首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A glycine-rich motif described as being involved in human polymerase δ proliferating cell nuclear antigen (PCNA) binding has also been identified in all euryarchaeal DNA polymerase D (Pol D) family members. We redefined the motif as the (G)-PYF box. In the present study, Pol D (G)-PYF box motif mutants from Pyrococcus abyssi were generated to investigate its role in functional interactions with the cognate PCNA. We demonstrated that this motif is not essential for interactions between PabPol D (P. abyssi Pol D) and PCNA, using surface plasmon resonance and primer extension studies. Interestingly, the (G)-PYF box is located in a hydrophobic region close to the active site. The (G)-PYF box mutants exhibited altered DNA binding properties. In addition, the thermal stability of all mutants was reduced compared to that of wild type, and this effect could be attributed to increased exposure of the hydrophobic region. These studies suggest that the (G)-PYF box motif mediates intersubunit interactions and that it may be crucial for the thermostability of PabPol D.  相似文献   

3.
4.
DNA ligases join single-strand breaks in double-stranded DNA, and are essential to maintain genome integrity in DNA metabolism. Here, we report the 1.8 A resolution structure of Pyrococcus furiosus DNA ligase (PfuLig), which represents the first full-length atomic view of an ATP-dependent eukaryotic-type DNA ligase. The enzyme comprises the N-terminal DNA-binding domain, the middle adenylation domain, and the C-terminal OB-fold domain. The architecture of each domain resembles those of human DNA ligase I, but the domain arrangements differ strikingly between the two enzymes. The closed conformation of the two "catalytic core" domains at the carboxyl terminus in PfuLig creates a small compartment, which holds a non-covalently bound AMP molecule. This domain rearrangement results from the "domain-connecting" role of the helical extension conserved at the C termini in archaeal and eukaryotic DNA ligases. The DNA substrate in the human open-ligase is replaced by motif VI in the Pfu closed-ligase. Both the shapes and electrostatic distributions are similar between motif VI and the DNA substrate, suggesting that motif VI in the closed state mimics the incoming substrate DNA. Two basic residues (R531 and K534) in motif VI reside within the active site pocket and interact with the phosphate group of the bound AMP. The crystallographic and functional analyses of mutant enzymes revealed that these two residues within the RxDK sequence play essential and complementary roles in ATP processing. This sequence is also conserved exclusively among the covalent nucleotidyltransferases, even including mRNA-capping enzymes with similar helical extensions at the C termini.  相似文献   

5.
Crystal Structure of the Human Rad9-Hus1-Rad1 Clamp   总被引:1,自引:0,他引:1  
Three evolutionarily conserved proteins, Rad9, Hus1, and Rad1, form a heterotrimeric 9-1-1 complex that plays critical roles in cellular responses to DNA damage by activating checkpoints and by recruiting DNA repair enzymes to DNA lesions. We have determined the crystal structure of the human Rad9 (residues 1-272)-Hus1-Rad1 complex at 2.5 Å resolution. The 91-272-1-1 complex forms a closed ring, with each subunit having a similar structure. Despite its high level of similarity to proliferating cell nucleus antigen in terms of overall structure, the 91-272-1-1 complex exhibits notable differences in local structures, including interdomain connecting loops, H2 and H3 helices, and loops in the vicinity of the helices of each subunit. These local structural variations provide several unique features to the 9-1-1 heterotrimeric complex—including structures of intermolecular interfaces and the inner surface around the central hole, and different electrostatic potentials at and near the interdomain connecting loops of each 9-1-1 subunit—compared to the proliferating cell nucleus antigen trimer. We propose that these structural features allow the 9-1-1 complex to bind to a damaged DNA during checkpoint control and to serve as a platform for base excision repair. We also show that the 91-272-1-1 complex, but not the full-length 9-1-1 complex, forms a stable complex with the 5′ recessed DNA, suggesting that the C-terminal tail of Rad9 is involved in the regulation of the 9-1-1 complex in DNA binding.  相似文献   

6.
Translesion DNA synthesis is a mechanism of DNA damage tolerance, and mono-ubiquitination of proliferating cell nuclear antigen (PCNA) is considered to play a key role in regulating the switch from replicative to translesion DNA polymerases (pols). In this study, we analyzed effects of a replicative pol δ on PCNA mono-ubiquitination with the ubiquitin-conjugating enzyme and ligase UBE2A/HHR6A/RAD6A-RAD18. The results revealed that PCNA interacting with pol δ is a better target for ubiquitination, and PCNA mono-ubiquitination could be coupled with DNA replication. Consequently, we could reconstitute replication-coupled switching between pol δ and a translesion pol, pol η, on an ultraviolet-light-irradiated template. With this system, we obtained direct evidence that polymerase switching reactions are stimulated by mono-ubiquitination of PCNA, depending on a function of the ubiquitin binding zinc finger domain of pol η. This study provides a framework for detailed analyses of molecular mechanisms of human pol switching and regulation of translesion DNA synthesis.  相似文献   

