首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Kinetic of the alpha-chymotrypsin catalyzed reversible hydrolytic reaction of methyl N-acetyl-L-phenylalaninate and N-acetyl-L-phenylalanylglycinamide at pH 5.5 and equilibrium conditions has been studied. The rates of the labeled reaction products incorporated into the substrate a different methanol concentrations shows that the reaction proceeds by a compulsory mechanism with the formation of N-acetyl-L-phenylalanine-alpha-chymotrypsin complex. For the amide substrate the data obtained are also in agreement with the compulsory mechanism of its hydrolysis. Equilibrium kinetics of ester and amide substrates hydrolysis has been compared.  相似文献   

2.
3.
4.
5.
6.
7.
Trypsin was isolated from ovine and porcine pancreas using affinity chromatography on immobilized p-aminobenzamidine. Molecular masses of the two proteins were 23900 and 23435 Da, determined by matrix-assisted laser desorption/ionisation time of flight (MALDI-TOF) mass spectrometry. The purified trypsins were compared using the kinetic properties K(m) and k(cat) which were determined at pH 8.0 and between 25 and 55 degrees C. Comparison of the Michaelis constants for ovine and porcine trypsins toward N-alpha-benzoyl-arginine-p-nitroanilide (BapNA) indicated that ovine trypsin had higher affinity for this substrate than the porcine enzyme. The rates of the reactions catalysed by the two enzymes correlated strongly over the range of temperatures and substrate concentrations tested, as did the k(cat) values. The specific activity of ovine trypsin for BapNA was, on average, approximately 10% higher than that of the porcine enzyme over the range of conditions tested. Porcine trypsin was less susceptible to denaturation at low pH or high temperature than was ovine trypsin. Porcine and ovine trypsin produced seven identically sized fragments from auto-catalytic hydrolysis. Proposed regions of identity between ovine and porcine trypsins were I(54)-K(77), L(98)-R(107), S(134)-K(178) and N(209)-K(116). Hydrolysis of beta-lactoglobulin, egg white lysozyme or casein by ovine or porcine trypsin yielded virtually identical patterns of fragments although the rate at which fragments were produced, in the case of beta-lactoglobulin, differed between the two enzymes. On balance the two enzymes appear to be functionally identical in their action.  相似文献   

8.
9.
A flow-injection analysis (FIA) system was developed to study the enzyme-catalyzed hydrolysis of synthetic peptides, each of which contained one scissile bond. The concentrations of alpha-amino groups in reactions mixtures were determined by FIA with o-phthalaldehyde as a fluorescence reagent. The method allows a rapid, precise, and sensitive determination of kinetic constants for proteases acting on extended peptide substrates.  相似文献   

10.
The interaction of heparin with human α-thrombin was investigated in the present report. Hydrolysis of synthetic tripeptide anilide substrates by thrombin was enhanced in the presence of heparin. With both N-α-benzoyl-l-phenylalanyl-l-valyl-l-arginine-p-nitroanilide (BzPheValArgNaN) and N-α-p-tosyl-l-glycyl-l-prolyl-l-arginine-p-nitroanilide (TosGlyProArgNaN), saturating concentrations of heparin enhanced the binding of substrate two-to threefold as determined by a decrease in the apparent Michaelis constant value, while having a marginal inhibitory effect on V. Substrate inhibition was observed with BzPheValArgNaN, which was enhanced in the presence of heparin. The enhancing effect of heparin on the binding of TosGlyProArgNaN was used to determine a dissociation constant value of 1.7 × 10?9m for the heparin · thrombin complex. This value is nearly two orders of magnitude lower than the dissociation constant value determined for the heparin · antithrombin III complex (B. Nordenman and I. Bjork, 1978, Biochemistry17, 3339–3344), suggesting strongly that heparin must bind to thrombin to account for the enhancing effect of heparin on the antithrombin III/thrombin reaction. Heparin also enhanced the rate of inactivation of thrombin by 1-chloro-3-tosylamido-7-amino-l-2-hepatonone, but had little effect on the inactivation rate with phenylmethanesulfonyl fluoride.  相似文献   

