首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reduction of dehydroascorbate, the oxidized form of ascorbate plays important role in the maintenance of sufficient level of ascorbate. In plant mitochondria two DHA reducing mechanisms, the GSH-dependent and the mitochondrial electron transfer chain dependent ascorbate recycling have been characterized. Although both pathways have been extensively studied quantitative information about the electron fluxes from one or another direction for the reduction of DHA is not known. The cellular, mitochondrial glutathione pools and mitochondrial DHA reducing capacity was measured in BSO treated and control tobacco cells. While BSO caused dramatic decrease of cellular GSH content the difference was much smoother at mitochondrial level. The difference in DHA reduction capacity was even smoother affirming the existence of alternative, non-GSH dependent DHA reducing mechanism(s) in plant mitochondria. On the base of the parallel determination of mitochondrial GSH content and ascorbate production upon DHA addition, GSH (consumption) is responsible for the ~ 20 % of ascorbate production. Almost 90 % enhancement of ascorbate production could be provoked by the addition of Complex II substrate succinate which could be almost totally prevented by the concomitant addition of malonate or TTFA. On the base of these results, the importance of mitochondrial Complex II compared to GSH-dependent mechanisms in mitochondrial ascorbate recycling has been underestimated so far.  相似文献   

2.
We have determined the underlying sites of H(2)O(2) generation by isolated rat brain mitochondria and how these can shift depending on the presence of respiratory substrates, electron transport chain modulators and exposure to stressors. H(2)O(2) production was determined using the fluorogenic Amplex red and peroxidase system. H(2)O(2) production was higher when succinate was used as a respiratory substrate than with another FAD-dependent substrate, alpha-glycerophosphate, or with the NAD-dependent substrates, glutamate/malate. Depolarization by the uncoupler p-trifluoromethoxyphenylhydrazone decreased H(2)O(2) production stimulated by all respiratory substrates. H(2)O(2) production supported by succinate during reverse transfer of electrons was decreased by inhibitors of complex I (rotenone and diphenyleneiodonium) whereas in glutamate/malate-oxidizing mitochondria diphenyleneiodonium decreased while rotenone increased H(2)O(2) generation. The complex III inhibitors antimycin and myxothiazol decreased succinate-induced H(2)O(2) production but stimulated H(2)O(2) production in glutamate/malate-oxidizing mitochondria. Antimycin and myxothiazol also increased H(2)O(2) production in mitochondria using alpha-glycerophosphate as a respiratory substrate. In substrate/inhibitor experiments maximal stimulation of H(2)O(2) production by complex I was observed with the alpha-glycerophosphate/antimycin combination. In addition, three forms of in vitro mitochondrial stress were studied: Ca(2+) overload, cold storage for more than 24 h and cytochrome c depletion. In each case we observed (i) a decrease in succinate-supported H(2)O(2) production by complex I and an increase in succinate-supported H(2)O(2) production by complex III, (ii) increased glutamate/malate-induced H(2)O(2) generation by complex I and (iii) increased alpha-glycerophosphate-supported H(2)O(2) generation by complex III. Our results suggest that all three forms of mitochondrial stress resulted in similar shifts in the localization of sites of H(2)O(2) generation and that, in both normal and stressed states, the level and location of H(2)O(2) production depend on the predominant energetic substrate.  相似文献   

