首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Utilization of the side-chain precursors phenoxyacetic acid (POA) and phenylacetic acid (PA) for penicillin biosynthesis by Penicillium chrysogenum was studied in shake flasks. Precursor uptake and penicillin production were followed by HPLC analysis of precursors and products in the medium and in the cells. P. chrysogenum used both POA and PA as precursors, producing phenoxymethylpenicillin (penicillin V) and benzylpenicillin (penicillin G), respectively. If both precursors were present simultaneously, the formation of penicillin V was blocked and only penicillin G was produced. When PA was added at different times to cells that were induced initially for POA utilization and were producing penicillin V, the POA utilization and penicillin V formation were blocked, whereas the cells started utilizing PA and produced penicillin G. The blocking of the POA turnover lasted for as long as PA was present in the medium. If POA was added to cultures induced initially for PA utilization and producing penicillin G, this continued irrespective of the presence of POA. Utilization of POA increased concomitant with depletion of PA from the medium. Analysis of cellular pools from a growing cell system with POA as precursor to which PA was added after 48 h showed that the cellular concentration of POA was kept high without production of penicillin V and at a concentration comparable to the concentration in the medium. The cellular concentration of POA was higher than the concentration of PA that was utilized for penicillin G production. Correspondence to: S. Havn Eriksen  相似文献   

2.
Phenylacetic acid (PAA), a naturally-occurring acidic plant growth substance, was readily taken up by pea (Pisum sativum L. cv. Alderman) stem segments from buffered external solutions by a pH-dependent, non-mediated diffusion. Net uptake from a 0.2 M solution at pH 4.5 proceeded at a constant rate for at least 60 min and, up to approx. 100 M, the rate of uptake was directly proportional to the external concentration of the compound. The net rate of uptake of PAA was not affected by the inclusion of indol-3yl-acetic acid (IAA) in the uptake medium (up to approx. 30 M) and, unlike the net uptake of IAA, was not stimulated by N-1-naphthylphthalamic acid (NPA) or 2,3,5-triiodobenzoic acid. At an external concentration of 0.2 M and pH 4.5, the net rate of uptake of PAA was about twice that of IAA. It was concluded that the uptake of PAA did not involve the participation of carriers and that PAA was not a transported substrate for the carriers involved in the uptake and polar transport of IAA. Nevertheless, the inclusion of 3–100 M unlabelled PAA in the external medium greatly stimulated the uptake by pea stem segments of [1-14C]IAA (external concentration 0.2 M). It was concluded that whilst PAA was not a transported substrate for the NPA-sensitive IAA efflux carrier, it interacted with this carrier to inhibit IAA efflux from cells. Over the concentration range 3–100 M, PAA progressively reduced the stimulatory effect of NPA on IAA uptake, indicating that PAA also inhibited carrier-mediated uptake of IAA. The consequences of these observations for the regulation of polar auxin transport are discussed.Abbreviations IAA indol-3yl-acetic acid - DMO 5,5-dimethyloxazolidine-2,4-dione - NPA N-1-naphthylphthalamic acid - PAA phenylacetic acid - TIBA 2,3,5-triiodobenzoic acid  相似文献   

3.
Among 97 fungal strains isolated from soil collected in the arctic tundra (Spitsbergen), Penicillium chrysogenum 9 was found to be the best lipase producer. The maximum lipase activity was 68 units mL–1 culture medium on the fifth day of incubation at pH 6.0 and 20°C. Therefore, P. chrysogenum 9 was classified as a psychrotrophic microorganism. The non-specific extracellular lipase showed a maximum activity at 30°C and pH 5.0 for natural oils or at pH 7.0 for synthetic substrates. Tributyrin was found to be the best substrate for lipase, among those tested. The Km and Vmax were calculated to be 2.33 mM and 22.1 units mL–1, respectively, with tributyrin as substrate. The enzyme was inhibited more by EDTA than by phenylmethylsulfonyl fluoride and was reactivated by Ca2+. The P. chrysogenum 9 lipase was very stable in the presence of hexane and 1,4-dioxane at a concentration of 50%, whereas it was unstable in presence of xylene.  相似文献   

