首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LVP1, a novel protein inducing lipolytic response in adipose cells, was purified from scorpion Buthus occitanus tunetanus venom. It represented 1% of crude venom proteins, with pHi approximately 6 and molecular mass of 16170 Da. In contrast to well-characterized scorpion toxins, reduction and alkylation of LVP1 revealed an heterodimeric structure. Isolated alpha and beta chains of LVP1 have a respective molecular mass of 8877 and 8807 Da as determined by mass spectrometry. The N-terminal and some internal peptide sequences of LVP1alpha and beta were determined by Edman degradation. The full amino acid sequences of both chains were deduced from nucleotide sequences of the corresponding cDNAs prepared based on peptide sequences and the 3' and 5' RACE methodologies. LVP1alpha and beta cDNAs encode a signal peptide of 22 residues and a mature peptide of 69 and 73 residues, respectively. Each mature peptide contains seven cysteines, which are compatible with an interchain disulfide bridge. The cDNA deduced protein structures share a high similarity with those of some Na+ channel scorpion toxins. LVP1 was not toxic to mice after intracerebro-ventricular injection. LVP1 stimulated lipolysis on freshly dissociated rat adipocytes in a dose-dependent manner with EC50 of approximately 1+0.5 microg/ml. LVP1 subunits did not display any lipolytic activity. As previously described for venom, beta adrenergic receptor (beta AR) antagonists interfere with LVP1 activity. Furthermore, it is shown that LVP1 competes with [3H]-CGP 12177 (beta1/beta2 antagonist) for binding to adipocyte plasma membrane with an IC50 of about 10(-7) M. These results demonstrate the existence of a new type of scorpion venom nontoxic peptides that are structurally related to Na+ channel toxins but can exert a distinct biological activity on adipocyte lipolysis through a beta-type adrenoreceptor pathway.  相似文献   

2.
Zhu S  Gao B 《FEBS letters》2006,580(30):6825-6836
Venoms from scorpions contain extremely rich bioactive peptides that often carry diverse functions and are presumably needed to achieve synergistic effects for rapidly immobilizing prey and defending themselves. BotLVP1 is a unique heterodimer protein recently found in the scorpion Buthus occitanus tunetanus venom that is structurally related to scorpion toxins affecting sodium channels (NaScTxs) but exhibits adipocyte lipolysis activity. We have isolated and identified two cDNA clones encoding subunits and β of a BotLVP1-like peptide (named BmLVP1) from the Chinese scorpion Buthus martensii venom gland and determined the first complete gene structure of this subfamily. These results highlight a genetic link between these lipolysis activating peptides and NaScTxs. Comparison of cDNA and genomic sequences combined with protein structural and functional analysis provides evidence supporting the existence of RNA editing mechanism in scorpion venom glands, which could mediate functional switch of BmLVP1 gene, from adipocyte lipolysis to neurotoxicity, by altering the wrapper disulfide bridge (WDB) pattern of the peptides.  相似文献   

3.
Catecholamine-stimulated lipolysis is primarily a beta-adrenergic and cAMP-dependent event. In previous studies we established that the beta(3)-adrenergic receptor (beta(3)AR) in adipocytes utilizes a unique mechanism to stimulate extracellular signal-regulated kinases 1 and 2 (ERK) by direct recruitment and activation of Src kinase. Therefore, we investigated the role of the ERK pathway in adipocyte metabolism and found that the beta(3)AR agonist CL316,243 regulates lipolysis through both cAMP-dependent protein kinase (PKA) and ERK. Inhibition of PKA activity completely eliminated lipolysis at low (subnanomolar) CL316,243 concentrations and by 75-80% at higher nanomolar concentrations. The remaining 20-25% of PKA-independent lipolysis, as well as ERK activation, was abolished by inhibiting the activity of either Src (PP2 or small interfering RNA), epidermal growth factor receptor (EGFR with AG1478 or small interfering RNA), or mitogen-activated protein kinase kinase 1 or 2 (MKK1/2 with PD098059). PD098059 inhibited lipolysis by 53% in mice as well. Finally, the effect of estradiol, a reported acute activator of ERK and lipolysis, was also totally prevented by PP2, AG1478, and PD098059. These results suggest that ERK activation by beta(3)AR depends upon Src and epidermal growth factor receptor kinase activities and is responsible for the PKA-independent portion of the lipolytic response. Together these results illustrate the distinct and complementary roles for PKA and ERK in catecholamine-stimulated lipolysis.  相似文献   

