首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The time course for the observation of intact chlorophyll-protein (CP) complexes during barley chloroplast development was measured by mild sodium dodecyl sulfate polyacrylamide gel electrophoresis. The procedure required extraction of thylakoid membranes with sodium bromide to remove extrinsic proteins. During the early stages of greening, the proteins extracted with sodium bromide included polypeptides from the cell nucleus that associate with developing thylakoid membranes during isolation and interfere with the separation of CP complexes by electrophoresis. Photosystem I CP complexes were observed before the photosystem II and light-harvesting CP complexes during the initial stages of barley chloroplast development. Photosystem I activity was observed before the photosystem I CP complex was detected whereas photosystem II activity coincided with the appearance of the CP complex associated with photosystem II. Throughout chloroplast development, the percentage of the total chlorophyll associated with photosystem I remained constant whereas the amount of chlorophyll associated with photosystem II and the light-harvesting complex increased. The CP composition of thylakoid membranes from the early stages of greening was difficult to quantitate because a large amount of chlorophyll was released from the CP complexes during detergent extraction. As chloroplast development proceeded, a decrease was observed in the amount of chlorophyll released from the CP complexes by detergent action. The decrease suggested that the CP complexes were stabilized during the later stages of development.Abbreviations Chl chlorophyll - CP chlorophyll-protein - CPI P700 chlorophyll-a protein complex of photosystem I - CPa electrophoretic band that contains the photosystem II reaction center complexes and a variable amount of the photosystem I light-harvesting complex - CP A/B the major light-harvesting complex associated with photosystem II - DCIP 2,6-dichlorophenolindophenol - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DPC diphenyl carbazide - MV methyl viologen - PAR photosynthetically active radiation - PSI photosystem I - PSII photosystem II - SDS sodium dodecyl sulfate - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - TEMED N,N,N,N-tetramethylethylenediamine - TMPD N,N,N,N-tetramethyl-p-phenylenediamine Cooperative investigations of the United States Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Research Service, Raleigh, NC 27695-7601. Paper No. 9949 of the Journal Series of the North Carolina Agricultural Research Service, Raleight, NC 27695-7601.  相似文献   

2.
The chlorophyll-protein and polypeptide composition of manganese deficient and control sugar beet thylakoids was examined using three different detergent-electrophoresis systems. On a per chlorophyll basis, manganese deficiency reduced the amounts of CPa complex (separated by sodium dodecylsulfate (SDS)-polyacrylamide gel electrophoresis), and CP 47 and CP 43 complexes (separated by octylglucoside/SDS-polyacrylamide gel electrophoresis) without decreasing the amounts of light harvesting complexes. Lithium dodecylsulfate/Triton X-100 polyacrylamide gel electrophoresis showed that manganese deficiency decreased several thylakoid polypeptides, including a chlorophyll b containing 30 kilodalton chlorophyll-protein complex, but did not decrease the amounts of 28 and 29 kilodalton light-harvesting chlorophyll b-containing polypeptides.  相似文献   

3.
4.
Summary The chloroplast genome of the IS1112C cytoplasm of sorghum was mapped by the construction of a Bam-HI library in pUC8, and hybridization with BamHI, SalI, and PstI digests of chloroplast DNA (ctDNA) of sorghum and maize. The molecules are extensively colinear, with only one of 13 SalI fragments differing slightly from maize. Seven of 70 restriction sites differed in the two species. A total molecular size of ca. 138 kb was estimated for sorghum. The inverted repeat was not conserved between sorghum and maize, as revealed by a slightly larger BamHI 16S rDNA fragment in sorghum. Homology of a sequence adjacent to the bcl gene and one end of the inverted repeat was detected. These homologies were also observed in maize, and suggest that the ctDNA genomes of sorghum and maize share small reiterations of sequences of the inverted repeat.USDA-ARS  相似文献   