3.
Male Sprague-Dawley rats were pair-fed a liquid diet containing 36% of calories as ethanol for at least 31 days. Mitochondria were isolated from the livers and assayed for state 3, state 4 and uncoupled respiration at all three coupling sites. Assay conditions were established that maximized state 3 respiration with each substrate while maintaining a high respiratory control ratio. In mitochondria from ethanol-fed animals, state 3 respiratory rates were decreased at all three coupling sites. The decreased state 3 rate observed at site III was still significantly higher than the state 3 rates observed at site II in mitochondria from either ethanol-fed or control animals. Moreover, the maximal (FCCP-uncoupled) rates with succinate and -ketoglutarate were the same in mitochondria from ethanol-fed and control animals, whereas with glutamate-malate as substrate it was lowered 23% by chronic ethanol consumption. To investigate the role of cytochrome oxidase in modulating the respiratory rate with site I and site II substrates, the effects of cyanide on state 3 and FCCP-uncoupled respiration were determined. When the mitochondria were uncoupled there was no decrease in the rate of succinate oxidation until the rates of ascorbate and succinate oxidation became equivalent. Conversely, parallel inhibition of ascorbate, succinate and glutamate-malate state 3 respiratory rates were observed at all concentrations (1–50 μM) of cyanide utilized. These observations suggest strongly that in coupled mitochondria ethanol-elicited decreases in cytochrome oxidase activity depress the state 3 respiratory rates with site I and II substrates.  相似文献   

4.
Male Sprague-Dawley rats were pair-fed a liquid diet containing 36% of calories as ethanol for at least 31 days. Mitochondria were isolated from the livers and assayed for state 3, state 4 and uncoupled respiration at all three coupling sites. Assay conditions were established that maximized state 3 respiration with each substrate while maintaining a high respiratory control ratio. In mitochondria from ethanol-fed animals, state 3 respiratory rates were decreased at all three coupling sites. The decreased state 3 rate observed at site III was still significantly higher than the state 3 rates observed at site II in mitochondria from either ethanol-fed or control animals. Moreover, the maximal (FCCP-uncoupled) rates with succinate and alpha-ketoglutarate were the same in mitochondria from ethanol-fed and control animals, whereas with glutamate-malate as substrate it was lowered 23% by chronic ethanol consumption. To investigate the role of cytochrome oxidase in modulating the respiratory rate with site I and site II substrates, the effects of cyanide on state 3 and FCCP-uncoupled respiration were determined. When the mitochondria were uncoupled there was no decrease in the rate of succinate oxidation until the rates of ascorbate and succinate oxidation became equivalent. Conversely, parallel inhibition of ascorbate, succinate and glutamate-malate state 3 respiratory rates were observed at all concentrations (1-50 microM) of cyanide utilized. These observations suggest strongly that in coupled mitochondria ethanol-elicited decreases in cytochrome oxidase activity depress the state 3 respiratory rates with site I and II substrates.  相似文献   

5.
Abnormal accumulation of Ca2+ and exposure to pro-apoptotic proteins, such as Bax, is believed to stimulate mitochondrial generation of reactive oxygen species (ROS) and contribute to neural cell death during acute ischemic and traumatic brain injury, and in neurodegenerative diseases, e.g. Parkinson's disease. However, the mechanism by which Ca2+ or apoptotic proteins stimulate mitochondrial ROS production is unclear. We used a sensitive fluorescent probe to compare the effects of Ca2+ on H2O2 emission by isolated rat brain mitochondria in the presence of physiological concentrations of ATP and Mg2+ and different respiratory substrates. In the absence of respiratory chain inhibitors, Ca2+ suppressed H2O2 generation and reduced the membrane potential of mitochondria oxidizing succinate, or glutamate plus malate. In the presence of the respiratory chain Complex I inhibitor rotenone, accumulation of Ca2+ stimulated H2O2 production by mitochondria oxidizing succinate, and this stimulation was associated with release of mitochondrial cytochrome c. In the presence of glutamate plus malate, or succinate, cytochrome c release and H2O2 formation were stimulated by human recombinant full-length Bax in the presence of a BH3 cell death domain peptide. These results indicate that in the presence of ATP and Mg2+, Ca2+ accumulation either inhibits or stimulates mitochondrial H2O2 production, depending on the respiratory substrate and the effect of Ca2+ on the mitochondrial membrane potential. Bax plus a BH3 domain peptide stimulate H2O2 production by brain mitochondria due to release of cytochrome c and this stimulation is insensitive to changes in membrane potential.  相似文献   