4.
The venom from the Brazilian scorpion Tityus stigmurus was fractionated by high performance liquid chromatography (HPLC) and the corresponding components were used for molecular mass determination using electrospray ion trap mass spectrometry. One hundred distinct components were clearly assigned showing molecular masses from 216.5 to 44,800.0 Da. Fifteen new components were isolated and sequenced, four of them to completion: Tst-3 (similar to Na(+) channel specific scorpion toxins), Tst-17 (a K(+) channel blocking peptide similar to Tc1), Tst beta KTx (a peptide with identical sequence as that of TsTX-K beta toxin earlier described to exist in T. serrulatus venom) and finally a novel proline-rich peptide of unknown function. Among the eleven components partially sequenced were two enzymes: hyaluronidase and lysozyme. The first enzyme has a molecular mass of 44,800.0 Da. This enzyme showed high activity against the substrate hyaluronan in vitro. Amino acid sequence of the second enzyme showed that it is similar to other known lysozymes, with similar molecular mass and sequence to that of bona fide lysozymes reported in public protein data banks. Finally, this communication reports a correlation among HPLC retention times and molecular masses of folded scorpion toxins as well as a comparative structural and physiological analysis of components from the venom of several species of the genus Tityus.  相似文献   

5.
The present study was performed to analyze in detail gender- and site-related alterations in the adrenergic signal transduction pathway of lipolysis in fat cells isolated from subcutaneous abdominal and visceral fat depots from severely obese patients. The study group consisted of 30 morbidly obese subjects (9 men and 21 women) aged 41.1+/-1.9 years, with a body mass index (BMI) of 54.7+/-1.7 kg/m2, who had undergone abdominal surgery. Protein levels of hormone-sensitive lipase (HSL) and adrenergic receptors (AR), as well as HSL activity and the lipolytic response to adrenergic agents were analyzed. Both fat depots had similar basal lipolysis, but the capacity of catecholamines to activate lipolysis was greater in visceral fat, both at AR and postreceptor levels. Basal lipolysis and lipolytic activity induced by dibutyryl cyclic AMP were higher in men than in women. However, the visceral depot of women showed a higher maximal stimulation by noradrenaline than that of men, in accordance with higher beta1- and beta3-AR protein levels. In conclusion, the main gender-related differences were located in the visceral depot, with women exhibiting a higher sensitivity to catecholamines associated with an increased provision of beta-AR, while men showed an enhanced lipolytic capacity at the postreceptor level.  相似文献   

6.
The ability of catecholamines to maximally stimulate adipocyte lipolysis (lipolytic capacity) is decreased in obesity. It is not known whether the lipolytic capacity is determined by the ability of adipocytes to differentiate. The aim of the study was to investigate if lipolytic capacity is related to preadipocyte differentiation and if the latter can predict lipolysis in mature adipocytes. IN VITRO experiments were performed on differentiating preadipocytes and isolated mature adipocytes from human subcutaneous adipose tissue. In preadipocytes, noradrenaline-induced lipolysis increased significantly until terminal differentiation (day 12). However, changes in the expression of genes involved in lipolysis (hormone sensitive lipase, adipocyte triglyceride lipase, the alpha2-and beta1-adrenoceptors, perilipin, and fatty acid binding protein) reached a plateau much earlier during differentiation (day 8). A significant positive correlation between lipolysis in differentiated preadipocytes and mature adipocytes was observed for noradrenaline (r=0.5, p<0.01). The late differentiation capacity of preadipocytes measured as glycerol-3-phosphate dehydrogenase activity was positively correlated with noradrenaline-induced lipolysis in preadipocytes (r=0.51, p<0.005) and mature fat cells (r=0.35, p<0.05). In conclusion, intrinsic properties related to terminal differentiation determine the ability of catecholamines to maximally stimulate lipolysis in fat cells. The inability to undergo full differentiation might in part explain the low lipolytic capacity of fat cells among the obese.  相似文献   

