首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NF-kappaB is critical for determining cellular sensitivity to apoptotic stimuli by regulating both mitochondrial and death receptor apoptotic pathways. The endoplasmic reticulum (ER) emerges as a new apoptotic signaling initiator. However, the mechanism by which ER stress activates NF-kappaB and its role in regulation of ER stress-induced cell death are largely unclear. Here, we report that, in response to ER stress, IKK forms a complex with IRE1alpha through the adapter protein TRAF2. ER stress-induced NF-kappaB activation is impaired in IRE1alpha knockdown cells and IRE1alpha(-/-) MEFs. We found, however, that inhibiting NF-kappaB significantly decreased ER stress-induced cell death in a caspase-8-dependent manner. Gene expression analysis revealed that ER stress-induced expression of tumor necrosis factor alpha (TNF-alpha) was IRE1alpha and NF-kappaB dependent. Blocking TNF receptor 1 signaling significantly inhibited ER stress-induced cell death. Further studies suggest that ER stress induces down-regulation of TRAF2 expression, which impairs TNF-alpha-induced activation of NF-kappaB and c-Jun N-terminal kinase and turns TNF-alpha from a weak to a powerful apoptosis inducer. Thus, ER stress induces two signals, namely TNF-alpha induction and TRAF2 down-regulation. They work in concert to amplify ER-initiated apoptotic signaling through the membrane death receptor.  相似文献   

2.
L Chen  S Xu  L Liu  X Wen  Y Xu  J Chen  J Teng 《Cell death & disease》2014,5(5):e1219
Disturbance of endoplasmic reticulum (ER) homeostasis causes ER stress and leads to activation of the unfolded protein response, which reduces the stress and promotes cell survival at the early stage of stress, or triggers cell death and apoptosis when homeostasis is not restored under prolonged ER stress. Here, we report that Cab45S, a member of the CREC family, inhibits ER stress-induced apoptosis. Depletion of Cab45S increases inositol-requiring kinase 1 (IRE1) activity, thus producing more spliced forms of X-box-binding protein 1 mRNA at the early stage of stress and leads to phosphorylation of c-Jun N-terminal kinase, which finally induces apoptosis. Furthermore, we find that Cab45S specifically interacts with 78-kDa glucose-regulated protein/immunoglobulin heavy chain binding protein (GRP78/BiP) on its nucleotide-binding domain. Cab45S enhances GRP78/BiP protein level and stabilizes the interaction of GRP78/BiP with IRE1 to inhibit ER stress-induced IRE1 activation and apoptosis. Together, Cab45S, a novel regulator of GRP78/BiP, suppresses ER stress-induced IRE1 activation and apoptosis by binding to and elevating GRP78/BiP, and has a role in the inhibition of ER stress-induced apoptosis.  相似文献   

3.
Continued exposure of endothelial cells to mechanical/shear stress elicits the unfolded protein response (UPR), which enhances intracellular homeostasis and protect cells against the accumulation of improperly folded proteins. Cells commit to apoptosis when subjected to continuous and high endoplasmic reticulum (ER) stress unless homeostasis is maintained. It is unknown how endothelial cells differentially regulate the UPR. Here we show that a novel Girdin family protein, Gipie (78 kDa glucose-regulated protein [GRP78]-interacting protein induced by ER stress), is expressed in endothelial cells, where it interacts with GRP78, a master regulator of the UPR. Gipie stabilizes the interaction between GRP78 and the ER stress sensor inositol-requiring protein 1 (IRE1) at the ER, leading to the attenuation of IRE1-induced c-Jun N-terminal kinase (JNK) activation. Gipie expression is induced upon ER stress and suppresses the IRE1-JNK pathway and ER stress-induced apoptosis. Furthermore we found that Gipie expression is up-regulated in the neointima of carotid arteries after balloon injury in a rat model that is known to result in the induction of the UPR. Thus our data indicate that Gipie/GRP78 interaction controls the IRE1-JNK signaling pathway. That interaction appears to protect endothelial cells against ER stress-induced apoptosis in pathological contexts such as atherosclerosis and vascular endothelial dysfunction.  相似文献   