6.
We have used two different probes with distinct detection properties, dichlorodihydrofluorescein diacetate and Amplex Red/horseradish peroxidase, as well as different respiratory substrates and electron transport chain inhibitors, to characterize the reactive oxygen species (ROS) generation by the respiratory chain in calcium-overloaded mitochondria. Regardless of the respiratory substrate, calcium stimulated the mitochondrial generation of ROS, which were released at both the mitochondrial-matrix side and the extra-mitochondrial space, in a way insensitive to the mitochondrial permeability transition pores inhibitor cyclosporine A. In glutamate/malate-energized mitochondria, inhibition at complex I or complex III (ubiquinone cycle) similarly modulated ROS generation at either mitochondrial-matrix side or extra-mitochondrial space; this also occurred when the backflow of electrons to complex I in succinate-energized mitochondria was inhibited. On the other hand, in succinate-energized mitochondria the modulation of ROS generation at mitochondrial-matrix side or extra-mitochondrial space depends on the site of complex III which was inhibited. These results allow a straight comparison between the effects of different respiratory substrates and electron transport chain inhibitors on ROS generation at either mitochondrial-matrix side or extra-mitochondrial space in calcium-overloaded mitochondria.  相似文献   

7.
Mitochondria are widely believed to be the source of reactive oxygen species (ROS) in a number of neurodegenerative disease states. However, conditions associated with neuronal injury are accompanied by other alterations in mitochondrial physiology, including profound changes in the mitochondrial membrane potential DeltaPsi(m). In this study we have investigated the effects of DeltaPsi(m) on ROS production by rat brain mitochondria using the fluorescent peroxidase substrates scopoletin and Amplex red. The highest rates of mitochondrial ROS generation were observed while mitochondria were respiring on the complex II substrate succinate. Under this condition, the majority of the ROS signal was derived from reverse electron transport to complex I, because it was inhibited by rotenone. This mode of ROS generation is very sensitive to depolarization of DeltaPsi(m), and even the depolarization associated with ATP generation was sufficient to inhibit ROS production. Mitochondria respiring on the complex I substrates, glutamate and malate, produce very little ROS until complex I is inhibited with rotenone, which is also consistent with complex I being the major site of ROS generation. This mode of oxidant production is insensitive to changes in DeltaPsi(m). With both substrates, ubiquinone-derived ROS can be detected, but they represent a more minor component of the overall oxidant signal. These studies demonstrate that rat brain mitochondria can be effective producers of ROS. However, the optimal conditions for ROS generation require either a hyperpolarized membrane potential or a substantial level of complex I inhibition.  相似文献   

8.
The net uptake of 45Ca into mitochondria from pancreatic islets is stimulated by substrates that transfer reducing equivalents to various sites of the respiratory chain, such as succinate or glycerol 3-phosphate (site II), malate plus pyruvate (site I) or ascorbate plus TMPD (site III). Diazoxide, a known inhibitor of insulin release in vivo and in vitro, strongly inhibited net 45Ca uptake supported by glycerol phosphate and succinate and weakly inhibited 45Ca uptake supported by the other substrates. These results suggest that diazoxide, although not completely specific, is predominately an inhibitor at site II of the respiratory chain. This result is consistent with previous work that showed diazoxide inhibits the enzyme activity of the mitochondrial glycerol phosphate dehydrogenase in islets. Sodium ion inhibited the net accumulation of 45Ca by islet mitochondria suggesting a similarity between islet mitochondria and those of heart and some other endocrine tissues.  相似文献   