7.
It has been proposed that differences in adipocyte function and/or metabolism between obese and lean individuals may manifest themselves in functional adipose tissue abnormalities that lead to metabolic disorders in obesity. We studied lipogenesis and lipolysis of omental adipocytes from obese (OB) and non-obese (NOB) humans. The specific activity of the lipogenic marker enzyme G3PDH was 50% lower in total adipocytes of OB compared to that of NOB subjects. Omental adipocytes from OB subjects also had lower basal lipolytic levels, and a lower lipolytic response to beta-adrenergic stimulus. Cholesterol depletion of adipocyte plasma membrane using methyl b-cyclodextrin caused a lipolytic effect on adipocytes of both groups together, but when obese and lean subjects were analyzed separately, the response was significant only in the obese. We present evidence of a different lipogenic and lipolytic profile in obese individuals' omental adipocytes, and propose a relevant role of plasma membrane cholesterol, where the impact of its removal in OB and NOB adipocyte lipolysis differs.  相似文献   

8.
Catecholamine stimulation of beta-adrenergic receptors (betaAR) in adipocytes activates the cAMP-dependent protein kinase to promote liberation of fatty acids as a fuel source. The adipocyte beta3AR also activates extracellular signal-regulated kinases (ERK)-1 and -2 through direct recruitment and activation of Src kinase. This pathway together with cAMP-dependent protein kinase contributes to maximal beta3AR-stimulated lipolysis. In a search for other molecules that might associate with beta3AR upon agonist stimulation, we identified vimentin using a proteomics approach. Immunoprecipitation of beta3AR from adipocytes in the absence or presence of the beta3AR agonist CL316,243, followed by Western blotting for vimentin confirmed this specific interaction. Since vimentin has also been identified on lipid droplets, the functional consequences of blocking the expression or structural integrity of vimentin intermediate filaments on beta3AR regulation of ERK activation and lipolysis was assessed. Following disruption of intermediate filaments with beta,beta'-iminodipropionitrile, as confirmed by confocal microscopy, beta3AR-stimulated ERK activation was blocked, and lipolysis was reduced by more than 40%. Independently, depletion of vimentin by small hairpin RNA (shRNA) completely inhibited beta3AR-mediated ERK activation and significantly reduced lipolysis. By contrast, disruption of actin-containing microfilaments by cytochalasin D or microtubules by nocodazole had no effect on either lipolysis or ERK activation. These results indicate that vimentin plays an essential role in the signal transduction pathway from beta3AR to the activation ERK and its contribution to lipolysis.  相似文献   