4.
Cucumber, as a strategy I plant, and Maize as a strategy II plant, were cultivated in hydroponic culture in the presence of a ferrated siderophore mixture (1 M) from a culture of Penicillium chrysogenumisolated from soil. The siderophore mixture significantly improved the iron status of these plants as measured by chlorophyll concentration to the same degree as a 100-fold higher FeEDTA supply. Analysis of the siderophore mixture from P. chrysogenum by HPLC and electrospray mass spectrometry revealed that besides the trihydroxamates, coprogen and ferricrocin, large amounts of dimerum acid and fusarinines were present which represent precursor siderophores or breakdown products of coprogen. In order to prove the iron donor properties of dimerum acid and fusarinines for plants, purified coprogen was hydrolyzed with ammonia and the hydrolysis products consisting of dimerum acid and fusarinine were used for iron uptake by cucumber and maize. In short term experiments radioactive iron uptake and translocation rates were determined using ferrioxamine B, coprogen and hydrolysis products of coprogen. While the trihydroxamates revealed negligible or intermediate iron uptake rates by both plant species, the fungal siderophore mixture and the ammoniacal hydrolysis products of coprogen showed high iron uptake, suggesting that dimerum acid and fusarinines are very efficient iron sources for plants. Iron reduction assays using cucumber roots or ascorbic acid also showed that iron bound to hydrolysis products of coprogen was more easily reduced compared to iron bound to trihydroxamates. Ligand exchange studies with epi-hydroxymugineic acid and EDTA showed that iron was easily exchanged between coprogen hydrolysis products and phytosiderophores or EDTA. The results indicate that coprogen hydrolysis products are an excellent source for Fe nutrition of plants.  相似文献   

5.
The uptake of the phosphonate ion, the active breakdown product in plant tissues of the systemic anti-Oomycete compound Fosetyl-Al (aluminium tris-Oethylphosphonate), was investigated in two Phytophthora spp. of differential sensitivity. Uptake was due to the simultaneous operation of two transport systems, one of low affinity (high K m) and one of high affinity (low K m). The relative contribution of each transport system varied with the external concentration of phosphonate, suggesting that phosphonate was a potent regulator of both systems. Phosphate was a partial competitive inhibitor with respect to phosphonate. Phosphate competed with phosphonate for uptake with a K i of 105 M for P. cryptogea and 68 M for P. citrophthora. Uptake was sensitive to pH, showing a maximum at pH 5.0 to 5.5. P. cryptogea was more efficient in phosphonate uptake, although it was less sensitive to inhibition by phosphonate in vitro, than P. citrophthora. This implied that the selective activity of phosphonate was not due to differential rates of uptake of this oxyanion. These results were discussed in relation to the mode of action of phosphonate towards Oomycetes.  相似文献   

6.
Sulfate uptake into duckweed (Lemna gibba G1) was studied by means of [35S]sulfate influx and measurements of electrical membrane potential. Uptake was strongly regulated by the intracellular content of soluble sulfate. At the onset of sulfate uptake the membrane potential was transiently depolarized. Fusicoccin stimulated uptake up to 165% of the control even at pH 8. It is suggested that sulfate uptake is energized in the whole pH range by a 3H+/sulfate cotransport mechanism. Kinetics of sulfate uptake and sulfate-induced membrane depolarization in the concentration range of 5 M to 1 mM sulfate at pH 5.7 was best described by two Michaelis-Menten terms without any linear component. The second system had a lower affinity for sulfate and was fully active only at sufficiently high proton concentrations.Abbreviations c o extracellular sulfate concentration - c i intracellular sulfate concentration - E m electrical membrane potential difference - E m sulfate-induced, maximal membrane depolarization - electrochemical proton gradient - FW fresh weight  相似文献   

