首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Occurrence and relative incidence of viruses infecting papaya in Venezuela   总被引:1,自引:0,他引:1  
A survey of the main papaya (Carica papaya L.) production fields in Venezuela during 1997, indicated that crops were heavily affected with various virus‐like symptoms. A total of 745 samples from papaya plants showing symptoms suggestive of virus infection were collected and analysed using electron microscopy and enzyme‐linked immunosorbent assay (ELISA). Papaya ringspot virus (PRSV) and Papaya mild yellowing virus (PMYV) were the most frequently found viruses, which also occurred, in mixed infections. Rhabdovirus‐like particles were found only in samples collected in Distrito Federal (D.F). Papaya mosaic virus (papMV) and Tomato spotted wild virus (TSW V) were not detected during the survey.  相似文献   

4.
Papaya (Carica papaya L.) is a climacteric fleshy fruit that undergoes dramatic changes during ripening, most noticeably a severe pulp softening. However, little is known regarding the genetics of the cell wall metabolism in papayas. The present work describes the identification and characterization of genes related to pulp softening. We used gene expression profiling to analyze the correlations and co-expression networks of cell wall-related genes, and the results suggest that papaya pulp softening is accomplished by the interactions of multiple glycoside hydrolases. The polygalacturonase cpPG1 appeared to play a central role in the network and was further studied. The transient expression of cpPG1 in papaya results in pulp softening and leaf necrosis in the absence of ethylene action and confirms its role in papaya fruit ripening.  相似文献   

5.
6.
7.
8.
Transformation of agricultural crops with novel genes has significantly advanced disease-resistance breeding, including virus resistance through the expression of virus sequences. In this study, the effects of long-term, repeated exposure to transgenic papayas carrying the coat protein gene of Papaya ringspot virus and conventional non-transgenic papaya on the histology and selected biochemical parameters of the intestinal tract were compared. For 3 months, male and female Wistar rats received diets containing transgenic or non-transgenic papaya at twice the equivalent of the average daily consumption of fresh papayas. Gross and macroscopic appearance of intestinal tissues, as well as stomach tissues, was comparable (P < 0.05) as were total intestinal bacterial counts and activities of β-glucuronidase. Activities of disaccharidases were not affected, neither were those of amylase (P < 0.05). Although significant differences were noted in the activity of Ca2+ and Na+/K+ ATPase brush border enzymes, no morphological alteration in the integrity of the intestinal mucosa was found. Overall, negligible effects on feed intake, body weight, and fecal output were observed (P < 0.05). Taken together, long-term exposure to diets formulated with transgenic papaya did not result in biologically important unintended effects.  相似文献   

9.
Molecular biological characterization, fruit characters, and nutrients were analyzed for T4 generation of transgenic papaya. All transgenic papaya plants with the mutated replicase (RP) gene from papaya ringspot virus (PRSV) showed high resistance or immunity against PRSV in the field. The RP transgene can be steadily inherited to, and expressed at RNA level, the progenies. The growth characteristics of transgenic papaya were much better than non-transgenic papaya in the field. The non-transgenic papaya seedlings began to show typical symptoms caused by PRSV after being inoculated with PRSV. They died quickly and never grew to produce fruit. The adult trees developed yellow leaves and produced smaller fruits and were doomed to a slow death after some time, while most of transgenic papaya plants (about 91.8%) did not show any symptoms caused by PRSV, and produced more, bigger, and high quality fruits. Compared with non-transgenic plants, the fresh fruit length of T4 generation of transgenic papaya increased 2.6%–5%, and the diameter decreased 0.6%–1.5%. The flesh thickness of fresh fruit increased 12%–15%, which made it fitter for eating. Although the fresh fruit quality changed, there was no significant difference between transgenic and non-transgenic papaya. The quality characteristics of dry fruit including the contents of water, lipid, N, protein, reduced sugar, vitamin A, vitamin C, and carotene in the T4 generation of transgenic papaya were all the same as their non-transgenic parents. This means that transgenic plants and non-transgenic plants are substantially equivalent, and the transgene has no effect on dry fruit quality. In this study, we found that vitamin A and vitamin C in red-fleshed papaya were 1.4–1.8 and 1.78–2.07 times more than the yellow-fleshed ones, respectively, while N and protein were only 84.2%–92.1% and 82.1%–98.9% of the yellow-fleshed ones. Translated from Acta Ecologica Sinica, 2005, 25(12): 3301–3306 [译自: 生态学报]  相似文献   