9.
10.
Triacylglycerol breakdown (lipolysis) results from a series of reactions culminated by activation of "hormone-stimulated" triacylglycerol lipase, an enzyme unique to adipose tissue. We have studied various components of the lipolytic process in human omental adipocyte precursors differentiating in culture. The levels of cyclic AMP, the "second messenger" of lipolytic hormones, were about sixfold higher in fat cell precursors than those in abdominal skin fibroblasts. L-Isoproterenol resulted in significant elevation of cyclic AMP levels in both cell types. Preincubation of intact adipocyte precursors with insulin resulted in significant enhancement of "low Km" cyclic AMP phosphodiesterase activity; in contrast, this hormone had no effect on fibroblast phosphodiesterase activity, a distinctive biochemical difference despite the morphological similarities between the two cell types during the early stages of adipocyte precursor maturation. Incubation of adipocyte precursors with isoproterenol resulted in the release of fatty acids into the medium, findings indicative of "hormone-stimulated" lipase activity and, hence, the operation of the entire "lipolytic cascade"; isoproterenol-stimulated lipolysis was inhibited by insulin. Release of fatty acids from fibroblasts was not observed. Thus, "hormone-stimulated" lipolysis and insulin stimulation of cyclic AMP phosphodiesterase activity are expressed during early stages of human adipocyte precursor differentiation.  相似文献   

11.
Catecholamine-induced lipolysis was investigated in 32 obese subjects (14 men and 18 premenopausal women), aged 36-50 years, whose body mass index ranged from 30 to 42 kg/m(2). Isolated subcutaneous (subc) abdominal and femoral adipocytes were studied before and after a 15-week weight reducing program, during which mean body weight loss averaged 9 vs. 10 kg in women and men, respectively (P < 0.0001). Participants were re-examined when they were weight-stable. Fat cell weight decreased by about 15;-20% in both depots (P values ranging from 0.01 to 0.05). Epinephrine (mixed alpha2-/beta-adrenoceptor (AR) agonist) induced antilipolysis at low concentrations and a net lipolytic response at higher doses, irrespective of subjects' fatness and anatomic location of fat. Basal lipolysis, maximal lipolytic responses to isoprenaline (beta-AR agonist), dobutamine and procaterol (beta1- and beta2-AR agonists, respectively) as well as maximal antilipolytic effects of epinephrine or UK-14304 (alpha2-AR agonist) were similar before and after weight reduction. However, both beta- and beta2-AR lipolytic sensitivities and the beta-AR density were increased in both genders after weight reduction, this effect being more marked in subc abdominal than in femoral adipocytes (P values ranging from 0.001 to 0.05). The alpha2-AR antilipolytic sensitivity was reduced in adipose cells from both regions in women, but only in subc abdominal adipocytes in men (P < 0.05), although the alpha2-AR density remained unchanged after weight reduction. In conclusion, a moderate weight loss leads to a higher adipose cell lipolytic efficiency which is associated with changes at receptor levels (mainly an increased beta2- and a decreased alpha2-AR sensitivities), in both genders.  相似文献   

12.
A decrease in the lipid droplet-associated protein perilipin may constitute a mechanism for enhanced adipocyte lipolysis under nonstimulated (basal) conditions, and increased basal lipolysis has been linked to whole body metabolic dysregulation. Here we investigated whether the lipolytic actions of the human immunodeficiency virus protease inhibitor, nelfinavir, are mediated by decreased perilipin protein content and studied the mechanisms by which it occurs. Time course analysis revealed that the decrease in perilipin protein content preceded the increase in lipolysis. A causative relationship was suggested by demonstrating that nelfinavir potently increased lipolysis in adipocytes derived from mouse embryonal fibroblasts expressing perilipin but not in mouse embryonal fibroblast adipocytes devoid of perilipin and that adenoviral mediated overexpression of perilipin in 3T3-L1 adipocytes blocked the lipolytic actions of nelfinavir. Nelfinavir did not alter mRNA content of perilipin but rather decreased perilipin proteins t((1/2)) from >70 to 12 h. Protein degradation of perilipin in both control and nelfinavir-treated adipocytes could be prevented by inhibiting lysosomal proteolysis using leupeptin or NH(4)Cl but not by the proteasome inhibitor MG-132. We propose that proteolysis of perilipin involving the lysosomal protein degradation machinery may constitute a novel mechanism for enhancing adipocyte lipolysis.  相似文献   

