首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional and deep sequencing studies have combined to demonstrate the involvement of APOBEC3B in cancer mutagenesis. APOBEC3B is a single-stranded DNA cytosine deaminase that functions normally as a nuclear-localized restriction factor of DNA-based pathogens. However, it is overexpressed in cancer cells and elicits an intrinsic preference for 5′-TC motifs in single-stranded DNA, which is the most frequently mutated dinucleotide in breast, head/neck, lung, bladder, cervical, and several other tumor types. In many cases, APOBEC3B mutagenesis accounts for the majority of both dispersed and clustered (kataegis) cytosine mutations. Here, we report the first structures of the APOBEC3B catalytic domain in multiple crystal forms. These structures reveal a tightly closed active site conformation and suggest that substrate accessibility is regulated by adjacent flexible loops. Residues important for catalysis are identified by mutation analyses, and the results provide insights into the mechanism of target site selection. We also report a nucleotide (dCMP)-bound crystal structure that informs a multistep model for binding single-stranded DNA. Overall, these high resolution crystal structures provide a framework for further mechanistic studies and the development of novel anti-cancer drugs to inhibit this enzyme, dampen tumor evolution, and minimize adverse outcomes such as drug resistance and metastasis.  相似文献   

2.
The human proteins APOBEC3F and APOBEC3G restrict retroviral infection by deaminating cytosine residues in the first cDNA strand of a replicating virus. These proteins have two putative deaminase domains, and it is unclear whether one or both catalyze deamination, unlike their homologs, AID and APOBEC1, which are well characterized single domain deaminases. Here, we show that only the C-terminal cytosine deaminase domain of APOBEC3F and -3G governs retroviral hypermutation. A chimeric protein with the N-terminal cytosine deaminase domain from APOBEC3G and the C-terminal cytosine deaminase domain from APOBEC3F elicited a dinucleotide hypermutation preference nearly indistinguishable from that of APOBEC3F. This 5'-TC-->TT mutational specificity was confirmed in a heterologous Escherichia coli-based mutation assay, in which the 5'-CC-->CT dinucleotide hypermutation preference of APOBEC3G also mapped to the C-terminal deaminase domain. An N-terminal APOBEC3G deletion mutant displayed a preference indistinguishable from that of the full-length protein, and replacing the C-terminal deaminase domain of APOBEC3F with AID resulted in an AID-like mutational signature. Together, these data indicate that only the C-terminal domain of APOBEC3F and -3G dictates the retroviral minus strand 5'-TC and 5'-CC dinucleotide hypermutation preferences, respectively, leaving the N-terminal domain to perform other aspects of retroviral restriction.  相似文献   

3.
The APOBEC3 proteins are unique to mammals. Many inhibit retrovirus infection through a cDNA cytosine deamination mechanism. HIV-1 neutralizes this host defense through Vif, which triggers APOBEC3 ubiquitination and degradation. Here, we report an APOBEC3F-like, double deaminase domain protein from three artiodactyls: cattle, pigs and sheep. Like their human counterparts, APOBEC3F and APOBEC3G, the artiodactyl APOBEC3F proteins are DNA cytosine deaminases that locate predominantly to the cytosol and can inhibit the replication of HIV-1 and MLV. Retrovirus restriction is attributable to deaminase-dependent and -independent mechanisms, as deaminase-defective mutants retain significant anti-retroviral activity. However, unlike human APOBEC3F and APOBEC3G, the artiodactyl APOBEC3F proteins have an active N-terminal DNA cytosine deaminase domain, which elicits a broader dinucleotide deamination preference, and they are resistant to HIV-1 Vif. These data indicate that DNA cytosine deamination; sub-cellular localization and retrovirus restriction activities are conserved in mammals, whereas active site location, local mutational preferences and Vif susceptibility are not. Together, these studies indicate that some properties of the mammal-specific, APOBEC3-dependent retroelement restriction system are necessary and conserved, but others are simultaneously modular and highly adaptable.  相似文献   