7.
In both Bacteria and Eukaryotes, degradation is known to start at the 5' and at the 3' extremities of mRNAs. Until the recent discovery of 5'-to-3' exoribonucleases in hyperthermophilic Euryarchaeota, the exosome was assumed to be the key enzyme in mRNA degradation in Archaea. By means of zymogram assays and bioinformatics, we have identified a 5'-to-3' exoribonuclease activity in the crenarchaeum Sulfolobus solfataricus (Sso), which is affected by the phosphorylation state of the 5'-end of the mRNA. The protein comprises typical signature motifs of the β-CASP family of metallo-β-lactamases and was termed Sso-RNAse J. Thus, our study provides the first evidence for a 5'-to-3' directional mRNA decay pathway in the crenarchaeal clade of Archaea. In Bacteria the 5'-end of mRNAs is often protected by a tri-phosphorylated 5'-terminus and/or by stem-loop structures, while in Eukaryotes the cap-binding complex is responsible for this task. Here, we show that binding of translation initiation factor a/eIF2(γ) to the 5'-end of mRNA counteracts the 5'-to-3' exoribonucleolytic activity of Sso-RNase J in vitro. Hence, 5'-to-3' directional decay and 5'-end protection appear to be conserved features of mRNA turnover in all kingdoms of life.  相似文献   

8.
The crenarchaeon Sulfolobus solfataricus has the potential to be a powerful model system to understand the central mechanism of eukaryotic DNA replication because it contains three active origins of replication and three eukaryote-like Orc1/Cdc6 proteins. However, it is not known whether these SsoCdc6 proteins can functionally interact and collectively contribute to DNA replication initiation. In the current work, we found that SsoCdc6-1 stimulates DNA-binding activities of SsoCdc6-3. In contrast, SsoCdc6-3 inhibits those of both SsoCdc6-1 and SsoCdc6-2. These regulatory functions are differentially affected by the C-terminal domains of these SsoCdc6 proteins. These data, in conjunction with studies on physical interactions between these replication initiators by bacterial two-hybrid and pull-down/Western blot assays, lead us to propose the possibility that multiple SsoCdc6 proteins might coordinately regulate DNA replication in the archaeon species. This is the first report on the functional interaction among the archaeal multiple Cdc6 proteins to regulate DNA replication.  相似文献   

9.
Ubiquitin-modified proliferating cell nuclear antigen (PCNA) and small ubiquitin-like modifier (SUMO)-modified PCNA regulate DNA damage tolerance pathways. X-ray crystal structures of these proteins suggested that they do not have much conformational flexibility because the modifiers have preferred binding sites on the surface of PCNA. By contrast, small-angle X-ray scattering analyses of these proteins suggested that they have different degrees of conformational flexibility, with SUMO-modified PCNA being more flexible. These conclusions were based on minimal-ensemble hybrid approaches, which produce unrealistic models by representing flexible proteins with only a few static structures. To overcome the limitations of minimal-ensemble hybrid approaches and to determine the degree of conformational flexibility of ubiquitin-modified PCNA and SUMO-modified PCNA, we utilized a novel full-ensemble hybrid approach. We carried out molecular simulations and small-angle X-ray scattering analyses of both proteins and obtained outstanding agreement between the full ensembles generated by the simulations and the experimental data. We found that both proteins have a high degree of conformational flexibility. The modifiers occupy many positions around the back and side of the PCNA ring. Moreover, we found no preferred ubiquitin-binding or SUMO-binding sites on PCNA. This conformational flexibility likely facilitates the recognition of downstream effector proteins and the formation of PCNA tool belts.  相似文献   

10.
Homologous recombination is an important pathway in the repair of DNA double-strand breaks in all organisms. In mesophiles, single-stranded DNA binding proteins (SSBs) are believed to be involved in the removal of single-stranded DNA (ssDNA) secondary structure during the presynaptic step of homologous recombination, facilitating the formation of a contiguous Rad51/RecA nucleoprotein filament. Here we report a role for the thermophilic archaeal Sulfolobus solfataricus SSB (SsoSSB) in the presynaptic step of homologous recombination. We have identified multiple quaternary structural forms of this protein in vivo and examined the activity of SsoSSB with the strand-exchange protein S. solfataricus RadA (SsoRadA). Using gel-shift analysis, we found that the two major forms of SsoSSB have different DNA binding affinities and site sizes. Biochemical examination of the monomeric form of SsoSSB suggests that it has a minor role in presynapsis and may slightly inhibit the ssDNA-dependent ATPase activity of SsoRadA. The tetrameric form of SsoSSB, however, significantly inhibits SsoRadA ssDNA-dependent ATPase activity under both saturating and subsaturating conditions. Order-of-addition experiments indicate that preincubation of tetrameric SsoSSB and SsoRadA prior to reaction initiation with ssDNA relieves the inhibition observed when SsoSSB is added either before or after SsoRadA. In addition, we demonstrate a direct interaction between SsoRadA and SsoSSB using coimmunoprecipitation. Taken together, these results suggest that a direct interaction between SsoSSB and SsoRadA may occur in vivo prior to the formation of the SsoRadA nucleoprotein filament.  相似文献   