9.
Abstract

We have used two different probes with distinct detection properties, dichlorodihydrofluorescein diacetate and Amplex Red/horseradish peroxidase, as well as different respiratory substrates and electron transport chain inhibitors, to characterize the reactive oxygen species (ROS) generation by the respiratory chain in calcium-overloaded mitochondria. Regardless of the respiratory substrate, calcium stimulated the mitochondrial generation of ROS, which were released at both the mitochondrial-matrix side and the extra-mitochondrial space, in a way insensitive to the mitochondrial permeability transition pores inhibitor cyclosporine A. In glutamate/malate-energized mitochondria, inhibition at complex I or complex III (ubiquinone cycle) similarly modulated ROS generation at either mitochondrial-matrix side or extra-mitochondrial space; this also occurred when the backflow of electrons to complex I in succinate-energized mitochondria was inhibited. On the other hand, in succinate-energized mitochondria the modulation of ROS generation at mitochondrial-matrix side or extra-mitochondrial space depends on the site of complex III which was inhibited. These results allow a straight comparison between the effects of different respiratory substrates and electron transport chain inhibitors on ROS generation at either mitochondrial-matrix side or extra-mitochondrial space in calcium-overloaded mitochondria.  相似文献   

10.
Tumor cells favor abnormal energy production via aerobic glycolysis and show resistance to apoptosis, suggesting the involvement of mitochondrial dysfunction. The differences between normal and cancer cells in their energy metabolism provide a biochemical basis for developing new therapeutic strategies. The energy blocker 3-bromopyruvate (3BP) can eradicate liver cancer in animals without associated toxicity, and is a potent anticancer towards glioblastoma cells. Since mitochondria are 3BP targets, in this work the effects of 3BP on the bioenergetics of normal rat brain mitochondria were investigated in vitro, in comparison with the anticancer agent lonidamine (LND). Whereas LND impaired oxygen consumption dependent on any complex of the respiratory chain, 3BP was inhibitory to malate/pyruvate and succinate (Complexes I and II), but preserved respiration from glycerol-3-phosphate and ascorbate (Complex IV). Accordingly, although electron flow along the respiratory chain and ATP levels were decreased by 3BP in malate/pyruvate- and succinate-fed mitochondria, they were not significantly influenced from glycerol-3-phosphate- or ascorbate-fed mitochondria. LND produced a decrease in electron flow from all substrates tested. No ROS were produced from any substrate, with the exception of 3BP-induced H2O2 release from succinate, which suggests an antimycin-like action of 3BP as an inhibitor of Complex III. We can conclude that 3BP does not abolish completely respiration and ATP synthesis in brain mitochondria, and has a limited effect on ROS production, confirming that this drug may have limited harmful effects on normal cells.  相似文献   

11.
Mitochondria are dynamic organelles, capable of fusion and fission as a part of cellular responses to various signals, such as the shifts in the redox status of a cell. The mitochondrial electron transport chain (ETC.) is involved in the generation of reactive oxygen species (ROS), with complexes I and III contributing the most to this process. Disruptions of ETC. can lead to increased ROS generation. Here, we demonstrate the appearance of giant mitochondria in wheat roots in response to simultaneous application of the respiratory inhibitors rotenone (complex I of mitochondrial ETC.) and antimycin A (complex III of mitochondrial ETC.). The existence of such megamitochondria was temporary, and following longer treatment with inhibitors mitochondria resumed their conventional size and oval shape. Changes in mitochondrial morphology were accompanied with a decrease in mitochondrial potential and an unexpected increase in oxygen consumption. Changes in mitochondrial morphology and activity may result from the fusion and fission of mitochondria induced by the disruption of mitochondrial ETC. Results from experiments with the inhibitor of mitochondrial fission Mdivi-1 suggest that the retarded fission may facilitate plant mitochondria to appear in a fused shape. The processes of mitochondrial fusion and fission are involved in the regulation of the efficacy of the functions of the respiratory chain complexes and ROS metabolism during stresses. The changes in morphology of mitochondria, along with the changes in their functional activity, can be a part of the strategy of the plant adaptation to stresses.  相似文献   