4.
Endoplasmic reticulum (ER) stress has been implicated in Parkinson disease. We previously reported that thioredoxin 1 (Trx-1) suppressed the ER stress caused by 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine; however, its molecular mechanism remains largely unknown. In the present study, we showed that 1-methyl-4-phenylpyridinium ion (MPP+) induced ER stress by activating glucose-regulated protein 78 (GRP78), inositol-requiring enzyme 1α (IRE1α), tumor necrosis factor receptor-associated factor 2 (TRAF2), c-Jun N-terminal kinase (JNK), caspase-12, and C/EBP homologous protein (CHOP) in PC12 cells. The downregulation of Trx-1 aggravated the ER stress and further increased the expression of the above molecules induced by MPP+. In contrast, overexpression of Trx-1 attenuated the ER stress and repressed the expression of the above molecules induced by MPP+. More importantly, the overexpression of Trx-1 in transgenic mice suppressed ER stress by inhibiting the activation of these molecules. We present, for the first time, the molecular mechanism of Trx-1 suppression of endoplasmic reticulum stress in Parkinson disease in vitro and in vivo. Based on our findings, we conclude that Trx-1 plays a neuroprotective role in Parkinson disease by suppressing ER stress by regulating the activation of GRP78, IRE1α, TRAF2, JNK, caspase-12, and CHOP.  相似文献   

5.
Macrophage death in advanced atherosclerotic lesions leads to lesional necrosis, possible plaque rupture, and acute vascular occlusion. A likely cause of macrophage death is the accumulation of free cholesterol (FC) leading to activation of endoplasmic reticulum (ER) stress-induced apoptosis. Inositol-requiring enzyme 1 alpha (IRE1α) is an integral membrane protein of the ERthat is a key signaling step in cholesterol-induced apoptosis in macrophages, activated by stress in the ER. However, the role of IRE1α in the regulation of ER stress-induced macrophage death and the mechanism for this process are largely unclear. In this study, a cell culture model was used to explore the mechanisms involved in the ER stress pathway of FC-induced macrophage death. The results herein showed that FC loading of macrophages leads to an apoptotic response that is partially dependent on initiation by activation of IRE1α. Taken together, these results showed that the IRE1-apoptosis-signaling kinase 1-c-Jun NH2-terminal kinase cascade pathway was required in this process. Moreover, the data suggested a novel cellular mechanism for cholesterol-induced macrophage death in advanced atherosclerotic lesions. The critical function of this signaling cascade is indicated by prevention of ER stress-induced apoptosis after inhibition of IRE1α, or c-Jun NH2-terminal kinase.  相似文献   

6.
7.
Following endoplasmic reticulum (ER) stress, which occurs via inhibition of the glycosylation of newly synthesized proteins, caspase family proteins are activated to promote ER stress-mediated apoptosis. Here we report that nerve growth factor (NGF) suppressed the ER stress-mediated apoptosis in tunicamycin-treated PC12 cells through an extensive decrease of the caspase-3/-9/-12 activity. Detailed analysis of the mechanism underlying the NGF-mediated cell survival revealed that the activities of all seriate caspases were reduced through the phosphatidylinositol 3-kinase (PI3-K) signaling pathway induced by NGF. Moreover, we found that the activity of c-Jun N-terminal kinase (JNK) was not essential for the tunicamycin-induced apoptosis of PC12 cells. These results demonstrate that the inactivation of caspase-12 via the NGF-mediated PI3-K signaling pathway leads to inactivation of the caspase cascade including caspase-3 and -9.  相似文献   

