首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The current model of DNA replication in Escherichia coli postulates continuous synthesis of the leading strand, based on in vitro experiments with purified enzymes. In contrast, in vivo experiments in E. coli and its bacteriophages, in which maturation of replication intermediates was blocked, report discontinuous DNA synthesis of both the lagging and the leading strands. To address this discrepancy, we analyzed nascent DNA species from ThyA+ E. coli cells replicating their DNA in ligase-deficient conditions to block maturation of replication intermediates. We report here that the bulk of the newly synthesized DNA isolated from ligase-deficient cells have a length between 0.3 and 3 kb, with a minor fraction being longer that 11 kb but shorter than the chromosome. The low molecular weight of the replication intermediates is unchanged by blocking linear DNA processing with a recBCD mutation or by blocking uracil excision with an ung mutation. These results are consistent with the previously proposed discontinuous replication of the leading strand in E. coli.  相似文献   

2.
The eukaryotic nuclear genome is replicated asymmetrically, with the leading strand replicated continuously and the lagging strand replicated as discontinuous Okazaki fragments that are subsequently joined. Both strands are replicated with high fidelity, but the processes used to achieve high fidelity are likely to differ. Here we review recent studies of similarities and differences in the fidelity with which the three major eukaryotic replicases, DNA polymerases α, δ, and ?, replicate the leading and lagging strands with high nucleotide selectivity and efficient proofreading. We then relate the asymmetric fidelity at the replication fork to the efficiency of DNA mismatch repair, ribonucleotide excision repair and topoisomerase 1 activity.  相似文献   

3.
Escherichia coli single-stranded DNA binding protein (SSB) plays essential roles in DNA replication, recombination and repair. SSB functions as a homotetramer with each subunit possessing a DNA binding domain (OB-fold) and an intrinsically disordered C-terminus, of which the last nine amino acids provide the site for interaction with at least a dozen other proteins that function in DNA metabolism. To examine how many C-termini are needed for SSB function, we engineered covalently linked forms of SSB that possess only one or two C-termini within a four-OB-fold “tetramer”. Whereas E. coli expressing SSB with only two tails can survive, expression of a single-tailed SSB is dominant lethal. E. coli expressing only the two-tailed SSB recovers faster from exposure to DNA damaging agents but accumulates more mutations. A single-tailed SSB shows defects in coupled leading and lagging strand DNA replication and does not support replication restart in vitro. These deficiencies in vitro provide a plausible explanation for the lethality observed in vivo. These results indicate that a single SSB tetramer must interact simultaneously with multiple protein partners during some essential roles in genome maintenance.  相似文献   

4.
Apurinic/apyrimidinic (AP or abasic) sites are among the most abundant DNA lesions. Numerous proteins within different organisms ranging from bacteria to human have been demonstrated to react with AP sites to form covalent Schiff base DNA–protein cross-links (DPCs). These DPCs are unstable due to their spontaneous hydrolysis, but the half-lives of these cross-links can be as long as several hours. Such long-lived DPCs are extremely toxic due to their large sizes, which physically block DNA replication. Therefore, these adducts must be promptly eradicated to maintain genome integrity. Herein, we used in vitro reconstitution experiments with chemically synthesized, stable, and site-specific Schiff base AP-peptide/protein cross-link analogs to demonstrate for the first time that this type of DPC can be repaired by Escherichia coli (E. coli) long-patch base excision repair. We demonstrated that the repair process requires a minimum of three enzymes and five consecutive steps, including: (1) 5′-DNA strand incision of the DPC by endonuclease IV; (2 to 4) strand-displacement DNA synthesis, removal of the 5′-deoxyribose phosphate-peptide/protein adduct-containing flap, and gap-filling DNA synthesis by DNA polymerase I; and (5) strand ligation by a ligase. We further demonstrated that endonuclease IV plays a major role in incising an AP-peptide cross-link within E. coli cell extracts. We also report that eradicating model AP-protein (11.2–36.1 kDa) DPCs is less efficient than that of an AP-peptide10mer cross-link, supporting the emerging model that proteolysis is likely required for efficient DPC repair.  相似文献   

5.
6.
DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion. A high level of functional redundancy exists among the pathways that deal with lesions, which minimizes the detrimental effects of endogenous and exogenous DNA damage.  相似文献   