11.
12.
Proteolysis of casein substrates includes demasking stage, the transition of masked bonds to the demasked stage, where peptide bonds become accessible to the enzyme attack. Therefore, proteolysis was regarded as a two-stage process with consequent demasking and hydrolysis stages. When demasking process is kinetically significant, the peptide bonds are hydrolysed with some lag. It was shown both by theoretical simulations and experimentally that the increase of amino nitrogen can be a non-monotonous function of the hydrolysis degree or proteolysis time. The non-monotonously dependence was found for chymotryptic proteolysis of β-casein, while for α-casein the monotonous dependence was obtained. This was treated as an indication of the prevalence of the hydrophobically induced masking effect for β-casein. For the proteolysis of β-casein by wild-type and engineered trypsins, the kinetic analysis allowed us to conclude that demasking stage was initiated by the splitting of the main peptide chain, which compact conformation was initially stabilized by the interaction of hydrophobic regions of peptide chain.  相似文献   

13.
14.
Effects of Ca2+ on the kinetic parameters for the hydrolysis of mixed micelles of 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine (diC16PC) with Triton X-100, catalyzed by a cobra (Naja naja atra) (Group I) and a Habu (Trimeresurus flavoviridis) (Group II) PLA2s, were studied and compared with the results reported for other Group I and II enzymes. The substrate bindings to Group I enzymes were independent of the Ca2+ binding, whereas the substrate bindings to Group II enzymes were facilitated more than 10 times by the Ca2+ binding to the enzymes. The result for Group II enzymes, but not Group I enzymes, seemed compatible with the hypothesis for interpreting the catalytic mechanism that an intermediate complex should be stabilized by the coordination of the bound Ca2+ with the phosphoryl group and the carbonyl oxygen atom of the ester bond at the sn-2 position of the bound substrate molecule [Verheij et al. (1980) Biochemistry 19, 743-750 and (1981) Rev. Physiol. Biochem. Pharmacol. 91, 91-203]. The pH dependence of the kinetic parameters for the hydrolysis of the mixed micellar diC16PC, catalyzed by the cobra (N. naja atra) (Group I) and Habu (T. flavoviridis) (Group II) PLA2s, was also studied. The pK values of the catalytic group, His 48, and Tyr 52 for N. naja atra PLA2, shifted from 7.25 to 7.70 and from 10.30 to 10.85, respectively, and the corresponding values for T. flavoviridis PLA2 shifted from 5.80 to 6.95 and from 10.10 to 10.76, respectively, on binding of the micellar substrates to the enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Oxygen exchange in the amide group of leucine amide catalyzed by leucine aminopeptidase, and in leucyltyrosine amide catalyzed by porcine pepsin, was found to proceed mainly by the transfer of the leucyl residue onto the ammonia or tyrosine amide which are formed during the hydrolysis. Thus oxygen exchange in the non-hydrolyzed substrate can not be a proof of the tetrahedral intermediate formation in the course of the catalysis by proteolytic enzymes.  相似文献   

16.
17.
1. Bovine (Bos taurus) trypsin and trypsin activity in rat (Rattus norvegicus) pancreatic extract were inhibited by soybean trypsin inhibitor and by bovine basic pancreatic and colostrum inhibitors. 2. Bovine alpha-chymotrypsin was inhibited by soybean and bovine basic pancreatic inhibitors but only weakly by colostrum inhibitor. 3. Chymotrypsin activity in rat pancreatic extract was due to at least three different components against all of which the inhibitors were largely ineffective. 4. It is concluded that bovine colostrum inhibitor has a more limited inhibition spectrum than the phylogenetically related basic pancreatic inhibitor which, in turn, is less active against rat than against bovine enzymes.  相似文献   

18.
19.
Kinetics of tributyrin hydrolysis by lipase   总被引:1,自引:0,他引:1  
The kinetics for the tributyrin hydrolysis using lipase (Pseudomonas fluorscenes CCRC-17015) were investigated in the liquid–liquid and liquid–solid–liquid reaction systems in a batch reactor. The lipase was covalently immobilized onto the surface of porous polymethylacrylamide (PMAA) crosslinking with N,N-methylene biacrylamide with a spacer of ethylenediamine actived by glutaraldehyde. The conditions such as tributyrin concentration, temperature, agitation, and pH value, were evaluated to achieve the optimum reaction conditions for both free lipase and immobilized lipase. The kinetic parameters in the reaction system were also obtained for two reaction systems. The turnover numbers calculated for free lipase and immobilized lipase were 29 and 5.7 s−1, respectively. The parameters of k and km obtained using Lineweaver-Burk plot method were 26.2 mol/(mg min) and 1.35 mol/dm3 for free lipase, 5.2 mol/(mg min) and 0.2 mol/dm3 for immobilized lipase, respectively. The experimental results revealed good thermal stability, with greater stability at higher pH value for immobilized lipase in the liquid–solid–liquid reaction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号