首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This article utilized “protein charge ladders”—chemical derivatives of proteins with similar structure, but systematically altered net charge—to quantify how missense mutations that cause amyotrophic lateral sclerosis (ALS) affect the net negative charge (Z) of superoxide dismutase-1 (SOD1) as a function of subcellular pH and Zn2+ stoichiometry. Capillary electrophoresis revealed that the net charge of ALS-variant SOD1 can be different in sign and in magnitude—by up to 7.4 units per dimer at lysosomal pH—than values predicted from standard pKa values of amino acids and formal oxidation states of metal ions. At pH 7.4, the G85R, D90A, and G93R substitutions diminished the net negative charge of dimeric SOD1 by up to +2.29 units more than predicted; E100K lowered net charge by less than predicted. The binding of a single Zn2+ to mutant SOD1 lowered its net charge by an additional +2.33 ± 0.01 to +3.18 ± 0.02 units, however, each protein regulated net charge when binding a second, third, or fourth Zn2+Z < 0.44 ± 0.07 per additional Zn2+). Both metalated and apo-SOD1 regulated net charge across subcellular pH, without inverting from negative to positive at the theoretical pI. Differential scanning calorimetry, hydrogen-deuterium exchange, and inductively coupled plasma mass spectrometry confirmed that the structure, stability, and metal content of mutant proteins were not significantly affected by lysine acetylation. Measured values of net charge should be used when correlating the biophysical properties of a specific ALS-variant SOD1 protein with its observed aggregation propensity or clinical phenotype.  相似文献   

2.
DNA bending can be promoted by reducing the net negative electrostatic potential around phosphates on one face of the DNA, such that electrostatic repulsion among phosphates on the opposite face drives bending toward the less negative surface. To provide the first assessment of energetic contribution to DNA bending when electrostatic asymmetry is induced by a site-specific DNA binding protein, we manipulated the electrostatics in the EcoRV endonuclease-DNA complex by mutation of cationic side chains that contact DNA phosphates and/or by replacement of a selected phosphate in each strand with uncharged methylphosphonate. Reducing the net negative charge at two symmetrically located phosphates on the concave DNA face contributes − 2.3 kcal mol 1 to − 0.9 kcal mol 1 (depending on position) to complex formation. In contrast, reducing negative charge on the opposing convex face produces a penalty of + 1.3 kcal mol 1. Förster resonance energy transfer experiments show that the extent of axial DNA bending (about 50°) is little affected in modified complexes, implying that modification affects the energetic cost but not the extent of DNA bending. Kinetic studies show that the favorable effects of induced electrostatic asymmetry on equilibrium binding derive primarily from a reduced rate of complex dissociation, suggesting stabilization of the specific complex between protein and markedly bent DNA. A smaller increase in the association rate may suggest that the DNA in the initial encounter complex is mildly bent. The data imply that protein-induced electrostatic asymmetry makes a significant contribution to DNA bending but is not itself sufficient to drive full bending in the specific EcoRV-DNA complex.  相似文献   

3.
Pulmonary surfactant protein SP-B is synthesized as a larger precursor, proSP-B. We report that a recombinant form of human SP-BN forms a coiled coil structure at acidic pH. The protonation of a residue with pK = 4.8 ± 0.06 is the responsible of conformational changes detected by circular dichroism and intrinsic fluorescence emission. Sedimentation velocity analysis showed protein oligomerisation at any pH condition, with an enrichment of the species compatible with a tetramer at acidic pH. Low 2,2,2,-trifluoroethanol concentration promoted β-sheet structures in SP-BN, which bind Thioflavin T, at acidic pH, whereas it promoted coiled coil structures at neutral pH. The amino acid stretch predicted to form β-sheet parallel association in SP-BN overlaps with the sequence predicted by several programs to form coiled coil structure. A synthetic peptide (60W-E85) designed from the sequence of the amino acid stretch of SP-BN predicted to form coiled coil structure showed random coil conformation at neutral pH but concentration-dependent helical structure at acidic pH. Sedimentation velocity analysis of the peptide indicated monomeric state at neutral pH (s20, w = 0.55 S; Mr ~ 3 kDa) and peptide association (s20, w = 1.735 S; Mr = ~ 14 kDa) at acidic pH, with sedimentation equilibrium fitting to a Monomer-Nmer-Mmer model with N = 6 and M = 4 (Mr = 14692 Da). We propose that protein oligomerisation through coiled-coil motifs could then be a general feature in the assembly of functional units in saposin-like proteins in general and in the organization of SP-B in a functional surfactant, in particular.  相似文献   