7.
W Seufert  W Messer 《The EMBO journal》1986,5(12):3401-3406
The start sites for leading and lagging DNA strands were determined in vitro with minichromosomes as templates. Fragments from replication intermediates were analyzed by hybridization to single-stranded probes. Leading strand synthesis in the counterclockwise direction was found to originate in or close to (position 248 to -44) the minimal origin. Complementary lagging strand synthesis started several positions to the left outside of oriC. The results suggest in addition a concerted synthesis of leading and lagging strands following the dnaA directed assembly of initiation proteins at double-stranded oricC DNA (pre-replisome). In addition, DNA synthesis could initiate at protein n' recognition sequences located within and clockwise to the asnA gene. Initiation at n' sites was dependent on protein i activity, whereas leading and lagging strand initiation in the oriC region was not affected by protein i. Our results argue against an involvement of the phi X174-type primosome in the initiation of discontinuous DNA synthesis at oriC. An alternative function is suggested.  相似文献   

8.
Isolation of an amber mutant lig-321 (or dnaL321) if Escherichia coli K12 with a defect in DNA ligase activity was previously reported (Nagata & Horiuchi, 1974). This was the first demonstration that, in E. coli, conditionally lethal nonsense mutants can be isolated selectively. Unlike the hitherto available E. coli K12 DNA ligase-deficient (lig) mutants, the DNA of this mutant is degraded under lethal conditions. This paper describes its further characterization. The DNA degradation was found to be an energy-requiring process, in which endonuclease I did not seem to participate. Kinetic analyses of prelabeled DNA indicated that the parental strands were degraded. The sedimentation profile of prelabeled DNA in an alkaline sucrose gradient showed that the extensive degradation was preceded by a step in which the parental strands were broken into relatively large pieces. At least in the early phase of degradation, which we examined by alkaline sucrose gradient centrifugation of pulse-labeled DNA, synthesis of discontinuous daughter chains (Okazaki fragments, Okazaki et al., 1968) was confirmed. Joining of the nascent chains, however, was completely inhibited. Genetic analyses revealed that the mutant allele is recessive to the wild type. This agrees with in vitro studies in which the mutant crude extract was found not to inhibit DNA ligase activity of the wild type extract. These and other properties of the lig-321 mutant were compared with the other DNA ligase-deficient mutants of E. coli. The role of this enzyme in DNA replication, repair and recombination is discussed.  相似文献   

9.
DNA replication is one of the most important events in living cells, and it is still a key problem how the DNA replication machinery works in its details. A replication fork has to be a very dynamic apparatus since frequent DNA polymerase switches from the initiating DNA polymerase alpha to the processive elongating DNA polymerase delta occur at the leading strand (about 8 x 10(4) fold on both strands in one replication round) as well as at the lagging strand (about 2 x 10(7) fold on both strands in one replication round) in mammalian cells. Lagging strand replication involves a very complex set of interacting proteins that are able to frequently initiate, elongate and process Okazaki fragments of 180 bp. Moreover, key proteins of this important process appear to be controlled by S-phase check-point proteins. It became furthermore clear in the last few years that DNA replication cannot be considered uncoupled from DNA repair, another very important event for any living organism. The reconstitution of nucleotide excision repair and base excision repair in vitro with purified components clearly showed that the DNA synthesis machinery of both of these macromolecular events are similar and do share many components of the lagging strand DNA synthesis machinery. In this minireview we summarize our current knowledge of the components involved in the execution and regulation of DNA replication at the lagging strand of the replication fork.  相似文献   

10.
Replicative intermediates isolated from Escherichia coli cells infected with P2 gene B mutants were circular DNA molecules with single-stranded DNA tails, as opposed to the double-stranded DNA tails of wild-type replicative intermediates. The results show that the mutant replicative intermediates arose from aberrant DNA replication, aberrant due to a lack of lagging strand DNA synthesis, but with normal leading strand synthesis, so that only one circular duplex daughter DNA molecule was made from each duplex parent molecule. The single-stranded tails were shown to correspond to the nicked (and therefore displaced) parental DNA "l" strands. By partial denaturation mapping, the ends of the single-stranded tails tended to map close to the replication origin, but not all at a unique position, probably due to partial degradation or breakage in vivo, or during cell lysis or DNA isolation. By hybridization to separated strands of P2 DNA on nitrocellulose filters, DNA synthesis was shown to be asymmetric, and consistent with more leading strand than lagging strand synthesis having occurred. We concluded that the gene B protein is required for lagging strand DNA synthesis, but not for initiation, elongation or termination of the leading strand.  相似文献   

