首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Earlier findings /1-10/ bearing on a subunit organization of chromatin were confirmed and in some points detailed. Besides this, a large-scale isolation of chromatin subunits; their protein composition, electron microscopic appearance and CsCl banding pattern are described. Although the purified chromatin subunit contains all five histones, the relative content of histone H1 i in it is two times lower than that in the original chromatin. tit is shown that a mild digestion of chromatin with staphylococcal nuclease produced not only separate chromatin subunits and their "oligomers' but also deoxyribonucleoprotein particles which sediment more slowly than subunits. It appears that these particles and subunits are produced from different initial structures in the chromatin. Finally, a crystallization of the purified chromatin subunit as a cetyltrimethyl ammonium salt is described.  相似文献   

2.
3.
4.
5.
A purification scheme for satellite DNA containing chromatin from mouse liver has been developed. It is based on the highly condensed state of the satellite chromatin and also takes advantage of its resistance to digestion by certain restriction nucleases. Nuclei are first treated with micrococcal nuclease and the satellite chromatin enriched 3-5 fold by extraction of the digested nuclei under appropriate conditions. Further purification is achieved by digestion of the chromatin with a restriction nuclease that leaves satellite DNA largely intact but degrades non-satellite DNA extensively. In subsequent sucrose gradient centrifugation the rapidly sedimenting chromatin contains more than 70% satellite DNA. This material has the same histone composition as bulk chromatin. No significant differences were detected in an analysis of minor histone variants. Nonhistone proteins are present only in very low amounts in the satellite chromatin fraction, notably the HMG proteins are strongly depleted.  相似文献   

6.
Methylation of chromatin DNA.   总被引:2,自引:4,他引:2       下载免费PDF全文
E. coli DNA methylase has been used to methylate chromatin DNA in vitro. At saturation only 50% of the chromatin DNA becomes methylated. The methylated regions of chromatin correspond to that fraction of the chromatin which is sensitive to staphylococcal nuclease. Using in vitro methylated chromatin followed by nuclease digestion movement of chromatin proteins along the DNA can be detected. By this criterion, sonication of chromatin or precipitation with MnCl2 causes 10% of the previously uncovered methylated regions to become covered by protein. Reconstitution of methylated chromatin results in the randomization of the chromatin proteins. Using nuclei which were methylated in vitro we have demonstrated that a small degree of protein sliding does occur during the preparation of chromatin from nuclei. Finally, we have prepared open region DNA by polylysine titration. This procedure does not cause displacement of chromatin proteins.  相似文献   

7.
Previous work has attempted to localize nuclear histone acetyltransferase activity in the cromatin. Evidence was presented indicating that the transfer of 14C-acetate from 14C-acetyl CoA to histones in chromatin was an enzymatic process. We now report on the extraction of part of the histone acetyltransferase activity from rat liver chromatin, employing a procedure originally described for extraction of DNA-dependent RNA polymerase. The Km of the extracted transferase activity for the substrate acetyl CoA was 5 × 10−7, the Q10: 1.8 and the optimal pH: 7.1. Serum albumine, protamine and polylysine were poor substrates as compared to histones. Activity of extracted or heated chromatin was not restored upon incubation in the presence of extract. Also the selectivity exhibited by the transferase activity in unextracted chromatin towards arginine-rich histones, was much less pronounced in the extracts prepared from it. It is possible that the influence of steric factors contributing to this specificity in native chromatin is lost upon isolation of the enzyme from it. Alternatively, a less specific isoenzyme may have been extracted.  相似文献   

8.
Mammalian cells contain approximately 400 copies of the ribosomal RNA genes organized as tandem, head-to-tail repeats spread among 6-8 chromosomes. Only a subset of the genes is transcribed at any given time. Experimental evidence suggests that, in a specific cell type, only a fraction of the genes exists in a conformation that can be transcribed. An increasing body of study indicates that eukaryotic ribosomal RNA genes exist in either a heterochromatic nucleosomal state or in open euchromatic states in which they can be, or are, transcribed. This review will attempt to summarize our current understanding of the structure and organization of ribosomal chromatin.  相似文献   