11.
Archaeal replication machinery represents a core version of this in eukaryotes. The crenarchaeon Sulfolobus solfataricus has the potential to be a powerful model system to understand the central mechanism of eukaryotic DNA replication because it contains three active origins of replication and three eukaryote-like Orc1/Cdc6 proteins (SsoCdc6-1, SsoCdc6-2, and SsoCdc6-3). In this study, we investigate the DNA-binding activities of the N-terminal AAA+ ATPase domains of these Orc1/Cdc6 proteins, including their functional interactions with the other SsoCdc6 proteins, on duplex DNA substrates derived from the origins of S. solfataricus. We showed that the ATPase domain of SsoCdc6-2 retained to a great extent the origin DNA-binding activity, and likewise maintained its stimulating effect on SsoCdc6-3. Second, the ATPase domain of SsoCdc6-1, which also stimulated the DNA-binding ability of SsoCdc6-3, demonstrated a significantly improved DNA-binding activity at the forked substrate, but only showed a very weak ability towards the blunt DNA. Third, the ATPase domain of SsoCdc6-3, although having lost much of its DNA-binding activity from the origin, inhibited both SsoCdc6-1 and SsoCdc6-2. These imply that the N-terminal AAA+ ATPase domain of archaeal Orc1/Cdc6 protein could be differentially involved in origin recognition during DNA replication initiation even if lacking conventional C-terminal winged helix DNA-binding elements. Our findings further propose that conserved AAA+ ATPase domains of Orc1/Cdc6 proteins determine their defined and coordinated functions not only in the archaeon species but also in eukaryotes during the early events of DNA replication.  相似文献   

12.
Faithful repair of DNA double-strand breaks by homologous recombination is crucial to maintain functional genomes. The major Escherichia coli pathway of DNA break repair requires RecBCD enzyme, a complex protein machine with multiple activities. Upon encountering a Chi recombination hotspot (5′ GCTGGTGG 3′) during DNA unwinding, RecBCD's unwinding, nuclease, and RecA-loading activities change dramatically, but the physical basis for these changes is unknown. Here, we identify, during RecBCD's DNA unwinding, two Chi-stimulated conformational changes involving RecC. One produced a marked, long-lasting, Chi-dependent increase in protease sensitivity of a small patch, near the Chi recognition domain, on the solvent-exposed RecC surface. The other change was identified by crosslinking of an artificial amino acid inserted in this RecC patch to RecB. Small-angle X-ray scattering analysis confirmed a major conformational change upon binding of DNA to the enzyme and is consistent with these two changes. We propose that, upon DNA binding, the RecB nuclease domain swings from one side of RecC to the other; when RecBCD encounters Chi, the nuclease domain returns to its initial position determined by crystallography, where it nicks DNA exiting from RecC and loads RecA onto the newly generated 3′-ended single-stranded DNA during continued unwinding; a crevice between RecB and RecC increasingly narrows during these steps. This model provides a physical basis for the intramolecular “signal transduction” from Chi to RecC to RecD to RecB inferred previously from genetic and enzymatic analyses, and it accounts for the enzymatic changes that accompany Chi's stimulation of recombination.  相似文献   

13.
Recombination is thought to occur only rarely in animal mitochondrial DNA (mtDNA). However, detection of mtDNA recombination requires that cells become heteroplasmic through mutation, intramolecular recombination or 'leakage' of paternal mtDNA. Interspecific hybridization increases the probability of detecting mtDNA recombinants due to higher levels of sequence divergence and potentially higher levels of paternal leakage. During a study of historical variation in Atlantic salmon (Salmo salar) mtDNA, an individual with a recombinant haplotype containing sequence from both Atlantic salmon and brown trout (Salmo trutta) was detected. The individual was not an F1 hybrid but it did have an unusual nuclear genotype which suggested that it was a later-generation backcross. No other similar recombinant haplotype was found from the same population or three neighbouring Atlantic salmon populations in 717 individuals collected during 1948-2002. Interspecific recombination may increase mtDNA variability within species and can have implications for phylogenetic studies.  相似文献   