7.
Valine uptake by isolated Commelina benghalensis L. mesophyll cells was measured over a wide concentration range (10-6–4·10-2 mol l-1). The uptake data were subjected to iterative fitting. Experiments with carbonyl cyanide mchlorophenyl hydrazone (CCCP), diethylstilbestrol (DES), and p-chloromercuriphenylsulphonic acid (PCMBS) provided evidence that the biphasic uptake kinetics of valine consists of a diffusional component and a biphasic active uptake. The data from the control experiments, were also best fitted to one diffusional component and two Michaelis-Menten systems. The presence of two carrier systems in the plasmalemma, however, was considered to be virtual for the following reasons: (1) Both phases of active uptake were equally decreased by high concentrations of K+-ions. (2) Fusicoccin stimulated the active uptake in both phases to the same extent. (3) Inhibitors of the proton-driven uptake (CCCP, DES, PCMBS) similarly inhibited the active uptake at all concentrations. (4) The active uptake equally responded in both phases to changes in the pH. (5) Light also promoted the active uptake over the whole concentration range. These results strongly indicate that, despite its biphasic character, the active uptake is due to one proton-driven carrier system.Abbreviations CCCP carbonyl cyanide m-chlorophenyl hydrazone - DES diethylstilbestrol - FC fusicoccin - MES 2-(N-morpholino)ethanesulphonic acid monohydrate - PCMBS p-chloromercuriphenylsulphonic acid - v uptake velocity - S substrate concentration - K m1 and K m2 Michaelis constants of the apparent high- and low-affinity system, respectively - V m1 and V m2 maximal uptake velocities of the apparent high- and low-affinity system - k linear uptake constant  相似文献   

8.
The kinetics of sodium dependency of GABA uptake by satellite glial cells was studied in bullfrog sympathetic ganglia. GABA uptake followed simple Michaelis-Menten kinetics at all sodium concentrations tested. Increasing external sodium concentration increased bothK m andV max for GABA uptake, with an increase in theV max/K m ratio. The initial rate of uptake as a function of the sodium concentration exhibited sigmoid shape at 100 M GABA. Hill number was estimated to be 2.0. Removal of external potassium ion or 10 M ouabain reduced GABA uptake time-dependently. The effect of ouabain was potentiated by 100 M veratrine. These results suggest that at least two sodium ions are involved with the transport of one GABA molecule and that sodium concentration gradient across the plasma membrane is the main driving force for the transport of GABA. The essential sodium gradient may be maintained by Na+, K+-ATPase acting as an ion pump.  相似文献   

9.
B. N. Patel  M. J. Merrett 《Planta》1986,169(1):81-86
The regulation of carbonic anhydrase by environmental conditions was determined forChlamydomonas reinhardtii. The depression of carbonic anhydrase in air-grown cells was pH-dependent. Growth of cells on air at acid pH, corresponding to 10 m CO2 in solution, resulted in complete repression of carbonic-anhydrase activity. At pH 6.9, increasing the CO2 concentration to 0.15% (v/v) in the gas phase, corresponding to 11 M in solution, was sufficient to completely repress carbonic-anhydrase activity. Photosynthesis and intracellular inorganic carbon were measured in air-grown and high-CO2-grown cells using a silicone-oil centrifugation technique. With carbonic anhydrase repressed cells limited inorganic-carbon accumulation resulted from non-specific binding of CO2. With air-grown cells, inorganic-carbon uptake at acid pH, i.e. 5.5, was linear up to 0.5 mM external inorganic-carbon concentration whereas at alkaline pH, i.e. 7.5, the accumulation ratio decreased with increase in external inorganic-carbon concentration. It is suggested that in air-grown cells at acid pH, CO2 is the inorganic carbon species that crosses the plasmalemma. The conversion of CO2 to HCO 3 - by carbonic anhydrase in the cytosol results in inorganic-carbon accumulation and maintains the diffusion gradient for carbon dioxide across the cell boundary. However, this mechanism will not account for energy-dependent accumulation of inorganic carbon when there is little difference in pH between the exterior and cytosol.  相似文献   

10.
The ability of the freshwater alga, Chlorella kessleri, to maintain a carbon concentrating mechanism when grown at acid pH was investigated. The alga grows over the pH range 4.0–9.0 and was found to take up bicarbonate and CO2 actively when grown at pH 6.0. However, when grown at acid pH (below 5.5), it does not have active CO2 uptake. The acidotolerant species maintained an internal pH of 6.1–7.5 over the external pH range 4.5–7.5, thus the pH difference between the cell interior and the external medium was large enough to allow for the diffusive uptake of CO2 at acid external pH. Mass spectrometric monitoring of O2 and CO2 fluxes by suspensions of C. kessleri, grown at acid pH, and maintained at pH 7.5 showed that the rates of O2 evolution did not exceed those of CO2 uptake. The final CO2 compensation concentrations of 14.0–17.7 µM reached by photosynthetic cells were above the CO2 equilibrium concentration in the external medium, indicating a lack of active CO2 uptake at acid pH. Chlorella kessleri accumulated CO2 with internal concentrations that were 9.9, 18.7 and 22.7‐fold that of the external medium for cells grown, respectively, at pH 4.5, 5.0 and 5.5. The ability of C. kessleri cells to accumulate high intracellular concentrations of inorganic carbon at acid pH would provide a sufficiently high concentration of CO2 at the active site of Rubisco thus allowing the alga to maintain growth rates similar to those at alkaline pH.  相似文献   