9.
Analysis of Chlamydomonas reinhardtii histones and chromatin   总被引:3,自引:0,他引:3  
Chromatin spreads made from isolated nuclei of the unicellular green alga Chlamydomonas reinhardtii show the beaded fibers typical of eukaryotic polynucleosomes. Micrococcal nuclease digestions confirmed the presence of nucleosomes with a repeat length of 189 base pairs, essentially the same as typical mammalian cells. Basic nuclear proteins extracted from isolated nuclei or chromatin with 1 M calcium chloride and 0.3 M hydrochloric acid are resolved into seven major components by electrophoresis in the presence of sodium dodecyl sulfate (SDS). These seven components were subjected to qualitative peptide mapping with V8 protease on SDS gels for comparison with the major histone components of calf thymus. Finally, the C. reinhardtii basic nuclear proteins were fractionated by reversed phase high performance liquid chromatography and their amino acid composition determined. From these studies, we conclude that C. reinhardtii has a full complement of the five histones with properties very similar to those of both higher animals and higher plants.  相似文献   

10.
By digestion of rat liver nuclei with EndoR HaeIII, EndoR EcoRI, and EndoR Bam and subsequent lysis of the nuclei approx. 90%, 40%, and 45%, respectively, of the chromatin were solubilized. The plateau values of solubilization are in agreement with a model in which the chromatin strands are crosslinked and/or attached to a supporting structure. The distribution of DNA lengths in the soluble and insoluble chromatin fractions were determined. According to digestion experiments with restriction nucleases rat liver DNA contains highly repetitive sequences, some of which are arranged in tandem repeats of 95 and 380 nucleotide pairs, respectively. With EndoR EcoRI chromatin containing the repetitive RNA was preferentially solubilized and, by subsequent sucrose gradient centrifugation, purified to about 90%. The useful properties of chromatin prepared by the specific action of restriction nucleases are discussed.  相似文献   

11.
The analytical electron microscope technique called electron spectroscopic imaging (ESI) has a number of applications in the study of DNA:protein complexes. The method offers an intermediate level of spatial resolution for in vitro structural studies of complexes that may be too large or heterogeneous to study by crystallography or magnetic resonance spectroscopy. An advantage of ESI is that the distribution of nucleic acids can be resolved in a nucleoprotein complex by mapping the element phosphorus, present at high levels in nucleic acid compared to protein. Measurements of phosphorus content together with mass determination allows estimates to be made of stoichiometric relationships of protein and nucleic acids in these complexes. ESI is also suited to in situ studies of nuclear structure. Mass-sensitive images combined with nitrogen and phosphorus maps can be used to distinguish nucleic acid components from nuclear structures that are predominantly protein based. Interactions between chromatin on the periphery of interchromatin granule clusters (IGC) with the protein substructure that connects the exterior of the IGC to its core can be studied with this technique. The method also avoids the use of heavy atom stains, agents required in conventional electron microscopy, that preclude the distinguishing of structures on the basis of their biochemical composition. The principles of ESI and technical aspects of the method are discussed.  相似文献   

12.
Assembly of newly replicated chromatin.   总被引:53,自引:0,他引:53  
A Worcel  S Han  M L Wong 《Cell》1978,15(3):969-977
Mild staphylococcal nuclease digestions under isotonic conditions release fragments of a 200 Å diameter fiber from nuclei of Drosophila melanogaster tissue culture cells. These soluble fragments have high sedimentation coefficients (30–100S) and show tightly packed nucleosomes in the electron microscope. Under the same conditions, newly replicated chromatin is released as more slowly sedimenting fragments (14S). Within 20 min after DNA replication, the nascent chromatin gradually matures into compact supranucleosomal structures which are indistinguishable from bulk chromatin on the isokinetic sucrose gradients.We have used this fractionation technique to examine the question of the fate and assembly of the new histones. After short pulses with either 35S-methionine or 3H-lysine, the radioactive histones do not co-sediment with the bulk chromatin but appear instead in the fractions where the newly replicated DNA is found. Furthermore, the various nascent histones appear in different fractions on the gradient: histones H3 and H4 in 10–15S structures, histones H2A and H2B in 15–50S structures and histone H1 in 30–100S structures. These results, together with the analysis of pulse and pulse-chase experiments of both nascent DNA and histones, strongly suggest that histones H3 and H4 are deposited first on the nascent DNA (during or slightly after the DNA is replicated), histones H2A and H2B are deposited next (2–10 min later) and histone H1 is deposited last (10–20 min after DNA replication). A high turnover 20,000 dalton protein is also associated with the newly replicated chromatin.  相似文献   