8.
9.
《Cellular signalling》2014,26(2):287-294
Apoptosis triggered by endoplasmic reticulum (ER) stress is associated with rapid attenuation of the IRE1α and ATF6 pathways but persistent activation of the PERK branch of the unfolded protein response (UPR) in cells. However, melanoma cells are largely resistant to ER stress-induced apoptosis, suggesting that the kinetics and durations of activation of the UPR pathways are deregulated in melanoma cells undergoing ER stress. We show here that the IRE1α and ATF6 pathways are sustained along with the PERK signaling in melanoma cells subjected to pharmacological ER stress, and that this is, at least in part, due to increased activation of the MEK/ERK pathway. In contrast to an initial increase followed by rapid reduction in activation of IRE1α and ATF6 signaling in control cells that were relatively sensitive to ER stress-induced apoptosis, activation of IRE1α and ATF6 by the pharmacological ER stress inducer tunicamycin (TM) or thapsigargin (TG) persisted in melanoma cells. On the other hand, the increase in PERK signaling lasted similarly in both types of cells. Sustained activation of IRE1α and ATF6 signaling played an important role in protecting melanoma cells from ER stress-induced apoptosis, as interruption of IRE1α or ATF6 rendered melanoma cells sensitive to apoptosis induced by TM or TG. Inhibition of MEK partially blocked IRE1α and ATF6 activation, suggesting that MEK/ERK signaling contributed to sustained activation of IRE1α and ATF6. Taken together, these results identify sustained activation of the IRE1α and ATF6 pathways of the UPR driven by the MEK/ERK pathway as an important protective mechanism against ER stress-induced apoptosis in melanoma cells.  相似文献   

10.
Here we studied the cellular mechanisms of ursolic acid's anti-bladder cancer ability by focusing on endoplasmic reticulum stress (ER stress) signaling. We show that ursolic acid induces a significant ER stress response in cultured human bladder cancer T24 cells. ER stress inhibitor salubrinal, or PERK silencing, diminishes ursolic acid-induced anti-T24 cell effects. Salubrinal inhibits ursolic acid-induced CHOP expression, Bim ER accumulation and caspase-3 activation in T24 cells. Ursolic acid induces IRE1–TRAF2–ASK1 signaling complex formation to activate pro-apoptotic ASK1–JNK signaling. We suggest that ER stress contributes to ursolic acid's effects against bladder cancer cells.  相似文献   

11.
Mammalian members related to Saccharomyces cerevisiae serine/threonine kinase STE20 can be divided into two subfamilies based on their structure and function. The PAK subfamily is characterized by an N-terminal p21-binding domain (also known as CRIB domain), a C-terminal kinase domain, and is regulated by the small GTP-binding proteins Rac1 and Cdc42Hs. The second group is represented by the GCK-like members, which contain an N-terminal catalytic domain and lack the p21-binding domain. Some of them have been demonstrated to induce c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) cascade, while others have been shown to be activated by a subset of stress conditions or apoptotic agents, although little is known about their specific function. Here, we have identified a novel human STE20-related serine/threonine kinase, belonging to the GCK-like subfamily. This kinase does not induce the JNK/SAPK pathway, but, instead, inhibits the basal activity of JNK/SAPK, and diminishes its activation in response to human epidermal growth factor (EGF). Therefore, we designated this molecule JIK for JNK/SAPK-inhibitory kinase. The inhibition of JNK/SAPK signaling pathway by JIK was found to occur between the EGF receptor and the small GTP-binding proteins Rac1 and Cdc42Hs. In contrast, JIK does not activate nor does it inhibit ERK2, ERK6, p38, or ERK5. Furthermore, JIK kinase activity is not modulated by any exogenous stimuli, but, interestingly, it is dramatically decreased upon EGF receptor activation. Thus, JIK might represent the first member of the STE20 kinase family whose activity can be negatively regulated by tyrosine kinase receptors, and whose downstream targets inhibit, rather than enhance, JNK/SAPK activation.  相似文献   