13.
14.
Sibutramine is a satiety-inducing serotonin-noradrenaline reuptake inhibitor that acts predominantly via its primary and secondary metabolites. This study investigates the possibility that sibutramine and/or its metabolites could act directly on white adipose tissue to increase lipolysis. Adipocytes were isolated by a collagenase digestion procedure from homozygous lean (+/+) and obese-diabetic OB/OB mice, and from lean nondiabetic human subjects. The lipolytic activity of adipocyte preparations was measured by the determination of glycerol release over a 2-hour incubation period. The primary amine metabolite of sibutramine M2, caused a concentration-dependent stimulation of glycerol release by murine lean and obese adipocytes (maximum increase by 157+/-22 and 245+/-16%, respectively, p<0.05). Neither sibutramine nor its secondary amine metabolite M1 had any effect on lipolytic activity. Preliminary studies indicated that M2-induced lipolysis was mediated via a beta-adrenergic action. The non-selective beta-adrenoceptor antagonist propranolol (10 (-6) M) strongly inhibited M2-stimulated lipolysis in lean and obese murine adipocytes. M2 similarly increased lipolysis by isolated human omental and subcutaneous adipocytes (maximum increase by 194+/-33 and 136+/-4%, respectively, p<0.05) with EC50 values of 12 nM and 3 nM, respectively. These results indicate that the sibutramine metabolite M2 can act directly on murine and human adipose tissue to increase lipolysis via a pathway involving beta-adrenoceptors.  相似文献   

15.
Lipid mobilization through adipocyte lipolysis is central for energy metabolism and is decreased in obesity. However, the factors of importance for lipolytic activity in the general population are not known. To further examine this we performed a cross-sectional study on teenagers and adults. We constructed and evaluated a simple index of lipolytic activity (ratio of fasting p-glycerol and body fat %) in population based samples in 316 teenagers (BMI 16-51 kg/m (2)) and 3,039 adults (BMI 16-70 kg/m (2)). In the adults, multiple regression analysis showed that waist and BMI but not age, plasma insulin, plasma noradrenaline or waist-to-hip ratio contributed independently and inversely to lipolytic activity (partial r=-0.37 and -0.28, respectively, p<0.0001). Together waist and BMI explained about 45% of the variability of lipolysis. Waist was a stronger factor than BMI in stepwise regression. The same analysis in teenagers showed that only BMI contributed independently and inversely to lipolytic activity (partial r=-0.90, p<0.0001) and explained about 55% of lipolysis variation. BMI had the strongest effect on lipolysis in lean teenagers. The results were the same for men and women. At all levels of lipolytic activity plasma fatty acid levels were elevated in obese subjects (p<0.0001). We conclude that during adolescence BMI is the major factor negatively influencing lipolytic activity, in particular among lean young subjects. In adulthood central fat accumulation together with increasing BMI decreases lipolysis. In spite of low lipolytic activity circulating fatty acid levels are increased in obesity, probably due to an adipose mass effect.  相似文献   

16.
The alpha(2) Heremans-Schmid glycoprotein (AHSG) gene is implicated in the regulation of body fat and insulin sensitivity. The Met/Met genotype of the common single-nucleotide polymorphism (SNP), rs4917, in the AHSG gene has been shown to be associated with reduced plasma levels as well as lower body fat. Here, we studied the association of this variation with subcutaneous adipocyte lipolysis. Ninety-three obese and nonobese healthy men were genotyped for Thr230Met, and subcutaneous adipose tissue biopsies were analyzed for lipolysis characteristics. The Met/Met genotype was associated with a marked increase of 1.5 log units in the lipolytic sensitivity to the beta2-adrenoceptor agonist terbutaline (P=0.0008) as compared with the Thr/Thr and Thr/Met genotypes. This corresponds to an approximately 35-fold increase in beta2-adrenoceptor function. The genotype effect was independent of body mass index and waist circumference. In contrast, lipolytic sensitivity to both the beta1-adrenoceptor agonist dobutamine (P=0.25) and the alpha2A-adrenoceptor agonist clonidine (P=0.54) was unaffected by the Thr230Met variation. Moreover, no difference in either maximal stimulation or inhibition of lipolysis was found between genotypes. We conclude that a common variation (Thr230Met) in the AHSG gene is associated with a marked increase in beta2-adrenoceptor sensitivity in subcutaneous fat cells, which may be of importance in body weight regulation.  相似文献   