5.
Localization of apoproteins of the major light-harvesting complex (LHCII) in Chl b -less cells of Chlamydomonas reinhardtii cbn 1–113 was determined by immunoelectron microscopy. In dark-grown cells, a low amount of apoproteins was detected in cytoplasmic vacuoles. The amount in vacuoles, and in the cytosol, increased dramatically when the rate of protein synthesis was enhanced in the dark by raising the temperature to 38°C. After exposure of cells to light, the apoproteins accumulated also in the chloroplast. Mature-sized apoproteins were recovered in an alkali-soluble fraction of cellular proteins commensurate with accumulation in the cytoplasm. At 25°C, content of apoproteins in the chloroplast of pale-green cells grown in medium lacking acetate was one-half of the amount in cells grown with acetate, yet the total amount remained similar. Cytoplasmic vacuoles, which were nearly filled with immunoreactive, electron-opaque material, were more abundant in cells grown without acetate as compared with cells grown with acetate. Accumulation of apoproteins outside of the chloroplast suggested that translocation into the organelle of a portion of the apoproteins, apparently synthesized in excess of the amount accommodated by Chl synthesis, was aborted after processing of precursors. These results suggested that assembly of LHCII was required for retention of apoproteins by the chloroplast.  相似文献   

6.
Inhibition of chloroplast development by tentoxin   总被引:1,自引:0,他引:1  
Light-dependent chloroplast development in detached pea shoots was measured in terms of chlorophyll synthesis and the synthesis of Fraction 1 protein. Both synthetic processes were inhibited more than 90% by the fungal metabolite, tentoxin (1 or 10 μg/ml). These results place Pisum sativum in the class of tentoxin-sensitive higher plants. Tentoxin, actinomycin D, lincomycin, D-threo-chloramphenicol and carbonyl cyanide m-chlorophenyl-hydrazone (CCCP) were compared in their ability to inhibit RNA and protein synthesis by isolated pea chloroplasts. Energy for the synthetic reactions was supplied either by light or by added ATP. Only CCCP gave the same pattern of inhibition as tentoxin, i.e. inhibition of both RNA and protein synthesis in the light-driven system but no inhibition in the ATP-driven system. It is concluded that chloroplast developmental processes are inhibited by tentoxin through the inhibition of photophosphorylation.  相似文献   

7.
We examined the DNA from chloroplasts obtained from different tissues of juvenile maize seedlings (from eight to 16 days old) and adult plants (50-58 days old). During plastid development, we found a striking progression from complex multigenomic DNA molecules to simple subgenomic molecules. The decrease in molecular size and complexity of the DNA paralleled a progressive decrease in DNA content per plastid. Most surprising, we were unable to detect DNA of any size in most chloroplasts from mature leaves, long before the onset of leaf senescence. Thus, the DNA content per plastid is not constant but varies during development from hundreds of genome copies in the proplastid to undetectable levels in the mature chloroplast. This loss of DNA from isolated, mature chloroplasts was monitored by three independent methods: staining intact chloroplasts with 4',6-diamidino-2-phenylindole (DAPI); staining at the single-molecule level with ethidium bromide after exhaustive deproteinization of lysed chloroplasts; and blot-hybridization after standard DNA isolation procedures. We propose a mechanism for the production of multigenomic chloroplast chromosomes that begins at paired DNA replication origins on linear molecules to generate a head-to-tail linear concatemer, followed by recombination-dependent replication.  相似文献   

8.
9.
Abstract Alterations in the composition and structure of thylakoids were studied in Brassica rapa ssp. oleifera grown under high and low irradiance (800 μmol m?2 s?1 and 80 μmol m?2 s?1). During ageing, both high and low light induced a decrease in total protein particle density and in the relative amount of 80–90 Å cytochrome b6/f and 90–100 Å ATP-synthetase. The density of PSII complexes in stacked (EFs) and unstacked (EFu) thylakoids also decreased. In high light, a shift was noted towards smaller PSII complexes in the EFs face with decreasing attached antenna complex CP29, but the relative amount of the antenna chlorophyll a-protein complexes of photosystem II (CPa) remained stable. In contrast, the proportion of peripheral LHCH on the PFs face and the density of PFs particles increased together with an increase in grana size. In low light, a shift occurred towards larger PSII complexes on the EFs face, along with a decrease in the proportion of CPa complexes and the PFs particle density (peripheral LHCH), though a marked increase was observed in the proportion of chlorophyll a/b-protein complexes in SDS-PAGE. The amount of photosystem I in green gel remained fairly stable, although the density of PFu particles (including PSI) increased in low and slightly diminished in high light. The results indicate that the organization of thylakoid components depends strongly on the light conditions and stage of development.  相似文献   