13.
Nuclease sensitivity of active chromatin.   总被引:3,自引:2,他引:3       下载免费PDF全文
The active regions of chicken erythrocyte nuclei were labeled using the standard DNase I directed nick translation reaction. These nuclei were then used to study the characteristics and, in particular, the nuclease sensitivity of active genes. Although DNase I specifically attacks active genes, micrococcal nuclease solubilizes these regions to about the same degree as the total DNA. On the other hand micrococcal nuclease does selectively cut the internucleosomal regions of active genes resulting in the appearance of mononucleosomal fraction which is enriched in active gene DNA. A small percentage of the active chromatin is also released from the nucleus by low speed centrifugation following micrococcal nuclease treatment. The factors which make active genes sensitive to DNase I were shown to reside on individual nucleosomes from these regions. This was established by showing that isolated active mononucleosomes were preferentially sensitive to DNase I digestion. Although the high mobility group proteins are essential for the maintenance of DNase I sensitivity in active regions, these proteins are not necessary for the formation of the conformation which makes these genes preferentially accessible to micrococcal nuclease. The techniques employed in this paper enable one to study the chromatin structure of the entire population of actively expressed genes. Previous studies have elucidated the structure of a few special highly prevalent genes such as ovalbumin and hemoglobin. The results of this paper show that this special conformation is a general feature of all active genes irregardless of the extent of expression.  相似文献   

14.
15.
The enzymes that transcribe, recombine, package, and duplicate the eukaryotic genome all are highly processive and capable of generating large forces. Understanding chromosome function therefore will require analysis of mechanics as well as biochemistry. Here we review development of new biophysical-biochemical techniques for studying the mechanical properties of isolated chromatin fibers and chromosomes. We also discuss microscopy-based experiments on cells that visualize chromosome structure and dynamics. Experiments on chromatin tell us about its flexibility and fluctuation, as well as quantifying the forces generated during chromatin assembly. Experiments on whole chromosomes provide insight into the higher-order organization of chromatin; for example, recent experiments have shown that the mitotic chromosome is held together by isolated chromatin-chromatin links and not a large, mechanically contiguous non-DNA "scaffold".  相似文献   

16.
Structure of transcriptionally-active chromatin subunits.   总被引:4,自引:0,他引:4  
Rat liver chromatin is organized into regions of DNA which differ in degree of susceptibility to attack by the endonucleases DNase I and DNase II. The most nuclease-sensitive portion of chromatin DNA is enriched in transcribed sequences. This fraction may be separated from the bulk of chromatin by virtue of its solubility in solutions containing 2 mM MgCl2. Both transcribed and nontranscribed regions of chromatin are organized into repeating units of DNA and histone, which appear as 100 A beads in the electron microscope. The length of DNA in the repeat unit is the same for these two classes of chromatin (198 +/- 6 base pairs in rat liver); however, the subunits of active, Mg++-soluble chromatin differ from the nucleosomes of inactive regions of chromatin in several respects. Active subunits are enriched in nascent RNA and nonhistone protein and exhibit higher sedimentation values than the corresponding subunits of inactive chromatin.  相似文献   

17.
Organisation of subunits in chromatin.   总被引:20,自引:12,他引:8       下载免费PDF全文
There is considerable current interest in the organisation of nucleosomes in chromatin. A strong X-ray and neutron semi-meridional diffraction peak at approximately 10 nm had previously been attributed to the interparticle specing of a linear array of nucleosomes. This diffraction peak could also result from a close packed helical array of nucleosomes. A direct test of these proposals is whether the 10 nm peak is truly meridional as would be expected for a linear array of nucleosomes or is slightly off the meridian as expected for a helical array. Neutron diffraction studies of H1-depleted chromatin support the latter alternative. The 10 nm peak has maxima which form a cross-pattern with semi-meridional angle of 8 to 9 degrees. This is consistent with a coil of nucleosomes of pitch 10 nm and outer diameter of approximately 30 nm. These dimensions correspond to about six nucleosomes per turn of the coli.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号