12.
13.
TRAF2 is an adaptor protein that regulates the activation of the c-Jun N-terminal kinase (JNK) and IkappaB kinase (IKK) signaling cascades in response to tumor necrosis factor alpha (TNF-alpha) stimulation. Although the downstream events in TNF-alpha signaling are better understood, the membrane-proximal events are still elusive. Here, we demonstrate that TNF-alpha and cellular stresses induce TRAF2 phosphorylation at serine 11 and that this phosphorylation is required for the expression of a subset of NF-kappaB target genes. Although TRAF2 phosphorylation had a minimal effect on the TNF-alpha-induced rapid and transient IKK activation, it was essential for secondary and prolonged IKK activation. Consistent with this, TRAF2 phosphorylation is not required for its recruitment to the TNFR1 complex in response to TNF-alpha stimulation but is required for its association with a cytoplasmic complex containing RIP1 and IKK. In addition, TRAF2 phosphorylation was essential for the full TNF-alpha-induced activation of JNK. Notably, TRAF2 phosphorylation increased both basal and inducible c-Jun and NF-kappaB activities and rendered cells resistant to stress-induced apoptosis. Moreover, TRAF2 was found to be constitutively phosphorylated in some lymphomas. These results unveil a new, finely tuned mechanism for TNF-alpha-induced IKK activation modulated by TRAF2 phosphorylation and suggest that TRAF2 phosphorylation contributes to elevated levels of basal NF-kappaB activity in certain human cancers.  相似文献   

14.
Eukaryotic cells deal with accumulation of unfolded proteins in the endoplasmic reticulum (ER) by the unfolded protein response, involving the induction of molecular chaperones, translational attenuation, and ER-associated degradation, to prevent cell death. Here, we found that the autophagy system is activated as a novel signaling pathway in response to ER stress. Treatment of SK-N-SH neuroblastoma cells with ER stressors markedly induced the formation of autophagosomes, which were recognized at the ultrastructural level. The formation of green fluorescent protein (GFP)-LC3-labeled structures (GFP-LC3 “dots”), representing autophagosomes, was extensively induced in cells exposed to ER stress with conversion from LC3-I to LC3-II. In IRE1-deficient cells or cells treated with c-Jun N-terminal kinase (JNK) inhibitor, the autophagy induced by ER stress was inhibited, indicating that the IRE1-JNK pathway is required for autophagy activation after ER stress. In contrast, PERK-deficient cells and ATF6 knockdown cells showed that autophagy was induced after ER stress in a manner similar to the wild-type cells. Disturbance of autophagy rendered cells vulnerable to ER stress, suggesting that autophagy plays important roles in cell survival after ER stress.  相似文献   

15.
The apoptotic effect of oxidized LDLs (oxLDLs) is mediated through a complex sequence of signaling events involving a deregulation of the cytosolic Ca(2+) homeostasis. OxLDLs also trigger ER stress that may lead to cellular dysfunction and apoptosis, through the activation of the IRE1α/c-Jun N-terminal kinase pathway. Moreover, ER stress and oxidized lipids have been shown to trigger autophagy. The antiatherogenic high-density lipoproteins (HDLs) display protective effects against oxLDLs toxicity. To more deeply investigate the mechanisms mediating the protective effects of HDLs, we examined whether ER stress and autophagy were implicated in oxLDLs-induced apoptosis and whether HDLs prevented these stress processes. We report that, in human endothelial cells, HDLs prevent the oxLDL-induced activation of the ER stress sensors IRE1α, eIF2α and ATF6 and subsequent activation of the proapoptotic mediators JNK and CHOP. OxLDLs also trigger the activation of autophagy, as assessed by LC3 processing and Beclin-1 expression. The autophagic process is independent of the proapoptotic arms of ER stress, but Beclin-1 contributes to PS exposure and subsequent phagocytosis of oxLDLs exposed cells. Induction of autophagy and PS exposure by oxLDLs is prevented by HDLs. Finally, the cytosolic Ca(2+) deregulation triggered by oxLDLs is a common signaling pathway that mediates ER stress-induced cell death and autophagy, all these events being blocked by HDLs.  相似文献   