4.
APOBEC3G (CEM15 ) deaminates cytosine to uracil in nascent retroviral cDNA. The potency of this cellular defense is evidenced by a dramatic reduction in viral infectivity and the occurrence of high frequencies of retroviral genomic-strand G --> A transition mutations. The overwhelming dinucleotide hypermutation preference of APOBEC3G acting upon a variety of model retroviral substrates is 5'-GG --> -AG. However, a distinct 5'-GA --> -AA bias, which is difficult to attribute to APOBEC3G alone, prevails in HIV-1 sequences derived from infected individuals (e.g., ). Here, we show that APOBEC3F is also a potent retroviral restrictor but that its activity, unlike that of APOBEC3G, is partially resistant to HIV-1 Vif and results in a clear 5'-GA --> -AA retroviral hypermutation preference. This bias is also apparent in a bacterial mutation assay, suggesting that it is an intrinsic APOBEC3F property. Moreover, APOBEC3F and APOBEC3G appear to be coordinately expressed in a wide range of human tissues and are independently able to inhibit retroviral infection. Thus, APOBEC3F and APOBEC3G are likely to function alongside one another in the provision of an innate immune defense, with APOBEC3F functioning as the major contributor to HIV-1 hypermutation in vivo.  相似文献   

5.
6.
7.
8.
Apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3G (i.e., APOBEC3G or A3G) is an evolutionarily conserved cytosine deaminase that potently restricts human immunodeficiency virus type 1 (HIV-1), retrotransposons and other viruses. A3G has a nucleotide target site specificity for cytosine dinucleotides, though only certain cytosine dinucleotides are ‘hotspots’ for cytosine deamination, and others experience little or no editing by A3G. The factors that define these critical A3G hotspots are not fully understood. To investigate how A3G hotspots are defined, we used an in vitro fluorescence resonance energy transfer-based oligonucleotide assay to probe the site specificity of A3G. Our findings strongly suggest that the target single-stranded DNA (ssDNA) secondary structure as well as the bases directly 3′ and 5′ of the cytosine dinucleotide are critically important A3G recognition. For instance, A3G cannot readily deaminate a cytosine dinucleotide in ssDNA stem structures or in nucleotide base loops composed of three bases. Single-stranded nucleotide loops up to seven bases in length were poor targets for A3G activity unless cytosine residues flanked the cytosine dinucleotide. Furthermore, we observed that A3G favors adenines, cytosines and thymines flanking the cytosine dinucleotide target in unstructured regions of ssDNA. Low cytosine deaminase activity was detected when guanines flanked the cytosine dinucleotide. Taken together, our findings provide the first demonstration that A3G cytosine deamination hotspots are defined by both the sequence context of the cytosine dinucleotide target as well as the ssDNA secondary structure. This knowledge can be used to better trace the origins of mutations to A3G activity, and illuminate its impact on processes such as HIV-1 genetic variation.  相似文献   

9.
Akin to a 'Trojan horse,' APOBEC3G DNA deaminase is encapsulated by the HIV virion. APOBEC3G facilitates restriction of HIV-1 infection in T cells by deaminating cytosines in nascent minus-strand complementary DNA. Here, we investigate the biochemical basis for C --> U targeting. We observe that APOBEC3G binds randomly to single-stranded DNA, then jumps and slides processively to deaminate target motifs. When confronting partially double-stranded DNA, to which APOBEC3G cannot bind, sliding is lost but jumping is retained. APOBEC3G shows catalytic orientational specificity such that deamination occurs predominantly 3' --> 5' without requiring hydrolysis of a nucleotide cofactor. Our data suggest that the G --> A mutational gradient generated in viral genomic DNA in vivo could result from an intrinsic processive directional attack by APOBEC3G on single-stranded cDNA.  相似文献   