11.
The fidelity of DNA replication requires an appropriate balance of dNTPs, yet the nascent leading and lagging strands of the nuclear genome are primarily synthesized by replicases that differ in subunit composition, protein partnerships and biochemical properties, including fidelity. These facts pose the question of whether imbalanced dNTP pools differentially influence leading and lagging strand replication fidelity. Here we test this possibility by examining strand-specific replication infidelity driven by a mutation in yeast ribonucleotide reductase, rnr1-Y285A, that leads to elevated dTTP and dCTP concentrations. The results for the CAN1 mutational reporter gene present in opposite orientations in the genome reveal that the rates, and surprisingly even the sequence contexts, of replication errors are remarkably similar for leading and lagging strand synthesis. Moreover, while many mismatches driven by the dNTP pool imbalance are efficiently corrected by mismatch repair, others are repaired less efficiently, especially those in sequence contexts suggesting reduced proofreading due to increased mismatch extension driven by the high dTTP and dCTP concentrations. Thus the two DNA strands of the nuclear genome are at similar risk of mutations resulting from this dNTP pool imbalance, and this risk is not completely suppressed even when both major replication error correction mechanisms are genetically intact.  相似文献   

12.
The lambda phage Red recombination system can mediate efficient homologous recombination in Escherichia coli, which is the basis of the DNA engineering technique termed recombineering. Red mediated insertion of DNA requires DNA replication, involves a single-stranded DNA intermediate and is more efficient on the lagging strand of the replication fork. Lagging strand recombination has also been postulated to explain the Red mediated repair of gapped plasmids by an Okazaki fragment gap filling model. Here, we demonstrate that gap repair involves a different strand independent mechanism. Gap repair assays examining the strand asymmetry of recombination did not show a lagging strand bias. Directly testing an ssDNA plasmid showed lagging strand recombination is possible but dsDNA plasmids did not employ this mechanism. Insertional recombination combined with gap repair also did not demonstrate preferential lagging strand bias, supporting a different gap repair mechanism. The predominant recombination route involved concerted insertion and subcloning though other routes also operated at lower frequencies. Simultaneous insertion of DNA resulted in modification of both strands and was unaffected by mutations to DNA polymerase I, responsible for Okazaki fragment maturation. The lower efficiency of an alternate Red mediated ends-in recombination pathway and the apparent lack of a Holliday junction intermediate suggested that gap repair does not involve a different Red recombination pathway. Our results may be explained by a novel replicative intermediate in gap repair that does not involve a replication fork. We exploited these observations by developing a new recombineering application based on concerted insertion and gap repair, termed SPI (subcloning plus insertion). SPI selected against empty vector background and selected for correct gap repair recombinants. We used SPI to simultaneously insert up to four different gene cassettes in a single recombineering reaction. Consequently, our findings have important implications for the understanding of E. coli replication and Red recombination.  相似文献   

13.
Guy CP  Bolt EL 《Nucleic acids research》2005,33(11):3678-3690
Mutations in mammalian and Drosophila Hel308 and PolQ paralogues cause genome instability but their helicase functions are mysterious. By in vivo and in vitro analysis, we show that Hel308 from archaea (Hel308a) may act at stalled replication forks. Introducing hel308a into Escherichia coli dnaE strains that conditionally accumulate stalled forks caused synthetic lethality, an effect indistinguishable from E.coli RecQ. Further analysis in vivo indicated that the effect of hel308a is exerted independently of homologous recombination. The minimal biochemical properties of Hel308a protein were the same as human Hel308. We describe how helicase actions of Hel308a at fork structures lead specifically to displacement of lagging strands. The invading strand of D-loops is also targeted. Using archaeal Hel308, we propose models of action for the helicase domain of PolQ, promoting loading of the translesion polymerase domain. We speculate that removal of lagging strands at stalled forks by Hel308 promotes the formation of initiation zones, priming restart of lagging strand synthesis.  相似文献   

14.
G Prelich  B Stillman 《Cell》1988,53(1):117-126
Proliferating cell nuclear antigen (PCNA) is a cell cycle and growth regulated protein required for replication of SV40 DNA in vitro. Its function was investigated by comparison of the replication products synthesized in its presence or absence. In the completely reconstituted replication system that contains PCNA, DNA synthesis initiates at the origin and proceeds bidirectionally on both leading and lagging strands around the template DNA to yield duplex, circular daughter molecules. In contrast, in the absence of PCNA, early replicative intermediates containing short nascent strands accumulate. Replication forks continue bidirectionally from the origin, but surprisingly, only lagging strand products are synthesized. Thus two stages of DNA synthesis have been defined, with the second stage requiring PCNA for coordinated leading and lagging strand synthesis at the replication fork. We suggest that during eukaryotic chromosome replication there is a switch to a PCNA-dependent elongation stage that requires two distinct DNA polymerases.  相似文献   

