over 98% homology) to those of other serotype 1 human rotaviruses. Thus, the K8 strain appears to have a unique VP4 gene previously not described.  相似文献   

19.
Poliovirus (PV) type 1 mutants selected in human neuroblastoma cells persistently infected (PVpi) with the wild-type Mahoney strain exhibited a mouse-neurovirulent phenotype. Four of the five substitutions present in the capsid proteins of a PVpi were demonstrated to extend the host range of the Mahoney strain to mice. These new mouse-neurovirulent determinants were located in the three-dimensional structure of the viral capsid; two of them (residues 142 of VP2 and 60 of VP3) were located in loops exposed at the surface of the protein shell, whereas the other two (residues 43 of VP1 and 62 of VP4) were located on the inside of the capsid. VP1 residue 43 and VP2 residue 142 substitutions were also selected in a PVpi derived from the attenuated Sabin strain. We suggest that the selective pressure of human neuroblastoma cell factor(s) involved in early steps of PV multiplication could be responsible for the arising of amino acid substitutions which confer adaptation to the mouse central nervous system to PV.  相似文献   

20.
A total of 14 I-Ad-restricted helper T-cell clones specific for the hemagglutinin (HA) molecule of influenza virus were isolated from spleens of BALB/c or (BALB/c X C57BL/10)F1 mice immunized with the H3 subtype influenza virus A/Memphis/71 (Mem 71) and from lymph nodes of BALB/c mice primed with purified HA. The specificity of these T-cell clones was assessed in proliferation assays by reactivity with naturally occurring strains of viruses that arose by antigenic drift and contain known amino acid sequence changes in HA and with a panel of monoclonal antibody (MAb)-selected mutants of Mem 71 with single amino acid substitutions in HA. The HA genes of those mutant viruses that failed to stimulate one or more of the T-cell clones were sequenced. The clones could be allocated to at least four groups, each group having a distinct pattern of reactivity with the panel of natural field strains. The epitopes recognized by the four groups of clones were found, by reactivity with MAb-selected mutants, to be in very close proximity to one another and probably overlapping. All of the distinct epitopes recognized by the T-cell clones were adversely affected by a single amino acid substitution, either at residue 60 or at residue 63 in the HA1 polypeptide chain, within the region known from antibody-binding studies as site E. Some, but not all, of the epitopes may be influenced by the addition of a carbohydrate side chain to the HA of a particular MAb-selected mutant and certain field strains containing an Asp----Asn substitution at residue 63. Site E is therefore a major site of H-2d helper T-cell recognition on the H3 HA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号