4.
Under physiological conditions (278 K) femtosecond pump-probe laser spectroscopy with 20-fs time resolution was applied to study primary charge separation in spinach photosystem II (PSII) core complexes excited at 710 nm. It was shown that initial formation of anion radical band of pheophytin molecule (Pheo) at 460 nm is observed with rise time of ~ 11 ps. The kinetics of the observed rise was ascribed to charge separation between Chl (chlorophyll a) dimer, primary electron donor in PSII (P680*) and Pheo located in D1 protein subunit (PheoD1) absorbing at 420 nm, 545 nm and 680 nm with formation of the ion-radical pair P680+PheoDI. The subsequent electron transfer from PheoD1 to primary plastoquinone electron acceptor (QA) was accompanied by relaxation of the 460-nm band and occurred within ~ 250 ps in good agreement with previous measurements in Photosystem II-enriched particles and bacterial reaction centers. The subtraction of the P680+ spectrum measured at 455 ps delay from the spectra at 23 ps or 44 ps delay reveals the spectrum of PheoDI, which is very similar to that measured earlier by accumulation method. The spectrum of PheoDI formation includes a bleaching (or red shift) of the 670 nm band indicating that Chl-670 is close to PheoD1. According to previous measurements in the femtosecond–picosecond time range this Chl-670 was ascribed to ChlD1 [Shelaev, Gostev, Vishnev, Shkuropatov, Ptushenko, Mamedov, Sarkisov, Nadtochenko, Semenov and Shuvalov, J. Photochemistry and Photobiology, B: Biology 104 (2011) 45–50]. Stimulated emission at 685 nm was found to have two decaying components with time constants of ~ 1 ps and ~ 14 ps. These components appear to reflect formation of P680+ChlD1 and P680+PheoD1, respectively, as found earlier. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

5.
The chemical shift of the carboxylate carbon of Z-tryptophan is increased from 179.85 to 182.82 ppm and 182.87 ppm on binding to thermolysin and stromelysin-1 respectively. The chemical shift of Z-phenylalanine is also increased from 179.5 ppm to 182.9 ppm on binding to thermolysin. From pH studies we conclude that the pKa of the inhibitor carboxylate group is lowered by at least 1.5 pKa units when it binds to either enzyme. The signal at ~ 183 ppm is no longer observed when the active site zinc atom of thermolysin or stromelysin-1 is replaced by cobalt. We estimate that the distance of the carboxylate carbon of Z-[1-13C]-L-tryptophan is ≤ 3.71 Å from the active site cobalt atom of thermolysin. We conclude that the side chain of Z-[1-13C]-L-tryptophan is not bound in the S2′ subsite of thermolysin. As the chemical shifts of the carboxylate carbons of the bound inhibitors are all ~ 183 ppm we conclude that they are all bound in a similar way most probably with the inhibitor carboxylate group directly coordinated to the active site zinc atom. Our spectrophotometric results confirm that the active site zinc atom is tetrahedrally coordinated when the inhibitors Z-tryptophan or Z-phenylalanine are bound to thermolysin.  相似文献   