15.
RAre DAmage and Repair sequencing (RADAR-seq) is a highly adaptable sequencing method that enables the identification and detection of rare DNA damage events for a wide variety of DNA lesions at single-molecule resolution on a genome-wide scale. In RADAR-seq, DNA lesions are replaced with a patch of modified bases that can be directly detected by Pacific Biosciences Single Molecule Real-Time (SMRT) sequencing. RADAR-seq enables dynamic detection over a wide range of DNA damage frequencies, including low physiological levels. Furthermore, without the need for DNA amplification and enrichment steps, RADAR-seq provides sequencing coverage of damaged and undamaged DNA across an entire genome. Here, we use RADAR-seq to measure the frequency and map the location of ribonucleotides in wild-type and RNaseH2-deficient E. coli and Thermococcus kodakarensis strains. Additionally, by tracking ribonucleotides incorporated during in vivo lagging strand DNA synthesis, we determined the replication initiation point in E. coli, and its relation to the origin of replication (oriC). RADAR-seq was also used to map cyclobutane pyrimidine dimers (CPDs) in Escherichia coli (E. coli) genomic DNA exposed to UV-radiation. On a broader scale, RADAR-seq can be applied to understand formation and repair of DNA damage, the correlation between DNA damage and disease initiation and progression, and complex biological pathways, including DNA replication.  相似文献   

16.
Trinucleotide repeat expansions cause 17 heritable human neurological disorders. In some diseases, somatic expansions occur in non-proliferating tissues such as brain where DNA replication is limited. This finding stimulated significant interest in replication-independent expansion mechanisms. Aberrant DNA repair is a likely source, based in part on mouse studies showing that somatic expansions are provoked by the DNA repair protein MutSβ (Msh2-Msh3 complex). Biochemical studies to date used cell-free extracts or purified DNA repair proteins to yield partial reactions at triplet repeats. The findings included expansions on one strand but not the other, or processing of DNA hairpin structures thought to be important intermediates in the expansion process. However, it has been difficult to recapitulate complete expansions in vitro, and the biochemical role of MutSβ remains controversial. Here, we use a novel in vitro assay to show that human cell-free extracts catalyze expansions and contractions of trinucleotide repeats without the requirement for DNA replication. The extract promotes a size range of expansions that is similar to certain diseases, and triplet repeat length and sequence govern expansions in vitro as in vivo. MutSβ stimulates expansions in the extract, consistent with aberrant repair of endogenous DNA damage as a source of expansions. Overall, this biochemical system retains the key characteristics of somatic expansions in humans and mice, suggesting that this important mutagenic process can be restored in the test tube.  相似文献   

17.
Short fragments consisting of about 100 to 140 deoxyribonucleotides serve as intermediates in the elongation of polyoma DNA. In nuclei isolated from polyoma-infected 3T6 mouse fibroblasts these fragments are initiated by stretches of RNA. We investigated the nature of the ribo- and deoxyribonucleotides at the RNA-DNA link. DNA was synthesized in vitro from each of the four α-32P-labelled deoxynucleoside triphosphates, the nascent strands were hydrolysed with alkali and the transfer of isotope to ribonucleotides was studied after fractionation of strands according to size. Each strand contained on the average one RNA-DNA link at the 5′ end of DNA. All four common ribo- and deoxyribonucleotides were present at the RNA-DNA link with close to equal frequency, irrespective of chain length or incubation time.In a second approach, daughter strands synthesized in vivo were treated with alkali and the 5′-OH ends of DNA liberated were 32P-labelled using polynucleotide kinase. All four deoxynucleotides were labelled by this treatment confirming the corresponding results of the in vitro experiments.During the discontinuous synthesis of polyoma DNA the switch from RNA to DNA synthesis is thus not effected by a specific sequence at the RNA-DNA junction, in contrast to Escherichia coli where the sequence p(rPy)p(dC)p was reported.  相似文献   

18.
19.
20.
Polymerase δ is widely accepted as the lagging strand replicative DNA polymerase in eukaryotic cells. It forms a replication complex in the presence of replication factor C and proliferating cell nuclear antigen to perform efficient DNA synthesis in vivo. In this study, the human lagging strand holoenzyme was reconstituted in vitro. The rate of DNA synthesis of this holoenzyme, measured with a singly primed ssM13 DNA substrate, is 4.0 ± 0.4 nucleotides. Results from adenosine 5′-(3-thiotriphosphate) tetralithium salt (ATPγS) inhibition experiments revealed the nonprocessive characteristic of the human DNA polymerase (Pol δ) holoenzyme (150 bp for one binding event), consistent with data from chase experiments with catalytically inactive mutant Pol δAA. The ATPase activity of replication factor C was characterized and found to be stimulated ∼10-fold in the presence of both proliferating cell nuclear antigen and DNA, but the activity was not shut down by Pol δ in accord with rapid association/dissociation of the holoenzyme to/from DNA. It is noted that high concentrations of ATP inhibit the holoenzyme DNA synthesis activity, most likely due to its inhibition of the clamp loading process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号