11.
Two uptake systems for taurine transport in a rat hypothalamic crude synaptosomal preparation were identified. The true transport constants were, for the high-affinity uptake system,K m=240 M andV (maximum velocity)=400 nmol/g protein/min, and for the low-affinity uptake system.K m=5290 M and V=1640 nmol/g protein/min. The initial velocity of high-affinity taurine uptake by the crude synaptosomal preparation was studied as a function of sodium and taurine concentration. Hill plots were constructed from these data. The requirement of high-affinity taurine uptake on a sodium gradient was examined by utilizing monensin, and the metabolic poisons, 2,4-dinitrophenol and ouabain. The major findings are as follows: 1) One sodium ion is co-transported with each taurine molecule; 2) the high-affinity uptake process is driven by the sodium concentration gradient across the membrane; 3) sodium increases the maximal velocity rather than the affinity of the high-affinity taurine carrier for the taurine molecule; 4) one taurine molecule is transported per carrier for both the high- and low-affinity taurine uptake systems; and 5) high-affinity taurine uptake is an energy-dependent process.  相似文献   

12.
Summary The penDE gene encoding acyl-CoA:6-amino penicillanic acid acyltransferase (AAT), the last enzyme of the penicillin biosynthetic pathway, has been cloned from the DNA of Aspergillus nidulans. The gene contains three introns which are located in the 5 region of the open reading frame. It encodes a protein of 357 amino acids with a molecular weight of 39 240 Da. The penDE gene of A. nidulans shows 73% similarity at the nucleotide level with the penDE gene of Penicillium chrysogenum. The A. nidulans gene was expressed in P. chrysogenum and complemented the AAT deficiency of the non-producer mutants of P. chrysogenum, npe6 and npe8. The penDE gene of A. nidulans is linked to the pcbC gene, which encodes the isopenicillin N synthase, as also occurs in P. chrysogenum. Both genes show the same orientation and are separated by an intergenic region of 822 nucleotides.  相似文献   

13.
Aspergillus nidulans andPenicillium chrysogenum are related fungi that reproduce asexually by forming multicellular conidiophores and uninucleate conidia. InA. nidulans, spore maturation is controlled by thewetA (AwetA) regulatory gene. We cloned a homologous gene (PwetA) fromP. chrysogenum to determine if spore maturation is regulated by a similar mechanism in this species. ThePwetA andAwetA genes are similar in structure and functional organization. The inferred polypeptides share 77% overall amino acid sequence similarity, with several regions having > 85% similarity. The genes also had significant, local sequence similarities in their 5 flanking regions, including conserved binding sites for the product of the regulatory geneabaA.PwetA fully complemented anA. nidulans wetA deletion mutation, demonstrating thatPwetA and its 5 regulatory sequences function normally inA. nidulans. These results indicate that the mechanisms controlling sporulation inA. nidulans andP. chrysogenum are evolutionarily conserved.  相似文献   