6.
Large catalase based bioelectrode for biosensor application   总被引:1,自引:0,他引:1  
A large catalase (CAT) (Mr ~ 90 kDa), immobilized on multiwalled carbon nanotubes—Nafion® (MWCNT-NF) matrix and encapsulated with polyethylenimine (PEI) on glassy carbon electrode (GCE), showed a pair of nearly reversible cyclic voltammetric peaks for Fe(III)/Fe(II) couple with formal potential of about −0.45 V (vs. Ag/AgCl electrode at pH 7.5). PEI significantly reduced the charge transfer resistance and stabilized the bioelectrode through electrostatic interaction. The electron transfer rate constant and surface coverage of the immobilized CAT were 1.05 ± 0.2 s−1 and 2.1 × 10−10 mol cm−2, respectively. Studies on electrocatalytic activity and kinetics of GCE/MWCNT-NF/CAT/PEI for hydrogen peroxide (H2O2) showed the apparent Michaelis-Menten constant of 3 mM, linear response in the range of 10 μM to 5 mM, response time of ~ 2 s for steady state current, and detection limit of ~ 1 μM. A high operational and storage stability was also demonstrated for the bioelectrode. Hence, the direct electrochemistry of the large catalase and its potential biosensor application have been established through this investigation.  相似文献   

7.
Maintenance of electrochemical potential gradients across lipid membranes is critical for signal transduction and energy generation in biological systems. However, because ions with widely varying membrane permeabilities all contribute to the electrostatic potential, it can be difficult to measure the influence of diffusion of a single ion type across the bilayer. To understand the electrodiffusion of H+ across lipid bilayers, we used a pH-sensitive fluorophore to monitor the lumenal pH in vesicles after a stepwise change in the bulk pH. In vesicles containing the ion channel gramicidin, the lumenal pH rapidly approached the external pH. In contrast, the lumen of intact vesicles showed a two stage pH response: an initial rapid change occurred over ~ 1 min, followed by a much slower change over ~ 24 h. We provide a quantitative interpretation of these results based on the Goldman–Hodgkin–Katz ion fluxes discharging the electrical capacitance of the bilayer membrane. This interpretation provides an estimate of the permeability of the membranes to Na+ and Cl ions of ~ 10− 8 cm/s, which is ~ 3 orders of magnitude faster than previous reports. We discuss possible mechanisms to account for this considerably higher permeability in vesicle membranes.  相似文献   

8.
Pb2+ is known to displace physiologically-relevant metal ions in proteins. To investigate potential relationships between Pb2+/protein complexes and toxicity, data from the protein data bank were analyzed to compare structural properties of Pb2+- and Ca2+-binding sites. Results of this analysis reveal that the majority of Pb2+ sites (77.1%) involve 2-5 binding ligands, compared with 6 ± 2 for non-EF-Hand and 7 ± 1 for EF-Hand Ca2+-binding sites. The mean net negative charge by site (1.7) fell between values noted for non-EF-Hand (1 ± 1) and EF-Hand (3 ± 1). Oxygen is the dominant ligand for both Pb2+ and Ca2+, but Pb2+ binds predominantly with sidechain Glu (38.4%), which is less prevalent in both non-EF-Hand (10.4%) and EF-Hand (26.6%) Ca2+-binding sites. A comparison of binding geometries where Pb2+ has replaced Ca2+ in calmodulin (CaM) and Zn2+ in 5-aminolaevulinic acid dehydratase (ALAD) revealed protein structural changes that appear to be unrelated to ionic displacement. Structural changes observed with CaM may be related to opportunistic binding of Pb2+ in regions of high electrostatic charge, whereas ALAD may bind multiple Pb2+ ions in the active site. These results suggest that Pb2+ adapts to structurally-diverse binding geometries and that opportunistic binding may play an active role in molecular metal toxicity.  相似文献   