10.
以模式植物拟南芥(Arabidopsis thaliana)和烟草(Nicotiana tabacum)及PRSV寄主植物番木瓜(CaricapapayaL.)作为试验材料,开展了番木瓜环斑病毒外壳蛋白基因dsRNA介导的PRSV病原抗性的研究。利用农杆菌介导法将番木瓜环斑病毒外壳蛋白CP基因反向重复表达载体pHellsgate12-CPIR(简称PHG12-CPIR)分别转化到烟草和拟南芥中,获得阳性植株,并利用渗透法和农杆菌介导的瞬时表达体系将pHG12-CPIR载体导入到番木瓜中。对转基因植株进行攻毒试验并分析了其抗病性。在接种3~7d内,在拟南芥和番木瓜上转基因植株的发病情况较轻,而野生型植株叶片与转基因植株相比,均表现出不同程度的黄化、皱缩和枯斑等症状。在接种PRSV后,番木瓜和拟南芥转化植株表现症状的叶片的比例与对照相比,结果显著低于对照,而在烟草植株上症状表现的差异不明显。在3种植物上RT-PCR检测结果显示,在接种番木瓜环斑病毒PRSV后,野生型植株中有高浓度的病毒积累,而转pHG12-CPIR基因植株中几乎没有病毒积累,推测转pHG12-CPIR基因植株中瞬时表达系统已启动RNAi机制抑制了CP基因的表达。  相似文献   

11.
Papaya (Carica papaya L.) production is affected by low temperatures that occur periodically in the subtropics. The C-repeat binding factor (CBF) gene family is known to induce the cold acclimation pathway in Arabidopsis thaliana. Embryogenic papaya cultures were induced from hypocotyls of “Sunrise Solo” zygotic embryos on semisolid induction medium. The CBF 1/CBF 3 genes along with the neomycin phosphotransferase (NPT II) gene were placed under the control of the CaMV 35 S promoter and introduced into a binary vector pGA 643. Embryogenic cultures were transformed with Agrobacterium strain GV 3101 harboring pGA 643. After selection of transformed embryogenic cultures for resistance to 300 mg l−1 kanamycin, somatic embryo development was initiated and transgenic plants were regenerated. The presence of the CBF transgenes in regenerated plants was confirmed by Southern blot hybridization. The papaya and the related cold-tolerant Vasconcella genomes were probed for the presence of cold inducible sequences using polymerase chain reaction (PCR). Possible cold inducible sequences were present in the Vasconcella genome but were absent in the Carica genome.  相似文献   

12.
TAXONOMY: Papaya ringspot virus (PRSV) is an aphid-transmitted plant virus belonging to the genus Potyvirus, family Potyviridae, with a positive sense RNA genome. PRSV isolates belong to either one of two major strains, P or W. The P strains infect both papaya and cucurbits whereas the W strains infect only cucurbits. GEOGRAPHICAL DISTRIBUTION: PRSV-P is found in all major papaya-growing areas. PHYSICAL PROPERTIES: Virions are filamentous, non-enveloped and flexuous measuring 760-800 x 12 nm. Virus particles contain 94.5% protein and 5.5% nucleic acid. The protein component consists of the virus coat protein (CP), which has a molecular weight of about 36 kDa as estimated by Western blot analysis. Density of the sedimenting component in purified PRSV preparations is 1.32 g/cm(3) in CsCl. GENOME: The PRSV genome consists of a unipartite linear single-stranded positive sense RNA of 10 326 nucleotides with a 5' terminus, genome-linked protein, VPg. TRANSMISSION: The virus is naturally transmitted via aphids in a non-persistent manner. Both the CP and helper component (HC-Pro) are required for vector transmission. This virus can also be transmitted mechanically, and is typically not seed-transmitted. HOSTS: PRSV has a limited number of hosts belonging to the families Caricaceae, Chenopodiaceae and Cucurbitaceae. Propagation hosts are: Carica papaya, Cucurbita pepo and Cucumis metuliferus cv. accession 2459. Local lesion assay hosts are: Chenopodium quinoa and Chenopodium amaranticolor. CONTROL: Two transgenic papaya varieties, Rainbow and SunUp, with engineered resistance to PRSV have been commercially grown in Hawaii since 1998. Besides transgenic resistance, tolerant varieties, cross-protection and other cultural practices such as isolation and rogueing of infected plants are used to manage the disease. VIRUS CODE: 00.057.0.01.045. VIRUS ACCESSION NUMBER: 57010045. USEFUL LINK: http://www.ncbi.nlm.nih.gov/ICTVdb/ICTVdB/57010045.htm.  相似文献   