17.
The beta(3) adrenergic receptor (beta(3)AR) is the predominant beta subtype in human brown adipocytes and is essential for regulating thermogenic lipolysis. To establish a novel experimental system for the biochemical analysis of this protein, we engineered several yeast strains. We show that the sterol background of the host strain greatly modulates the beta(3)AR expression but not in the same way as it modulates the beta(2) adrenergic receptor (beta(2)AR), the other main studied adipocyte subtype. The human beta(3)AR expressed in yeast is N-glycosylated but not phosphorylated. This latter characteristic distinguishes it from the beta(2)AR. We showed that both beta(2)AR and beta(3)AR follow the secretory pathway to the yeast plasma membrane (PM) and are degraded in the vacuole. In the yeast strains used in this work, the two receptors also share a common mechanism of direct signal transduction through the yeast G(alpha) protein, Gpa1p. These strains thus appear to be useful for biochemical and structural studies of the human beta(3)AR in an in vivo reconstitution system.  相似文献   

18.
1. Adipocytes isolated from rats 6--9 days after adrenalectomy had significantly increased sensitivity to insulin action against noradrenaline-stimulated lipolysis. In the presence of adenosine deaminase there was no significant difference in insulin sensitivity between cells from adrenalectomized and sham-operated rats. 2. Adipocytes from adrenalectomized rats had decreased lipolytic responses to all concentrations of noradrenaline and glucagon tested and a decreased lipolytic response to low but not high concentrations of corticotropin. There was no difference in lipolytic response to theophylline after adrenalectomy. Adenosine deaminase corrected the differences in response to noradrenaline and glucagon resulting from adrenalectomy. 3. In the presence of adenosine deaminase rates of lipolysis, after stimulation by high concentrations of noradrenaline, glucagon, corticotropin or theophylline, were the same in cells from adrenalectomized or sham-operated rats. 4. These findings and previously reported effects of adenosine and adrenalectomy on adipocyte function are discussed. It is proposed that changes in adipocyte hormone responsiveness after adrenalectomy may result from changes in adenosine metabolism or release.  相似文献   

19.
The central role of perilipin a in lipid metabolism and adipocyte lipolysis   总被引:2,自引:0,他引:2  
The related disorders of obesity and diabetes are increasing to epidemic proportions. The role of neutral lipid storage and hydrolysis, and hence the adipocyte, is central to understanding this phenomenon. The adipocyte holds the major source of stored energy in the body in the form of triacylglycerols (TAG). It has been known for over 35 years that the breakdown of TAG and release of free (unesterified) fatty acids and glycerol from fat tissue can be regulated by a cAMP-mediated process. However, beyond the initial signaling cascade, the mechanistic details of this lipolytic reaction have remained unclear. Work in recent years has revealed that both hormone-sensitive lipase (HSL), generally thought to be the rate-limiting enzyme, and perilipin, a lipid droplet surface protein, are required for optimal lipid storage and fatty acid release. There are multiple perilipin proteins encoded by mRNA splice variants of a single perilipin gene. The perilipin proteins are polyphosphorylated by protein kinase A and phosphorylation is necessary for translocation of HSL to the lipid droplet and enhanced lipolysis. Hence, the surface of the lipid storage droplet has emerged as a central site of regulation of lipolysis. This review will focus on adipocyte lipolysis with emphasis on hormone signal transduction, lipolytic enzymes, the lipid storage droplet, and fatty acid release from the adipocyte.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号