9.
Several Cl channels have been described in the native renal tubule, but their correspondence with ClC-K1 and ClC-K2 channels (orthologs of human ClC-Ka and ClC-Kb), which play a major role in transcellular Cl absorption in the kidney, has yet to be established. This is partly because investigation of heterologous expression has involved rat or human ClC-K models, whereas characterization of the native renal tubule has been done in mice. Here, we investigate the electrophysiological properties of mouse ClC-K1 channels heterologously expressed in Xenopus laevis oocytes and in HEK293 cells with or without their accessory Barttin subunit. Current amplitudes and plasma membrane insertion of mouse ClC-K1 were enhanced by Barttin. External basic pH or elevated calcium stimulated currents followed the anion permeability sequence Cl > Br > NO3 > I. Single-channel recordings revealed a unit conductance of ~ 40 pS. Channel activity in cell-attached patches increased with membrane depolarization (voltage for half-maximal activation: ~ − 65 mV). Insertion of the V166E mutation, which introduces a glutamate in mouse ClC-K1, which is crucial for channel gating, reduced the unit conductance to ~ 20 pS. This mutation shifted the depolarizing voltage for half-maximal channel activation to ~ + 25 mV. The unit conductance and voltage dependence of wild-type and V166E ClC-K1 were not affected by Barttin. Owing to their strikingly similar properties, we propose that the ClC-K1/Barttin complex is the molecular substrate of a chloride channel previously detected in the mouse thick ascending limb (Paulais et al., J Membr. Biol, 1990, 113:253–260).  相似文献   

10.
11.
The aldehyde inhibitor Z-Ala-Ala-Phe-CHO has been synthesized and shown by 13C-NMR to react with the active site serine hydroxyl group of alpha-chymotrypsin to form two diastereomeric hemiacetals. For both hemiacetals oxyanion formation occurs with a pKa value of ~ 7 showing that chymotrypsin reduces the oxyanion pKa values by ~ 5.6 pKa units and stabilizes the oxyanions of both diastereoisomers by ~ 32 kJ mol− 1. As pH has only a small effect on binding we conclude that oxyanion formation does not have a significant effect on binding the aldehyde inhibitor. By comparing the binding of Z-Ala-Ala-Phe-CHO with that of Z-Ala-Ala-Phe-H we estimate that the aldehyde group increases binding ~ 100 fold. At pH 7.2 the effective molarity of the active site serine hydroxy group is ~ 6000 which is ~ 7 × less effective than with the corresponding glyoxal inhibitor. Using 1H-NMR we have shown that at both 4 and 25 °C the histidine pKa is ~ 7.3 in free chymotrypsin and it is raised to ~ 8 when Z-Ala-Ala-Phe-CHO is bound. We conclude that oxyanion formation only has a minor role in raising the histidine pKa and that the aldehyde hydrogen must be replaced by a larger group to raise the histidine pKa > 10 and give stereospecific formation of tetrahedral intermediates. The results show that a large increase in the pKa of the active site histidine is not needed for the active site serine hydroxyl group to have an effective molarity of 6000.  相似文献   

12.
Human fibroblast growth factor (hFGF-1) is a ∼ 17 kDa heparin binding cytokine. It lacks the conventional hydrophobic N-terminal signal sequence and is secreted through non-classical secretion routes. Under stress, hFGF-1 is released as a multiprotein complex consisting of hFGF-1, S100A13 (a calcium binding protein), and p40 synaptotagmin (Syt1). Copper (Cu2+) is shown to be required for the formation of the multiprotein hFGF-1 release complex (Landriscina et al. ,2001; Di Serio et al., 2008). Syt1, containing the lipid binding C2B domain, is believed to play an important role in the eventual export of the hFGF-1 across the lipid bilayer. In this study, we characterize Cu2+ and lipid interactions of the C2B domain of Syt1 using multidimensional NMR spectroscopy. The results highlight how Cu2+ appears to stabilize the protein bound to pS vesicles. Cu2+ and lipid binding interface mapped using 2D 1H-15N heteronuclear single quantum coherence experiments reveal that residues in β-strand I contributes to the unique Cu2+ binding site in the C2B domain. In the absence of metal ions, residues located in Loop II and β-strand IV contribute to binding to unilamelar pS vesicles. In the presence of Cu2+, additional residues located in Loops I and III appear to stabilize the protein-lipid interactions. The results of this study provide valuable information towards understanding the molecular mechanism of the Cu2+-induced non-classical secretion of hFGF-1.  相似文献   