10.
APOBEC3G is a retroviral restriction factor that can inhibit the replication of human immunodeficiency virus, type 1 (HIV-1) in the absence of the viral infectivity factor (Vif) protein. Virion-encapsidated APOBEC3G can deaminate cytosine to uracil in viral (−)DNA, which leads to hypermutation and inactivation of the provirus. APOBEC3G catalyzes these deaminations processively on single-stranded DNA using sliding and jumping movements. Vif is thought to primarily overcome APOBEC3G through an interaction that mediates APOBEC3G ubiquitination and results in its proteasomal degradation. However, Vif may also inhibit APOBEC3G mRNA translation, virion encapsidation, and deamination activity. Here we investigated the molecular mechanism of VifIIIB- and VifHXB2-mediated inhibition of APOBEC3G deamination activity. Biochemical assays using a model HIV-1 replication assay and synthetic single-stranded or partially double-stranded DNA substrates demonstrated that APOBEC3G has an altered processive mechanism in the presence of Vif. Specifically, VifHXB2 inhibited the jumping and VifIIIB inhibited the sliding movements of APOBEC3G. The absence of such an effect by Vif on degradation-resistant APOBEC3G D128K indicates that a Vif-APOBEC3G interaction mediates this effect. That the partially processive APOBEC3G was less effective at inducing mutagenesis in a model HIV-1 replication assay suggests that Vif co-encapsidation with APOBEC3G can promote sublethal mutagenesis of HIV-1 proviral DNA.  相似文献   

11.
Human APOBEC3G and several other APOBEC3 proteins have been shown to inhibit the replication of a variety of retrotransposons and retroviruses. All of these enzymes can deaminate cytosines within single-strand DNA, but the overall importance of this conserved activity in retroelement restriction has been questioned by reports of deaminase-independent mechanisms. Here, three distinct retroelements, a yeast retrotransposon, Ty1, a murine endogenous retrovirus, MusD, and a lentivirus, human immunodeficiency virus type 1 (HIV-1), were used to evaluate the relative contributions of deaminase-dependent and -independent mechanisms. Although human APOBEC3G can restrict the replication of all three of these retroelements, APOBEC3G lacking the catalytic glutamate (E259Q) was clearly defective. This phenotype was particularly clear in experiments with low levels of APOBEC3G expression. In contrast, purposeful overexpression of APOBEC3G-E259Q was able to cause modest to severe reductions in the replication of Ty1, MusD, and HIV-1(ΔVif). The importance of these observations was highlighted by data showing that CEM-SS T-cell lines expressing near-physiologic levels of APOBEC3G-E259Q failed to inhibit the replication of HIV-1(ΔVif), whereas similar levels of wild-type APOBEC3G fully suppressed virus infectivity. Despite the requirement for DNA deamination, uracil DNA glycosylase did not modulate APOBEC3G-dependent restriction of Ty1 or HIV-1(ΔVif), further supporting prior studies indicating that the major uracil excision repair system of cells is not involved. In conclusion, the absolute requirement for the catalytic glutamate of APOBEC3G in Ty1, MusD, and HIV-1 restriction strongly indicates that DNA cytosine deamination is an essential part of the mechanism.  相似文献   

12.
13.
14.
The adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate contents of microliter quantities of urine can be determined simultaneously by combining individual protein binding assays for the two nucleotides. 32P-labeled adenosine 3′,5′-monophosphate is bound to a protein from bovine skeletal muscle, while a lobster muscle protein preparation is utilized for binding of 3H-labeled guanosine 3′,5′-monophosphate.  相似文献   