14.
Research was conducted in an experimental roomto measure the effect of human activity onairborne dispersal of settled fungal sporesfrom carpet and vinyl tile flooring. A seriesof experiments were conducted in whichcommercial loop pile carpet, residential cutpile carpet, or vinyl tile installed in theexperimental room were contaminated with Penicillium chrysogenum spores. The flooringmaterials were contaminated to two differentlevels (106 and 107 colony formingunits per square meter [c.f.u./m2] offlooring surface). Airborne culturable andtotal P. chrysogenum concentrations weremeasured using Andersen single-stage impactorsamplers and Burkard personal slide impactorsamplers, respectively. Bioaerosolconcentrations were measured at floor level, 1meter, and the adult breathing zone (1.5 meter)heights before and after human activityconsisting of walking in a prescribed patternfor 1 minute in the room. Airborne P.chrysogenum concentrations were greater withthe higher surface loading for all threeflooring materials. For all flooring materialsthere was no significant difference betweensampler locations, although the data from the1-meter location were the highest, followed bythe floor level and the breathing zonelocations, respectively. The data from theseexperiments indicate that while a very smallfraction of culturable P. chrysogenumspores present on flooring materials wereaerosolized by walking, relatively highairborne concentrations of spores maybere-entrained from contaminated materials. Theairborne P. chrysogenum concentrationswere significantly higher after walking on cutpile carpet than with the other two flooringmaterials at both contamination levels, withthe differences in concentration often 2orders of magnitude. No differences weremeasured in airborne culturable P.chrysogenum between vinyl flooring and looppile carpet at both contamination levels. Total spore data from the experiments with the107 c.f.u./m2 contamination levelindicated that walking on loop pile carpetproduced higher airborne spore concentrationsthan similarly contaminated vinyl tile althoughno significant difference was observed at the106 c.f.u./m2 level.  相似文献   

15.
Summary Intact biomass of an albino and a melanic strain of Aureobacidium pullulans, as well as purified melanin from the latter strain, was capable of tributyltin chloride (TBTC) removal from solution. Melanized biomass had a greater biosorptive capacity than albino biomass, this difference being attributable to the presence of melanin. Purified melanin had a large capacity for TBTC biosorption, the calculated maximum uptake capacity, q e, being approximately 35 mmol (g dry wt)–1. TBTC biosorption by intact biomass and melanin obeyed the Langmuir adsorption isotherm over the concentration range used, and was relatively unaffected by external pH between pH 3.5 and 6.5: an approximate 20% decrease in TBTC biosorption resulted at external pH 2.5. A TBTC concentration of 0.3 M in growth medium resulted in a lag period which was longer with the albino strain (approximately 50 h) than with the pigmented strain (approximately 25 h). The addition of melanin to TBTC-containing growth media resulted in a reduction in toxicity and attainment of higher cell yields. The applied and environmental significance of these interactions are discussed. Offprint requests to: G. M. Gadd  相似文献   

16.
The cyanobacterium Anabaena variabilis showed a pH dependent uptake of ethylenediamine. No uptake of ethylenediamine was detected at pH 7.0. At higher pH values (e.g. pH 8.0 and pH 9.0) accumulation did occur and was attributed to diffusion of uncharged ethylenediamine in response to a pH gradient. A biphasic pattern of uptake was observed at these higher pH values. Treatment with l-methionine-d,l-sulphoximine (MSX) to inactivate glutamine synthetase (GS) inhibited the second slower phase of uptake without any significant alteration of the initial uptake. Therefore for sustained uptake, metabolism of ethylenediamine via GS was required. NH 4 + did not alter the uptake of ethylenediamine. Ethylenediamine was converted in the second phase of uptake to an analogue of glutamine which could not be detected in uptake experiments at pH 7.0 or in uptake experiments at pH 9.0 following pretreatment of cells with MSX. Ethylenediamine treatment inhibited nitrogenase activity and this inhibition was greatest at high pH values.Abbreviations EDA 1,2-diaminoethane (ethylenediamine) - GS glutamine synthetase - HEPES 4-(2-hydroxyethyl)-1 piperazine ethanesulphonic acid - MSX l-methionine-dl-sulphoximine - membrane potential - Tricine N-tris(hydroxymethyl) methylglycine  相似文献   

17.
The pH in the cytoplasm of aerobic and anaerobic cells of the green algae Chlorella fusca and Chlorella vulgaris was determined in dependence on the pH of the external medium, which was varied between pH 3 and pH 10. In aerobic cells of both species the cytoplasmic pH is maintained at a value above 7.2 even at an external pH of 3 and below 7.8 at an external pH of 10. In anaerobic cells the cytoplasmic pH shows linear dependence on external pH in the range of pH 6 to 9 (cytoplasmic pH 6.9 to 7.2), while below an external pH of 6 cytoplasmic pH is maintained at about 6.5.Abbreviations CCCP Carbonylcyanide-m-chlorophenyl-hydrazone - EDTA Ethylendiaminetetraacetic acid - MES 2-(N-Morpholino)-ethanesulfonic acid - MOPSO 3-(N-Morpholino)-2-hydroxy-propanesulfonic acid - NMR Nuclear Magnetic Resonance - pH cyt cytoplasmic pH - pH ex external pH - PIPES Piperazine-N,N-bis(2-ethanesulfonic acid) - PPi Pyrophosphate - PP1, PP2, PP3 1st, 2nd, 3rd phosphate group of polyphosphates - PP4 core phosphate groups of polyphosphates - TRIS Tris-hydroxymethyl-aminomethane  相似文献   