14.
The hyper-thermophilic archaeon Sulfolobus solfataricus possesses two functional DNA polymerases belonging to the B-family (Sso DNA pol B1) and to the Y-family (Sso DNA pol Y1). Sso DNA pol B1 recognizes the presence of uracil and hypoxanthine in the template strand and stalls synthesis 3–4 bases upstream of this lesion (“read-ahead” function). On the other hand, Sso DNA pol Y1 is able to synthesize across these and other lesions on the template strand. Herein we report evidence that Sso DNA pol B1 physically interacts with DNA pol Y1 by surface plasmon resonance measurements and immuno-precipitation experiments. The region of DNA pol B1 responsible for this interaction has been mapped in the central portion of the polypeptide chain (from the amino acid residue 482 to 617), which includes an extended protease hyper-sensitive linker between the N- and C-terminal modules (amino acid residues Asn482-Ala497) and the α-helices forming the “fingers” sub-domain (α-helices R, R′ and S). These results have important implications for understanding the polymerase-switching mechanism on the damaged template strand during genome replication in S. solfataricus.  相似文献   

15.
Tuberculosis and other bacterial diseases represent a significant threat to human health. The DNA topoisomerases are excellent targets for chemotherapy, and DNA gyrase in particular is a well-validated target for antibacterial agents. Naphthoquinones (e.g. diospyrin and 7-methyljuglone) have been shown to have therapeutic potential, particularly against Mycobacterium tuberculosis. We have found that these compounds are inhibitors of the supercoiling reaction catalyzed by M. tuberculosis gyrase and other gyrases. Our evidence strongly suggests that the compounds bind to the N-terminal domain of GyrB, which contains the ATPase active site, but are not competitive inhibitors of the ATPase reaction. We propose that naphthoquinones bind to GyrB at a novel site close to the ATPase site. This novel mode of action could be exploited to develop new antibacterial agents.  相似文献   

16.
DNA replication in Archaea, as in other organisms, involves large protein complexes called replisomes. In the Euryarchaeota subdomain, only two putative replicases have been identified, and their roles in leading and lagging strand DNA synthesis are still poorly understood. In this study, we focused on the coupling of proliferating cell nuclear antigen (PCNA)-loading mechanisms with DNA polymerase function in the Euryarchaea Pyrococcus abyssi. PCNA spontaneously loaded onto primed DNA, and replication factor C dramatically increased this loading. Surprisingly, the family B DNA polymerase (Pol B) also increased PCNA loading, probably by stabilizing the clamp on primed DNA via an essential motif. In contrast, on an RNA-primed DNA template, the PCNA/Pol B complex was destabilized in the presence of dNTPs, allowing the family D DNA polymerase (Pol D) to perform RNA-primed DNA synthesis. Then, Pol D is displaced by Pol B to perform processive DNA synthesis, at least on the leading strand.  相似文献   

17.
18.
Fossum S  Crooke E  Skarstad K 《The EMBO journal》2007,26(21):4514-4522
The replication period of Escherichia coli cells grown in rich medium lasts longer than one generation. Initiation thus occurs in the 'mother-' or 'grandmother generation'. Sister origins in such cells were found to be colocalized for an entire generation or more, whereas sister origins in slow-growing cells were colocalized for about 0.1-0.2 generations. The role of origin inactivation (sequestration) by the SeqA protein in origin colocalization was studied by comparing sequestration-deficient mutants with wild-type cells. Cells with mutant, non-sequesterable origins showed wild-type colocalization of sister origins. In contrast, cells unable to sequester new origins due to loss of SeqA, showed aberrant localization of origins indicating a lack of organization of new origins. In these cells, aberrant replisome organization was also found. These results suggest that correct organization of sister origins and sister replisomes is dependent on the binding of SeqA protein to newly formed DNA at the replication forks, but independent of origin sequestration. In agreement, in vitro experiments indicate that SeqA is capable of pairing newly replicated DNA molecules.  相似文献   

19.
20.
The thermostable direct hemolysin (TDH) is a major virulence factor of Vibrio parahaemolyticus. We have characterized the conformational properties of TDH by small-angle X-ray scattering (SAXS), ultracentrifugation and transmission electron microscopy. Sedimentation equilibrium and velocity studies revealed that the protein is tetrameric in aqueous solvents. The Guinier plot derived from SAXS data provided a radius of gyration of 29.0 Å. The elongated pattern with a shoulder of a pair distance distribution function derived from SAXS data suggested the presence of molecules with an anisotropic shape having a maximum diameter of 98 Å. Electron microscopic image analysis of the negatively stained TDH oligomer showed the presence of C4 symmetric particles with edge and diagonal lengths of 65 Å and 80 Å, respectively. Shape reconstruction was carried out by ab initio calculations using the SAXS data with a C4 symmetric approximation. These results suggested that the tetrameric TDH assumes an oblate structure. The hydrodynamic parameters predicted from the ab initio model differed slightly from the experimental values, suggesting the presence of flexible segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号