10.
Changes in chloroplast number during pea leaf development   总被引:3,自引:0,他引:3  
Protoplasts were prepared from pea (Pisum sativum L.) leaves throughout development and their contents spread in a monolayer to determine the number of chloroplasts per cell. This approach permitted the rapid analysis of more than 100 cells at each stage of development. The average number of chloroplasts per cell increased from 24±10 to 64±20 during greening and expansion of the first true foliage leaves; all cells containing chloroplasts apparently increase their chloroplast number. A parallel increase in the amount of DNA per nucleus was not observed. As the leaves senesced the chloroplast number gradually decreased to 44±12. We have correlated these changes with our previous results on the percentage of chloroplast DNA per cell. Chloroplast multiplication resulted in a 2.7-fold dilution (from 272 to 102) of the number of copies of the chloroplast DNA molecule per plastid.  相似文献   

11.
The Spo0B-associated GTP-binding protein (Obg) GTPase, essential for bacterial viability, is also conserved in eukaryotes, but its primary role in eukaryotes remains unknown. Here, our functional characterization of Arabidopsis and rice obgc mutants strongly underlines the evolutionarily conserved role of eukaryotic Obgs in organellar ribosome biogenesis. The mutants exhibited a chlorotic phenotype, caused by retarded chloroplast development. A plastid DNA macroarray revealed a plastid-encoded RNA polymerase (PEP) deficiency in an obgc mutant, caused by incompleteness of the PEP complex, as its western blot exhibited reduced levels of RpoA protein, a component of PEP. Plastid rRNA profiling indicated that plastid rRNA processing is defective in obgc mutants, probably resulting in impaired ribosome biogenesis and, in turn, in reduced levels of RpoA protein. RNA co-immunoprecipitation revealed that ObgC specifically co-precipitates with 23S rRNA in vivo. These findings indicate that ObgC functions primarily in plastid ribosome biogenesis during chloroplast development. Furthermore, complementation analysis can provide new insights into the functional modes of three ObgC domains, including the Obg fold, G domain and OCT.  相似文献   

12.
13.
14.
A method for the extraction of ctDNA from isolated chloroplast was developed. This method is simple and adapted particularly to broad-leaved trees, including sclerophyllous species with high phenolic and polysaccharide contents. This method includes two major steps: first, chloroplasts are isolated in non-aqueous solutions to avoid oxidation and phenolic problems; second, ctDNA is extracted from the chloroplasts using aqueous solutions and specific methods to provide highly purified ctDNA.  相似文献   

15.
16.
In most plants the assembly of the photosynthetic thylakoid membrane requires lipid precursors synthesized at the endoplasmic reticulum (ER). Thus, the transport of lipids from the ER to the chloroplast is essential for biogenesis of the thylakoids. TGD2 is one of four proteins in Arabidopsis required for lipid import into the chloroplast, and was found to bind phosphatidic acid in vitro. However, the significance of phosphatidic acid binding for the function of TGD2 in vivo and TGD2 interaction with membranes remained unclear. Developing three functional assays probing how TGD2 affects lipid bilayers in vitro, we show that it perturbs membranes to the point of fusion, causes liposome leakage and redistributes lipids in the bilayer. By identifying and characterizing five new mutant alleles, we demonstrate that these functions are impaired in specific mutants with lipid phenotypes in vivo. At the structural level, we show that TGD2 is part of a protein complex larger than 500 kDa, the formation of which is disrupted in two mutant alleles, indicative of the biological relevance of this TGD2-containing complex. Based on the data presented, we propose that TGD2, as part of a larger complex, forms a lipid transport conduit between the inner and outer chloroplast envelope membranes, with its N terminus anchored in the inner membrane and its C terminus binding phosphatidic acid in the outer membrane.  相似文献   

17.
Assembly of the major light-harvesting complex (LHC II) and development of photosynthetic function were examined during the initial phase of thylakoid biogenesis inChlamydomonas reinhardtii cells at 38°C. Continuous monitoring of LHC II fluorescence showed that these processes were initiated immediately upon exposure of cells to light. However, mature-size apoproteins of LHC II (Lhcb) increased in amount in an alkali-soluble (non-membrane) fraction in parallel with the increase in the membrane fraction. Alkali-soluble Lhcb were not integrated into membranes when protein synthesis was inhibited, suggesting that they were not active intermediates in LHC II assembly, nor were they recovered in a purified chloroplast preparation. Immunocytochemical analysis of greening cells revealed Lhcb inside the chloroplast near the envelope and in clusters deeper in the organelle. Antibody binding also detected Lhcb in granules within vacuoles in the cytosol, and Lhcb were recovered in granules purified from greening cells. Our results suggest that the cytosolic granules serve as receptacles of Lhcb synthesized in excess of the amount that can be accommodated by thylakoid membrane formation within the plastid envelope.  相似文献   