18.
The contribution of Mg deficiency to Al stress in twelve different sorghum (Sorghum bicolor (L.) Moench) genotypes was investigated in nutrient solution culture under conditions of low Mg supply (between 50 and 1000 M) at two pH values. At pH 4.2, 30 M Al strongly inhibited Mg uptake. When dry matter yield was plotted as a function of the plant Mg concentration, similar response curves were obtained in the absence and the presence of Al with three genotypes. With many other genotypes dry matter yields of the control (without Al treatment) and Al-stressed plants were remarkably different at similar internal Mg concentrations, suggesting that growth had been suppressed not by Mg deficiency but by another factor, i.e. Al-induced root damage. At pH 4.8, 30 M Al hardly induced root damage but reduced Mg uptake and Al-induced Mg deficiency could almost completely account for the growth reaction of all genotypes. Therefore, at this pH the efficiency of uptake or use of Mg in different genotypes was the basis of their respective susceptibility to Al toxicity. When specific root length surpassed a certain critical range below 80–100 m per g dry root, growth control by Al-induced Mg deficiency was nearly abolished. The pH and Al concentration where this range was reached depended on the Al sensitivity of the genotypes.  相似文献   

19.
E. Johannes  H. Felle 《Planta》1985,166(2):244-251
The transport of several amino acids with different side-chain characteristics has been investigated in the aquatic liverwort Riccia fluitans. i) The saturation of system I (neutral amino acids) by addition of excess -aminoisobutyric acid to the external medium completely eliminated the electrical effects which are usually set off by neutral amino acids. Under these conditions arginine and lysine significantly depolarized the plasmalemma. ii) L- and D-lysine/arginine were discriminated against in favour of the L-isomers. iii) Increasing the external proton concentration in the interval pH 9 to 4.5 stimulated plasmalemma depolarization, electrical net current, and uptake of [14C]-basic amino acids. iv) Uptake of [14C]-glutamic acid took place only at acidic pHs. v) [14C]-histidine uptake had an optimum between pH 6 and 5.5. vi) Overlapping of the transport of basic, neutral, and acidic amino acids was common. It is suggested that besides system I, a second system (II), specific for basic amino acids, exists in the plasmalemma of Riccia fluitans. It is concluded that the amino-acid molecule with an uncharged side chain is the substrate for system I, which also binds and transports the neutral species of acidic amino acids, whereas system II is specific for amino acids with a positively charged side chain. The possibility of system II being a proton cotransport is discussed.Abbreviation AiB -aminoisobutyric acid  相似文献   

20.
The cyanobacteria Anabaena variabilis and Nostoc CAN showed a biphasic pattern of 14CH3NH 3 + uptake at external pH values of 7.0 and 9.0. The initial phase of uptake, which was independent of metabolism of 14CH3NH 3 + , was attributed to uptake via a CH3NH 3 + (NH 4 + ) transport system at pH 7.0 and probably to passive diffusion of uncharged CH3NH2 and trapping by protonation at pH 9.0. The second slower phase of uptake was attributed to metabolism of CH3NH 3 + via glutamine synthetase to form -methylglutamine which accumulates. Anabaena cylindrica showed an initial rapid uptake at pH 7.0 and pH 9.0 but metabolism of 14CH3NH 3 + was undetectable at pH 7.0 and was barely detectable at pH 9.0. Pretreatment of A. variabilis with l-methionine-d,l-sulphoximine to inactivate glutamine synthetase, inhibited the second phase of 14CH3NH 3 + uptake at both pH 7.0 and pH 9.0 and the accumulation of -methylglutamine but had no effect on the first phase of uptake. Following transfer of A. variabilis to darkness the initial phase of 14CH3NH 3 + uptake at pH 7.0 and 9.0 was unaffected but the subsequent metabolism via glutamine synthetase was inhibited.Abbreviations MSX l-methionine-d,l-sulphoximine - GS glutamine synthetase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号