12.
See RM  Foy CL 《Plant physiology》1982,70(2):350-352
Mitochondria isolated from hypocotyls of five-day-old bean (Phaseolus vulgaris L. `Black Valentine') seedlings rapidly oxidized succinate, malate, and NADH. Oxidation rates, respiratory control, and ADP:O ratios obtained with saturating concentrations of all three substrates indicated that the mitochondria were tightly coupled. The mitochondrial preparation was then employed to investigate the respiration-inhibiting effects of butanedioic acid mono (2,2-dimethyl-hydrazide) (daminozide) a plant growth retardant having structural similarity to an endogenous respiratory substrate (succinate). Daminozide markedly inhibited the activity of membrane-bound succinate dehydrogenase. Inhibition was of the competitive type (apparent Ki, 20.2 millimolar) with respect to succinate. Although not excluding other hypotheses, the results support an active role for daminozide in the suppression of respiration as an important metabolic site of its action as a plant growth regulator.  相似文献   

13.
The possibility of direct oxidation of external NADH in rat liver mitochondria and of the inner membrane potential generation in this process is still not clear. In the present work, the energy-dependent swelling of mitochondria in the medium containing valinomycin and potassium acetate was measured as one of the main criteria of the proton-motive force generation by complex III, complex IV, and both complexes III and IV of the respiratory chain. Mitochondria swelling induced by external NADH oxidation was compared with that induced by succinate or ferrocyanide oxidation, or by electron transport from succinate to ferricyanide. Mitochondria swelling, nearly equal to that promoted by ferrocyanide oxidation, was observed under external NADH oxidation, but only after the outer mitochondrial membrane was ruptured as a result of the swelling-contraction cycle, caused by succinate oxidation and its subsequent inhibition. In this case, significantly accelerated intermembrane electron transport and well-detected inner membrane potential generation, in addition to mitochondria swelling, were also observed. Presented results suggest that exogenous NADH and cytochrome c do not support the inner membrane potential generation in intact rat liver mitochondria, because the external NADH-cytochrome c reductase system, oriented in the outer mitochondrial membrane toward the cytoplasm, is inaccessible for endogenous cytochrome c reduction; as well, the inner membrane cytochrome c oxidase is inaccessible for exogenous cytochrome c oxidation.  相似文献   

14.
The mechanism of Cr(VI)-induced toxicity in plants and animals has been assessed for mitochondrial bioenergetics and membrane damage in turnip root and rat liver mitochondria. By using succinate as the respiratory substrate, ADP/O and respiratory control ratio (RCR) were depressed as a function of Cr(VI) concentration. State 3 and uncoupled respiration were also depressed by Cr(VI). Rat mitochondria revealed a higher sensitivity to Cr(VI), as compared to turnip mitochondria. Rat mitochondrial state 4 respiration rate triplicated in contrast to negligible stimulation of turnip state 4 respiration. Chromium(VI) inhibited the activity of the NADH-ubiquinone oxidoreductase (complex I) from rat liver mitochondria and succinate-dehydrogenases (complex II) from plant and animal mitochondria. In rat liver mitochondria, complex I was more sensitive to Cr(VI) than complex II. The activity of cytochrome c oxidase (complex IV) was not sensitive to Cr(VI). Unique for plant mitochondria, exogenous NADH uncoupled respiration was unaffected by Cr(VI), indicating that the NADH dehydrogenase of the outer leaflet of the plant inner membrane, in addition to complexes III and IV, were insensitive to Cr(VI). The ATPase activity (complex V) was stimulated in rat liver mitochondria, but inhibited in turnip root mitochondria. In both, turnip and rat mitochondria, Cr(VI) depressed mitochondrial succinate-dependent transmembrane potential (Deltapsi) and phosphorylation efficiency, but it neither affected mitochondrial membrane permeabilization to protons (H+) nor induced membrane lipid peroxidation. However, Cr(VI) induced mitochondrial membrane permeabilization to K+, an effect that was more pronounced in turnip root than in rat liver mitochondria. In conclusion, Cr(VI)-induced perturbations of mitochondrial bioenergetics compromises energy-dependent biochemical processes and, therefore, may contribute to the basal mechanism underlying its toxic effects in plant and animal cells.  相似文献   