18.
<正>Nelumbonaceae is a morphologically unique family of angiosperms and was traditionally placed in Nymphaeales;more recently,it was placed in Proteales based on molecular data,or in an order of its own,Nelumbonales. To determine the systematic position of the family and to date the divergence time of the family and the divergence time of its two intercontinentally disjunct species,we sequenced the entire chloroplast genome of Nelumbo lutea and most of the chloroplast genes of,N.nucifera.We carried out phylogenetic and molecular dating analyses of the two species and representatives of 47 other plant families,representing the major lineages of angiosperms, using 83 plastid genes.The N.lutea genome was 163 510 bp long,with a total of 130 coding genes and an overall GC content of 38%.No significant structural differences among the genomes of N.lutea,Nymphaea alba, and Platanus occidentalis were observed.The phylogenetic relationships based on the 83 plastid genes revealed a close relationship between Nelumbonaceae and Platanaceae.The divergence times were estimated to be 109 Ma between the two families and 1.5 Ma between the two Nelumbo species.The estimated time was only slightly longer than the age of known Nelumbo fossils,suggesting morphological stasis within Nelumbonaceae.We conclude that Nelumbonaceae holds a position in or close to Proteales.We further conclude that the two species of Nelumbo diverged recently from a common ancestor and do not represent ancient relicts on different continents.  相似文献   

19.
The polypeptide composition of thylakoid membranes of the red alga Cyanidium caldarium was studied by PAGE in the presence of lithium dodecyl sulfate. The thylakoid membranes were shown to contain 65 polypeptides with mol wt from 110 to 10 kDa. PS I isolated from C. caldarium cells is composed of at least 5 components, one of which is the chlorophyll-protein complex with mol wt of 110 kDa typical of higher plants. Cyt f, c 552, b 6 and b 559 were identified. Inhibition of carotenoid biosynthesis with norflurazon caused no changes in the polypeptide composition of thylakoid membranes of the algae grown in dark. The suppression of the biosynthesis rate of some thylakoid polypeptides in the algae grown with norflurazon in light is a result of membrane photodestruction. Thylakoid membranes from C. caldarium cells are more similar in the number of protein components to thylakoid membranes from cells of the cyanobacterium Anacystis nidulans than to those of higher plants (Pisum sativum), which was proved by immune-blotting assays: Thylakoid membranes of the red alga and cyanobacteria contain 28 homologous polypeptides, while thylakoid membranes of the alga and pea, only 15.Abbreviations CD circular dichroism - CP chlorophyll-protein complex - LDS lithium dodecyl sulfate - NF norflurazon  相似文献   

20.
Hamamelidaceae is an important group that represents the origin and early evolution of angiosperms. Its plants have many uses, such as timber, medical, spice, and ornamental uses. In this study, the complete chloroplast genomes of Loropetalum chinense (R. Br.) Oliver, Corylopsis glandulifera Hemsl., and Corylopsis velutina Hand.‐Mazz. were sequenced using the Illumina NovaSeq 6000 platform. The sizes of the three chloroplast genomes were 159,402 bp (C. glandulifera), 159,414 bp (C. velutina), and 159,444 bp (L. chinense), respectively. These chloroplast genomes contained typical quadripartite structures with a pair of inverted repeat (IR) regions (26,283, 26,283, and 26,257 bp), a large single‐copy (LSC) region (88,134, 88,146, and 88,160 bp), and a small single‐copy (SSC) region (18,702, 18,702, and 18,770 bp). The chloroplast genomes encoded 132–133 genes, including 85–87 protein‐coding genes, 37–38 tRNA genes, and 8 rRNA genes. The coding regions were composed of 26,797, 26,574, and 26,415 codons, respectively, most of which ended in A/U. A total of 37–43 long repeats and 175–178 simple sequence repeats (SSRs) were identified, and the SSRs contained a higher number of A + T than G + C bases. The genome comparison showed that the IR regions were more conserved than the LSC or SSC regions, while the noncoding regions contained higher variability than the gene coding regions. Phylogenetic analyses revealed that species in the same genus tended to cluster together. Chunia Hung T. Chang, Mytilaria Lecomte, and Disanthus Maxim. may have diverged early and Corylopsis Siebold & Zucc. was closely related to Loropetalum R. Br. This study provides valuable information for further species identification, evolution, and phylogenetic studies of Hamamelidaceae plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号