13.
Summary Generation of transgenic papaya (Carica papaya L.) has been hampered by the low rates of transformation achieved by conventionalAgrobacterium infection or microprojectile bombardment. We describe an efficientAgrobacterium-mediated transformation method based on wounding of cultured embryogenic tissues with carborundum in liquid phase. Embryogenic tissues were obtained from cultured immature zygotic embryos collected 75–90 days after pollination. The expressible coat protein (CP) gene of a Taiwan strain of papaya ringspot virus (PRSV) was constructed in a Ti binary vector pBGCP, which contained the NPT-II gene as a selection marker. The embryogenic tissues were vortexed with 600 mesh carborundum in sterile distilled water for 1 min before treating with the disarmedA. tumefaciens containing the pBGCP. Transformed cells were cultured on kanamycin-free medium containing 2,4-D and carbenicillin for 2–3 weeks and then on the kanamycin medium for 3–4 months. The developed somatic embryos were transferred to the medium containing NAA, BA and kanamycin and subsequently regenerated into normal-appearing plants. Presence of the PRSV CP gene in the putative transgenic lines was detected by PCR and the expression of the CP was verified by Western blotting. The transgene was nuclearly inherited as revealed by segregation analysis in the backcrossed R1 progeny. From five independent experiments, the average successful rate of transformation was 15.9% of the zygotic embryos treated (52 transgenic somatic embryo clusters out of 327 zygotic embryos treated), about 10–100 times higher than the available methods previously reported. Thus, wounding highly regenerable differentiating tissues by carborundum vortexing provides a simple and efficient way for papaya transformation mediated byAgrobacterium.  相似文献   

14.
The commercially valuable transgenic papaya lines carrying the coat protein (CP) gene of Papaya ringspot virus (PRSV) and conferring virus resistance have been developed in Hawaii and Taiwan in the past decade. Prompt and sensitive protocols for transgene-specific and event-specific detections are essential for traceability of these lines to fulfill regulatory requirement in EU and some Asian countries. Here, based on polymerase chain reaction (PCR) approaches, we demonstrated different detection protocols for characterization of PRSV CP-transgenic papaya lines. Transgene-specific products were amplified using different specific primer pairs targeting the sequences of the promoter, the terminator, the selection marker, and the transgene, and the region across the promoter and transgene. Moreover, after cloning and sequencing the DNA fragments amplified by adaptor ligation-PCR, the junctions between plant genomic DNA and the T-DNA insert were elucidated. The event-specific method targeting the flanking sequences and the transgene was developed for identification of a specific transgenic line. The PCR patterns using primers designed from the left or the right flanking DNA sequence of the transgene insert in three selected transgenic papaya lines were specific and reproducible. Our results also verified that PRSV CP transgene is integrated into transgenic papaya genome in different loci. The copy number of inserted T-DNA was further confirmed by real-time PCR. The event-specific molecular markers developed in this investigation are crucial for regulatory requirement in some countries and intellectual protection. Also, these markers are helpful for prompt screening of a homozygote-transgenic progeny in the breeding program.  相似文献   

15.
16.
Molecular biological characterization,fruit characters,and nutrients were analyzed for T4 generation of transgenic papaya.All transgenic papaya plants with the mutated replicase (RP) gene from papaya ringspot virus (PRSV) showed high resistance or immunity against PRSV in the field.The RP transgene can be steadily inherited to,and expressed at RNA level,the progenies.The growth characteristics of transgenic papaya were much better than nontransgenic papaya in the field.The non-transgenic papaya seedlings began to show typical symptoms caused by PRSV after being inoculated with PRSV.They died quickly and never grew to produce fruit.The adult trees developed yellow leaves and produced smaller fruits and were doomed to a slow death after some time,while most oftransgenic papaya plants (about 91.8%) did not show any symptoms caused by PRSV,and produced more,bigger,and high quality fruits.Compared with non-transgenic plants,the fresh fruit length of T4 generation of transgenic papaya increased 2.6%-5%,and the diameter decreased 0.6%-1.5%.The flesh thickness of fresh fruit increased 12%-15%,which made it fitter for eating.Although the fresh fruit quality changed,there was no significant difference between transgenic and non-transgenic papaya.The quality characteristics of dry fruit including the contents of water,lipid,N,protein,reduced sugar,vitamin A,vitamin C,and carotene in the T4 generation of transgenic papaya were all the same as their non-transgenic parents.This means that transgenic plants and non-transgenic plants are substantially equivalent,and the transgene has no effect on dry fruit quality.In this study,we found that vitamin A and vitamin C in red-fleshed papaya were 1.4-1.8 and 1.78-2.07 times more than the yellow-fleshed ones,respectively,while N and protein were only 84.2%-92.1% and 82.1%-98.9% of the yellow-fleshed ones.  相似文献   