15.
2H phosphoesterases catalyze reactions on nucleotide substrates and contain two conserved histidine residues in the active site. Very limited information is currently available on the details of the active site and substrate/product binding during the catalytic cycle of these enzymes. We performed a comprehensive X-ray crystallographic study of mouse 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase), a membrane-associated enzyme present at high levels in the tetrapod myelin sheath. We determined crystal structures of the CNPase phosphodiesterase domain complexed with substrate, product, and phosphorothioate analogues. The data provide detailed information on the CNPase reaction mechanism, including substrate binding mode and coordination of the nucleophilic water molecule. Linked to the reaction, an open/close motion of the β5–α7 loop is observed. The role of the N terminus of helix α7—unique for CNPase in the 2H family—during the reaction indicates that 2H phosphoesterases differ in their respective reaction mechanisms despite the conserved catalytic residues. Furthermore, based on small-angle X-ray scattering, we present a model for the full-length enzyme, indicating that the two domains of CNPase form an elongated molecule. Finally, based on our structural data and a comprehensive bioinformatics study, we discuss the conservation of CNPase in various organisms.  相似文献   

16.
17.
18.
The identity of the histidine specific transfer RNA (tRNAHis) is largely determined by a unique guanosine residue at position −1. In eukaryotes and archaea, the tRNAHis guanylyltransferase (Thg1) catalyzes 3′-5′ addition of G to the 5′-terminus of tRNAHis. Here, we show that Thg1 also occurs in bacteria. We demonstrate in vitro Thg1 activity for recombinant enzymes from the two bacteria Bacillus thuringiensis and Myxococcus xanthus and provide a closer investigation of several archaeal Thg1. The reaction mechanism of prokaryotic Thg1 differs from eukaryotic enzymes, as it does not require ATP. Complementation of a yeast thg1 knockout strain with bacterial Thg1 verified in vivo activity and suggests a relaxed recognition of the discriminator base in bacteria.  相似文献   

19.
APOBEC3G has an important role in human defense against retroviral pathogens, including HIV-1. Its single-stranded DNA cytosine deaminase activity, located in its C-terminal domain (A3Gctd), can mutate viral cDNA and restrict infectivity. We used time-resolved nuclear magnetic resonance (NMR) spectroscopy to determine kinetic parameters of A3Gctd''s deamination reactions within a 5′-CCC hot spot sequence. A3Gctd exhibited a 45-fold preference for 5′-CCC substrate over 5′-CCU substrate, which explains why A3G displays almost no processivity within a 5′-CCC motif. In addition, A3Gctd''s shortest substrate sequence was found to be a pentanucleotide containing 5′-CCC flanked on both sides by a single nucleotide. A3Gctd as well as full-length A3G showed peak deamination velocities at pH 5.5. We found that H216 is responsible for this pH dependence, suggesting that protonation of H216 could play a key role in substrate binding. Protonation of H216 appeared important for HIV-1 restriction activity as well, since substitutions of H216 resulted in lower restriction in vivo.  相似文献   

20.

Background

5′-Nitro-indirubinoxime (5′-NIO) is a new derivative of indirubin that exhibits anti-cancer activity in a variety of human cancer cells. However, its mechanism has not been fully clarified.

Methods

Human salivary gland adenocarcinoma (SGT) cells were used in this study. Western blot and RT-PCR analyses were performed to determine cellular Notch levels. The cell cycle stage and level of apoptosis were analyzed using flow cytometry analysis.

Results

5′-NIO significantly inhibited the mRNA levels of Notch-1 and Notch-3 and their ligands (Delta1, 2, 3, and Jagged-2) in SGT cells. Immunocytochemistry analysis showed that 5′-NIO specifically decreased the level of Notch-1 in the nucleus. In addition, 5′-NIO induced G1 cell cycle arrest by reducing levels of CDK4 and CDK6 in SGT cells. Using flow cytometry and immunoblotting analysis, we found that 5′-NIO induces apoptosis following the secretion of cytochrome c and the activation of caspase-3 and caspase-7. Intracellular Notch-1 overexpression led to a decrease in G1 phase arrest and an inhibition of 5′-NIO-induced apoptosis.

Conclusion

These observations suggest that 5′-NIO induces cell cycle arrest and apoptosis by down-regulating Notch-1 signaling.

General significance

This study identifies a new mechanism of 5′-NIO-mediated anti-tumor properties. Thus, 5′-NIO could be used as a candidate for salivary gland adenocarcinoma therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号