15.
Hepatic submitochondrial particles, prepared at neutral pH from rats pretreated with glucagon, exhibited stimulated rates of State 3 and uncoupled respiration when succinate or NADH were the substrates, but not when ascorbate plus N,N,N',N'-tetramethyl-p-phenylenediamine were employed. Measurements of 8-anilino-1-naphthalenesulfonic acid fluorescence in the particles indicated that glucagon treatment resulted in a stimulation of energization supported by succinate respiration or ATP hydrolysis. Similarly, the energy-linked pyridine nucleotide transhydrogenase and reverse electron flow reactions driven by succinate oxidation or ATP were also stimulated. The results indicate that mitochondrial substrate transport is not the prime locus of glucagon action. It is suggested that the increased level of energization in particles prepared from glucagon-treated rats is a reflection of a stimulation of the respiratory chain, possibly between cytochromes b and c, and the ATP-forming reactions.  相似文献   

16.
Previous studies from this lab have demonstrated that in vitro ascorbate augments neutrophil nitric oxide (NO) generation and oxidative burst. The present study was therefore undertaken in guinea pigs to further assess the implication of ascorbate deficiency in vivo on neutrophil ascorbate and tetrahydrobiopterin content, NOS expression/activity, phagocytosis, and respiratory burst. Ascorbate deficiency significantly reduced ascorbate and tetrahydrobiopterin amounts, NOS expression/activity, and NO as well as free radical generation in neutrophils from scorbutics. Ascorbate and tetrahydrobiopterin supplementation in vitro, though, significantly enhanced NOS catalysis in neutrophil lysates and NO generation in live cells, but could not restore them to control levels. Although phagocytic activity remained unaffected, scorbutic neutrophils were compromised in free radical generation. Ascorbate-induced free radical generation was NO dependent and prevented by NOS and NADPH oxidase inhibitors. Augmentation of oxidative burst with dehydroascorbate (DHA) was counteracted in the presence of glucose (DHA uptake inhibitor) and iodoacetamide (glutaredoxin inhibitor), suggesting the importance of ascorbate recycling in neutrophils. Ascorbate uptake was, however, unaffected among scorbutic neutrophils. These observations thus convincingly demonstrate a novel role for ascorbate in augmenting both NOS expression and activity in vivo, thereby reinforcing oxidative microbicidal actions of neutrophils.  相似文献   

17.
3-Nitropropionic acid (3-NPA), an inhibitor of succinate dehydrogenase (SDH) at complex II of the mitochondrial electron transport chain induces cellular energy deficit and oxidative stress-related neurotoxicity. In the present study, we identified the site of reactive oxygen species production in mitochondria. 3-NPA increased O2- generation in mitochondria respiring on the complex I substrates pyruvate+malate, an effect fully inhibited by rotenone. Antimycin A increased O2- production in the presence of complex I and/or II substrates. Addition of 3-NPA markedly increased antimycin A-induced O2- production by mitochondria incubated with complex I substrates, but 3-NPA inhibited O2- formation driven with the complex II substrate succinate. At 0.6 microM, myxothiazol inhibits complex III, but only partially decreases complex I activity, and allowed 3-NPA-induced O2- formation; however, at 40 microM myxothiazol (which completely inhibits both complexes I and III) eliminated O2- production from mitochondria respiring via complex I substrates. These results indicate that in the presence of 3-NPA, mitochondria generate O2- from a site between the ubiquinol pool and the 3-NPA block in the respiratory complex II.  相似文献   