16.
Endoplasmic reticulum (ER) stress activates caspase-12 in murine cells, triggering the ER stress-specific cascade for implementation of apoptosis. In C2C12 murine myoblast cells, activation of the cascade occurs without release of cytochrome c from mitochondria, suggesting that the cascade is independent of mitochondrial damage. Stable overexpression of Bcl-xL in C2C12 cells suppressed activation of caspase-12 and apoptosis. In ER-stressed cells, but not in normal cells, Bcl-xL was co-immunoprecipitated with Bim, a pro-apoptotic member of the Bcl-2 family, suggesting that Bcl-xL sequesters Bim, thereby inhibiting the apoptotic signaling. Fractionation of C2C12 cells revealed that ER stress led to translocation of Bim from a dynein-rich compartment to the ER, while stable overexpression of Bcl-xL suppressed accumulation of Bim on the ER. Although the toxic effect of Bim had been previously observed only at the mitochondrial outer membrane, overexpression of a Bim derivative, Bim(ER), targeted at the surface of the ER led to apoptosis. A C2C12 transfectant overexpressing the caspase-12 suppressor protein was resistant to Bim(ER), suggesting that the toxic effect of Bim on the ER is dependent on activation of caspase-12. Knockdown of Bim by RNA interference provided cells resistant to ER stress. These results suggest that translocation of Bim to the ER in response to ER stress is an important step toward activation of caspase-12 and initiation of the ER stress-specific caspase cascade.  相似文献   

17.
18.
Mammalian target of rapamycin (mTOR) has a key role in the regulation of an array of cellular function. We found that rapamycin, an inhibitor of mTOR complex 1 (mTORC1), attenuated endoplasmic reticulum (ER) stress-induced apoptosis. Among three major branches of the unfolded protein response, rapamycin selectively suppressed the IRE1-JNK signaling without affecting PERK and ATF6 pathways. ER stress rapidly induced activation of mTORC1, which was responsible for induction of the IRE1-JNK pathway and apoptosis. Activation of mTORC1 reduced Akt phosphorylation, which was an event upstream of IRE-JNK signaling and consequent apoptosis. In vivo, administration with rapamycin significantly suppressed renal tubular injury and apoptosis in tunicamycin-treated mice. It was associated with enhanced phosphorylation of Akt and suppression of JNK activity in the kidney. These results disclosed that, under ER stress conditions, mTORC1 causes apoptosis through suppression of Akt and consequent induction of the IRE1-JNK pathway.  相似文献   

19.
Tumor necrosis factor α (TNF-α) receptor-associated factor 2 (TRAF2) regulates activation of the c-Jun N-terminal kinase (JNK)/c-Jun and the inhibitor of κB kinase (IKK)/nuclear factor κB (NF-κB) signaling cascades in response to TNF-α stimulation. Gene knockout studies have revealed that TRAF2 inhibits TNF-α-induced cell death but promotes oxidative stress-induced apoptosis. Here we report that TNF-α and oxidative stress both induce TRAF2 phosphorylation at serines 11 and 55 and that this dual phosphorylation promotes the prolonged phase of IKK activation while inhibiting the prolonged phase of JNK activation. Prolonged IKK activation trigged by TNF-α plays an essential role in efficient expression of a subset of NF-κB target genes but has no substantial role in TNF-α-induced cell death. On the other hand, TRAF2 phosphorylation in response to oxidative stress significantly promotes cell survival by inducing prolonged IKK activation and by inhibiting the prolonged phase of JNK activation. Notably, stable expression of phospho-null mutant TRAF2 in cancer cells leads to an increase in the basal and inducible JNK activation and B-cell lymphoma 2 (Bcl-2) phosphorylation. In addition, exposure of cells expressing phospho-null mutant TRAF2 to sublethal oxidative stress results in a rapid degradation of Bcl-2 and cellular inhibitor of apoptosis 1 as well as significantly increased cell death. These results suggest that TRAF2 phosphorylation is essential for cell survival under conditions of oxidative stress.  相似文献   

20.
内质网应激(endoplasmic reticulum stress,ERs)是内质网腔内错误折叠蛋白聚积的一种适应性反应,适度ERs通过激活未折叠蛋白反应起适应性的细胞保护作用,而过高和持久的ERs则通过诱导转录因子CHOP表达、激活caspase-12和c—Jun氨基末端激酶(JNK)等导致细胞凋亡。近年来,越来越多的研究提示内质网应激是神经退行性病变、2型糖尿病以及肥胖等疾病发生过程中的重要环节。对内质网应激的细胞效应分子机制进行综述。随着对ERs机制理解的深入,有可能会发现新的分子标志物或新的诊疗策略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号