13.
Cell-to-cell contacts play a key role in multicellular systems and organisms. Fasciclin-1 (FAS-1) is a lipid-linked membrane associated glycoprotein that is a member of a newly recognized family of cell adhesion molecules sharing features with the immunoglobulins, cadherins, integrins, and selectins. Here, we report the identification and molecular characterization of a novel FAS-1 domain-containing cDNA from disk abalone (Haliotis discus discus), including its gene expression profile and immune response to bacterial stimuli and tissue injuries. Designated as Abfac1, the 909 bp open reading frame (ORF) encodes 303 amino acid (aa) residues with a predicted molecular mass of 33 kDa and isoelectric (pI) value of 4.9. The aa sequence contains two FAS-1 domains and three conserved regions, FRa motif, H-box, and FRb motif. Phylogenetic analysis showed the closest relation to Jellyfish cell adhesion protein. In healthy abalone, Abfac1 expression is highest in hepatopancreas followed by mantle and lowest in digestive gland. In immune-stimulated abalones, relative Abfac1 mRNA expression was increased in hemocytes by ~ 11-fold at 48 h after the Vibrio parahaemolyticus infection, by 3.1-fold at 6 h after the Listeria monocytogenes infection and by ~ 9-fold at 6 h after the LPS injection. Similarly, tissue injuries caused significant increase of relative mRNA expression by 3.5-fold in hemocytes and by ~ 10-fold in mantle at 12 h post-injury. These results suggest that the novel member of the FAS-1 domain-containing protein family, Abfac1, may be involved in immune response and cell adhesion in disk abalone.  相似文献   

14.
Se-dependent glutathione peroxidase-1 (GPX1) and Cu,Zn-superoxide dismutase (SOD1) are two major intracellular antioxidant enzymes. The purpose of this study was to elucidate the biochemical mechanisms for the 40% loss of hepatic GPX1 activity in SOD1−/− mice. Compared with the wild type (WT), the SOD1−/− mice showed no change in the total amount of GPX1 protein. However, their total enzyme protein exhibited 31 and 38% decreases (P < 0.05) in the apparent kcat for hydrogen peroxide and tert-butylperoxide (at 2 mM GSH), respectively. Most striking, mass spectrometry revealed two chemical forms of the 47th residue of GPX1: the projected native selenocysteine (Sec) and the Se-lacking dehydroalanine (DHA). The hepatic GPX1 protein of the SOD1−/− mice contained 38% less Sec and 77% more DHA than that of WT and showed aggravated dissociation of the tetramer structure. In conclusion, knockout of SOD1 elevated the conversion of Sec to DHA in the active site of hepatic GPX1, leading to proportional decreases in the apparent kcat and activity of the enzyme protein as a whole. Our data reveal a structural and kinetic mechanism for the in vivo functional dependence of GPX1 on SOD1 in mammals and provide a novel mass spectrometric method for the assay of oxidative modification of the GPX1 protein.  相似文献   

15.
Recombinant protein technology represents one of the best solutions to achieve rapid, efficient, and cost-effective protein expression and purification of therapeutic proteins. Growth hormone (GH) is an excellent example of these proteins used in the therapy of hormone deficiencies. In this work, a plasmid, pRSET–TEV–rhGH, has been constructed to overexpress recombinant human GH (rhGH) by cloning its gene downstream of an N-terminal 6 × His-tagged polypeptide (43 aa) in the T7 promoter-plasmid pRSET. This polypeptide was cleavable by means of the integrated recognition site for the tobaccos etch virus (TEV) protease, resulting in an rhGH protein at an exact length and sequence. After IPTG induction, this plasmid effectively expressed TEV–rhGH protein (27 kDa) in the cytoplasm of Escherichia coli, which accumulated in the form of inclusion bodies. The 6 × His-tagged protein, with a yield of ~ 150 mg/L of culture, was purified from the cell extract using metal affinity chromatography, as shown after SDS-PAGE blue staining, and was confirmed by immunoblotting using specific commercial monoclonal antibodies. In order to detect TEV–rhGH, in ELISA and immunoblotting, specific polyclonal antibody, with high titer (~ 10− 5 fold dilution), was produced in a rabbit and purified using affinity chromatography. Preliminary tests have proved that TEV–rhGH protein and its specific purified IgG antibody could provide valuable tools for rhGH productive and diagnostic purposes.  相似文献   