18.
The effects of fluoride on respiration of plant tissue and mitochondria were investigated. Fumigation of young soybean plants (Glycine max Merr. cv. Hawkeye) with 9–12 μg × m?3 HF caused a stimulation of respiration at about 2 days of treatment followed by inhibition 2 days later. Mitochondria isolated from the stimulated tissue had higher respiration rates, greater ATPase activity, and lower P/O ratios, while in mitochondria from inhibited tissue, all three were reduced. Treatment of etiolated soybean hypocotyl sections in Hoagland's solution containing KF for 3 to 10 h only resulted in inhibition of respiration. Mitochondria isolated from this tissue elicited increased respiration rates with malate as substrate and inhibited respiration with succinate. With both substrates respiratory control and ADP/O ratios were decreased. Direct treatment of mitochondria from the etiolated soybean hypocotyl tissue with fluoride resulted in inhibition of state 3 respiration and lower ADP/O ratios with the substrates succinate, malate, and NADH. Fluoride was also found to increase the amount of osmotically induced swelling and cause a more rapid leakage of protein with mitochondria isolated from etiolated corn shoots (Zea mays L. cv. Golden Cross Bantam). The results are discussed with respect to possible effects of fluoride on mitochondrial membranes.  相似文献   

19.
Beffa, T., Pezet, R. and Turian, G. 1987. Multiple-site inhibition by colloidal elemental sulfur (S°) of respiration by mitochondria from young dormant α spores of Phomopsis viticola. Mitochondria from young dormant α spores of Phomopsis viticola Sacc. (ATCC 44940) were isolated by grinding and differential centrifugation. They presented a good integrity of their inner and outer membranes as measured by biochemical assays. Electron microscopic analysis revealed an homogenous population. The highest respiratory activities were observed with NADH and ascorbate + tetra-methyl-p-phenylenediamine (TMPD). Malate stimulated the oxidation of pyruvate, citrate or α-ketoglutarate. The coupling of respiration to oxidative phosphorylation appeared at the time of spore germination. The respiratory activities of mitochondria isolated from young dormant α spores of P. viticola were strongly inhibited by S°. The sensitivity of mitochondrial oxidation of different substrates (NADH, pyruvate + malate, succinate and ascorbate + TMPD) to S° was heterogenous and indicated multiple-site action. Thus preincubation of mitochondria with 30 μM S° before addition of substrates fully prevented NADH oxidation (>98%), and strongly inhibited oxidation of pyruvate + malate (85%), succinate (60%) and ascorbate + TMPD (74%). S° inhibited more rapidly the oxidation of succinate than that of other substrates. In the presence of dithiothreitol (DTT), S°-inhibited oxidation of all substrates (except ascorbate + TMPD) could only be transiently and weakly reestablished. The inhibitory action of S° on the oxidation of NADH, pyruvate + malate and succinate was higher than that observed with sulfhydryl group reagents such as mersalyl, Hg-acetate or p - chloromercuribenzoate. In contrast to S° these SH-group reagents could not inhibit oxidation of ascorbate + TMPD. S°, by its dual capacity to oxidize the SH-groups and to self-reduce, probably at the level of cytochrome c oxidase, could produce a modification of the oxidation state of the respiratory complexes thereby disturbing the electron flux.  相似文献   

20.
Throughout spermatogenesis, mitochondria undergo a morphological and functional differentiation. Mitochondria are involved in the production of reactive oxygen species (ROS), considered one of the mediators of ageing. Particularly, lipid peroxidation is regarded as a major phenomenon by which ROS can impair cellular function. In the present study, we examined the production of superoxide anion, superoxide dismutase activity and the effect of Fe2+/ascorbate induced-lipid peroxidation on the respiratory chain activities of testis mitochondria throughout the process of spermatogenesis and ageing. Mitochondria from rat testes generated superoxide anion, mainly using NADH as substrate, which increased according to age. The activity of SOD is age-dependent and greatly stimulated during the first wave of spermatogenesis, but decreases in adulthood and old age. TBARS concentration was also markedly increased by ageing. The activity of mitochondrial respiratory chain complexes is differentially affected by oxidative stress induced by iron/ascorbate, succinate-dehydrogenase activity being less vulnerable than that of NADH-dehydrogenase and cytochrome c oxidase. The data suggest that ageing is accompanied by reduced activity of SOD, leading to excessive oxidative stress and enhanced lipid peroxidation that compromises the functionality of the electron transport chain. The data support the concept that mitochondrial function is an important determinant in ageing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号