17.
Summary A reproducible and effective biolistic method for transforming papaya (Carica papaya L.) was developed with a transformation-regeneration system that targeted a thin layer of embryogenic tissue. The key factors in this protocol included: 1) spreading of young somatic embryo tissue that arose directly from excised immature zygotic embryos, followed by another spreading of the actively growing embryogenic tissue 3 d before biolistic transformation; 2) removal of kanamycin selection from all subsequent steps after kanamycin-resistant clusters were first isolated from induction media containing kanamycin; 3) transfer of embryos with finger-like extensions to maturation medium; and 4) transferring explants from germination to the root development medium only after the explants had elongating root initials, had at least two green true leaves, and were about 0.5 to 1.0 cm tall. A total of 83 transgenic papaya lines expressing the nontranslatable coat protein gene of papaya ringspot virus (PRSV) were obtained from somatic embryo clusters that originated from 63 immature zygotic embryos. The transformation efficiency was very high: 100% of the bombarded plates produced transgenic plants. This also represents an average of 55 transgenic lines per gram fresh weight, or 1.3 transgenic lines per embryo cluster that was spread. We validated this procedure in our laboratory by visiting researchers who did four independent projects to transform seven papaya cultivars with coat protein gene constructs of PRSV strains from four different countries. The method is described in detail and should be useful for the routine transformation and regeneration of papaya. Based in part on a presentation at the 1997 SIVB Congress on In Vitro Biology held in Washington, DC, June 14–18, 1997.  相似文献   

18.
The potyvirus Papaya ringspot virus (PRSV) is an important pathogen of papaya that causes severe losses in economic crops for papaya production globally. The coat protein (CP) genes of five PRSV isolates originating from different locations in China were cloned and sequenced. The CP-coding region varied in size from 864-873 nucleotides, encoding proteins of 288-291 amino acids. The five Chinese isolates of PRSV have been characterized as papaya-infecting (PRSV-P). The CP sequences of the Chinese isolates were compared with those of previously published PRSV isolates originating from different countries at amino acid levels. A number of KE repeat boxes in the N terminus of the PRSV-CP were found in all Chinese isolates. The phylogenetic branching pattern revealed that there was certain extended grouping between geographic locations, and the Asian type probably represents the oldest population of PRSV. The information of CP genes will be useful in designing and developing durable virus resistant-PRSV transgenic papaya in China. Meanwhile broad-spectrum-virus resistant, strongly resistant-PRSV and good safe papaya lines are required.  相似文献   

19.
Papaya (Carica papaya L.) is susceptible to viral diseases caused by Papaya mosaic virus (PapMV) and Papaya ringspot virus (PRSV), which limit fruit production and affect economic yield. The symptoms produced by both the viruses are similar in early stages of infection and include vein and leaf chlorosis, which develop into mosaic at later stages of infection when leaf lamina can get reduced in size and distorted with a shoe-string aspect. Digital image analyses, such as fractal dimension (FD) and lacunarity (λ) were used here to examine papaya tissue after single and mixed infections of PRSV and PapMV. Morphological changes, such as hypoplasia, hyperplasia, and neoplasia are described in tissues with viral infections. Furthermore, we quantified these changes and suggest three ranges of tissue damage according to their λ values in rank 1 (0.01 to 0.39), rank 2 (0.4 to 0.79), and rank 3 (0.8 to 1). Our analyses suggest that in synergism and antagonism there is a competition of both viruses to occupy the same mesophyll cells, as indicated by their intermediate values of lacunarity.  相似文献   

20.
Summary Transgenic papaya (Carica papaya L.) plants were regenerated from embryogenic cultures that were cocultivated with a disarmed C58 strain of Agrobacterium tumefaciens containing one of the following binary cosmid vectors: pGA482GG or pGA482GG/cpPRV-4. The T-DNA region of both binary vectors includes the chimeric genes for neomycin phosphotransferase II (NPTII) and ß-glucuronidase (GUS). In addition, the plant expressible coat protein (cp) gene of papaya ringspot virus (PRV) is flanked by the NPTII and GUS genes in pGA482GG/cpPRV-4. Putative transformed embryogenic papaya tissues were obtained by selection on 150 g·ml–1 kanamycin. Four putative transgenic plant lines were obtained from the cp gene vector and two from the cp gene+ vector. GUS and NPTII expression were detected in leaves of all putative transformed plants tested, while PRV coat protein expression was detected in leaves of the PRV cp gene+ plant. The transformed status of these papaya plants was analyzed using both polymerase chain reaction amplification and genomic blot hybridization of the NPTII and PRV cp genes. Integration of these genes into the papaya genome was demonstrated by genomic blot hybridizations. Thus, like numerous other dicotyledonous plant species, papayas can be transformed with A. tumefaciens and regenerated into phenotypically normal-appearing plants that express foreign genes.Journal Series no. 3757 of the Hawaii Institute of Tropical Agriculture and Human Resources  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号