16.
Niemann-Pick disease and drug-induced phospholipidosis are examples of lysosomal storage disorders in which serious respiratory infections are brought on by high levels of the phospholipid phosphatidylcholine in the acidic lamellar bodies and lysosomes of pulmonary cells. One approach to developing an effective therapeutic agent could involve the use of a metal to preferentially hydrolyze phospholipid phosphate ester bonds at mildly acidic, lysosomal pH values (~ pH 4.8). Towards this end, here we have investigated phosphatidylcholine hydrolysis by twelve metal ion salts at 60 °C. Using a malachite green/molybdate-based colorimetric assay to detect inorganic phosphate released upon metal-assisted phosphate ester bond hydrolysis, Ce(IV) was shown to possess outstanding reactivity in comparison to the eleven other metals. We then utilized cerium(IV) to hydrolyze phosphatidylcholine at normal, core body temperature (37 °C). The malachite green/molybdate assay was used to quantitate free phosphate and an Amplex® Red-based colorimetric assay and matrix-assisted laser desorption ionization time-of-flight mass spectrometry were employed to detect choline. Ce(IV) hydrolyzed phosphatidylcholine more efficiently at lysosomal pH: i.e., at a Triton X-100:phosphatidylcholine molar mixing ratio of 1.57, yields of choline and phosphate were 51 ± 4% and 40 ± 4% at ~ pH 4.8, compared to 28 ± 4% and 27 ± 5% at ~ pH 7.2.  相似文献   

17.
Although the magnitude of a protein’s net charge (Z) can control its rate of self-assembly into amyloid, and its interactions with cellular membranes, the net charge of a protein is not viewed as a druggable parameter. This article demonstrates that aspirin (the quintessential acylating pharmacon) can inhibit the amyloidogenesis of superoxide dismutase (SOD1) by increasing the intrinsic net negative charge of the polypeptide, i.e., by acetylation (neutralization) of multiple lysines. The protective effects of acetylation were diminished (but not abolished) in 100 mM NaCl and were statistically significant: a total of 432 thioflavin-T amyloid assays were performed for all studied proteins. The acetylation of as few as three lysines by aspirin in A4V apo-SOD1—a variant that causes familial amyotrophic lateral sclerosis (ALS)—delayed amyloid nucleation by 38% and slowed amyloid propagation by twofold. Lysines in wild-type- and ALS-variant apo-SOD1 could also be peracetylated with aspirin after fibrillization, resulting in supercharged fibrils, with increases in formal net charge of ∼2 million units. Peracetylated SOD1 amyloid defibrillized at temperatures below unacetylated fibrils, and below the melting temperature of native Cu2,Zn2-SOD1 (e.g., fibril Tm = 84.49°C for acetylated D90A apo-SOD1 fibrils). Targeting the net charge of native or misfolded proteins with small molecules—analogous to how an enzyme’s Km or Vmax are medicinally targeted—holds promise as a strategy in the design of therapies for diseases linked to protein self-assembly.  相似文献   

18.
Human serum albumin (HSA) participates to heme scavenging, in turn HSA-heme binds gaseous diatomic ligands at the heme-Fe-atom. Here, the effect of abacavir and warfarin on denitrosylation kinetics of HSA-heme-Fe(II)-NO (i.e., koff) is reported. In the absence of drugs, the value of koff is (1.3 ± 0.2) × 10−4 s−1. Abacavir and warfarin facilitate NO dissociation from HSA-heme-Fe(II)-NO, the koff value increases to (8.6 ± 0.9) × 10−4 s−1. From the dependence of koff on the drug concentration, values of the dissociation equilibrium constant for the abacavir and warfarin binding to HSA-heme-Fe(II)-NO (i.e., K = (1.2 ± 0.2) × 10−3 M and (6.2 ± 0.7) × 10−5 M, respectively) were determined. The increase of koff values reflects the stabilization of the basic form of HSA-heme-Fe by ligands (e.g., abacavir and warfarin) that bind to Sudlow’s site I. This event parallels the stabilization of the six-coordinate derivative of the HSA-heme-Fe(II)-NO atom. Present data highlight the allosteric modulation of HSA-heme-Fe(II) reactivity by heterotropic effectors.  相似文献   

19.
Galectins are a family of lectins with a conserved carbohydrate recognition domain that interacts with β-galactosides. By binding cell surface glycoconjugates, galectin-1 (gal-1) is involved in cell adhesion and migration processes and is an important regulator of tumor angiogenesis. Here, we used heteronuclear NMR spectroscopy and molecular modeling to investigate lactose binding to gal-1 and to derive solution NMR structures of gal-1 in the lactose-bound and unbound states. Structure analysis shows that the β-strands and loops around the lactose binding site, which are more open and dynamic in the unbound state, fold in around the bound lactose molecule, dampening internal motions at that site and increasing motions elsewhere throughout the protein to contribute entropically to the binding free energy. CD data support the view of an overall more open structure in the lactose-bound state. Analysis of heteronuclear single quantum coherence titration binding data indicates that lactose binds the two carbohydrate recognition domains of the gal-1 dimer with negative cooperativity, in that the first lactose molecule binds more strongly (K1 = 21 ± 6 × 103 M− 1) than the second (K2 = 4 ± 2 × 103 M− 1). Isothermal calorimetry data fit using a sequential binding model present a similar picture, yielding K1 = 20 ± 10 × 103 M− 1 and K2 = 1.67 ± 0.07 × 103 M− 1. Molecular dynamics simulations provide insight into structural dynamics of the half-loaded lactose state and, together with NMR data, suggest that lactose binding at one site transmits a signal through the β-sandwich and loops to the second binding site. Overall, our results provide new insight into gal-1 structure-function relationships and to protein-carbohydrate interactions in general.  相似文献   

20.

Background

Thymosin beta 4 (Tβ4) is a major actin sequestering peptide present in most mammalian cells. It also acts as an anti-inflammatory agent and promotes corneal wound healing.

Methods

In the present study, we constructed a four channel cylindrical flow chambers out of polydimethylsiloxane (PDMS) on microscope coverslips. The platelet-binding proteins–fibrinogen and collagen–were immobilized onto the middle ~ 25% of the inner cylindrical surface. The flow method introduced here was employed to determine the effect of Tβ4, on the deposition of ADP-activated platelets onto fibrinogen cross-linked flow chambers.

Results

The binding data from the flow chambers indicated that the both the rate constant of platelet deposition (average: 0.026 ± 0.0015 s− 1, corresponding to a half-life of 26.7 s) and the total number of deposited platelets were independent of the platelet binding protein and the activating agent. Our results show that low concentrations of Tβ4 (0.2 μM to 0.5 μM) increased both the rate constant of platelet deposition by ~ 1.5-fold (i.e. half-life decreased from 26.7 s to 17.6 s) and the total number of deposited platelets by ~ 3-fold. However at higher concentrations (> 1 μM) the Tβ4-potentiating effect was diminished to near control levels. Tβ4 did interact with fibrinogen with an estimated KD of ~ 126 ± 18 nM or 66 ± 20 nM under equilibrium or flow, respectively.

Conclusion

These results suggest that Tβ4 could potentially increase the affinity of platelet receptors for their ligands thus promoting platelet deposition. Tβ4 could also bind to fibrinogen and as its concentration increased would prevent platelet–fibrinogen interactions resulting in the attenuation of platelet deposition.

General significance

This work suggests that Tβ4 might have a dual role in platelet function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号