首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The model of the respiratory chain in which the enzyme complexes are independently embedded in the lipid bilayer of the inner mitochondrial membrane and connected by randomly diffusing coenzyme Q and cytochrome c is mostly favored. However, multicomplex units can be isolated from mammalian mitochondria, suggesting a model based on direct electron channeling between complexes. Kinetic testing using metabolic flux control analysis can discriminate between the two models: the former model implies that each enzyme may be rate-controlling to a different extent, whereas in the latter, the whole metabolic pathway would behave as a single supercomplex and inhibition of any one of its components would elicit the same flux control. In particular, in the absence of other components of the oxidative phosphorylation apparatus (i.e. ATP synthase, membrane potential, carriers), the existence of a supercomplex would elicit a flux control coefficient near unity for each respiratory complex, and the sum of all coefficients would be well above unity. Using bovine heart mitochondria and submitochondrial particles devoid of substrate permeability barriers, we investigated the flux control coefficients of the complexes involved in aerobic NADH oxidation (I, III, IV) and in succinate oxidation (II, III, IV). Both Complexes I and III were found to be highly rate-controlling over NADH oxidation, a strong kinetic evidence suggesting the existence of functionally relevant association between the two complexes, whereas Complex IV appears randomly distributed. Moreover, we show that Complex II is fully rate-limiting for succinate oxidation, clearly indicating the absence of substrate channeling toward Complexes III and IV.  相似文献   

2.
To understand the roles of mitochondrial respiratory chain supercomplexes, methods for consistently separating and preparing supercomplexes must be established. To this end, we solubilized supercomplexes from bovine heart mitochondria with digitonin and then replaced digitonin with amphipol (A8–35), an amphiphilic polymer. Afterward, supercomplexes were separated from other complexes by sucrose density gradient centrifugation. Twenty-six grams of bovine myocardium yielded 3.2 mg of amphipol-stabilized supercomplex. The purified supercomplexes were analyzed based on their absorption spectra as well as Q10 (ubiquinone with ten isoprene units) and lipid assays. The supercomplex sample did not contain cytochrome c but did contain complexes I, III, and IV at a ratio of 1:2:1, 6 molecules of Q10, and 623 atoms of phosphorus. When cytochrome c was added, the supercomplex exhibited KCN-sensitive NADH oxidation; thus, the purified supercomplex was active. Reduced complex IV absorbs at 444 nm, so we measured the resonance Raman spectrum of the reduced amphipol-solubilized supercomplex and the mixture of amphipol-solubilized complexes I1, III2, and IV1 using an excitation wavelength of 441.6 nm, allowing measurement precision comparable with that obtained for complex IV alone. Use of the purified active sample provides insights into the effects of supercomplex formation.  相似文献   

3.
《BBA》2020,1861(7):148193
Components of respiratory chains in mitochondria and some aerobic bacteria assemble into larger, multiprotein membrane-bound supercomplexes. Here, we address the functional significance of supercomplexes composed of respiratory-chain complexes III and IV. Complex III catalyzes oxidation of quinol and reduction of water-soluble cytochrome c (cyt c), while complex IV catalyzes oxidation of the reduced cyt c and reduction of dioxygen to water. We focus on two questions: (i) under which conditions does diffusion of cyt c become rate limiting for electron transfer between these two complexes? (ii) is there a kinetic advantage of forming a supercomplex composed of complexes III and IV? To answer these questions, we use a theoretical approach and assume that cyt c diffuses in the water phase while complexes III and IV either diffuse independently in the two dimensions of the membrane or form supercomplexes. The analysis shows that the electron flux between complexes III and IV is determined by the equilibration time of cyt c within the volume of the intermembrane space, rather than the cyt c diffusion time constant. Assuming realistic relative concentrations of membrane-bound components and cyt c and that all components diffuse independently, the data indicate that electron transfer between complexes III and IV can become rate limiting. Hence, there is a kinetic advantage of bringing complexes III and IV together in the membrane to form supercomplexes.  相似文献   

4.
Large assemblies of respiratory chain complexes, known as supercomplexes, are present in the mitochondrial membrane in mammals and yeast, as well as in some bacterial membranes. The formation of supercomplexes is thought to contribute to efficient electron transfer, stabilization of each enzyme complex, and inhibition of reactive oxygen species (ROS) generation. In this study, mitochondria from various organisms were solubilized with digitonin, and then the solubilized complexes were separated by blue native PAGE (BN-PAGE). The results revealed a supercomplex consisting of complexes I, III, and IV in mitochondria from bovine and porcine heart, and a supercomplex consisting primarily of complexes I and III in mitochondria from mouse heart and liver. However, supercomplexes were barely detectable in Drosophila flight-muscle mitochondria, and only dimeric complex V was present. Drosophila mitochondria exhibited the highest rates of oxygen consumption and NADH oxidation, and the concentrations of the electron carriers, cytochrome c and quinone were higher than in other species. Respiratory chain complexes were tightly packed in the mitochondrial membrane containing abundant phosphatidylethanolamine with the fatty acid palmitoleic acid (C16:1), which is relatively high oxidation-resistant as compared to poly-unsaturated fatty acid. These properties presumably allow efficient electron transfer in Drosophila. These findings reveal the existence of a new mechanism of biological adaptation independent of supercomplex formation.  相似文献   

5.
Osmotic shock was found to be better than freezing and thawing, a French press, or sonic oscillation for the preparation of submitochondrial particles from mung bean (Phaseolus aureus) hypocotyl mitochondria. Particles prepared by osmotic shock rapidly oxidize reduced nicotinamide adenine dinucleotide and succinate, but they oxidize malate slowly. NADH oxidation was slightly stimulated by cytochrome c, ATP, and ADP; succinate oxidation was markedly increased by ATP, slightly by ADP and cytochrome c; and malate oxidation required the addition of NAD+ NADH oxidation is inhibited weakly by amytal, completely by antimycin A and KCN, but not by rotenone. Chlorsuccinate, malonate, antimycin A, and KCN inhibit succinate oxidation. The action of antimycin A and KCN is incomplete, while chlorsuccinate and malonate were competitive inhibitors. Antimycin A combined stoichiometrically with particle protein in the ratio of 0.23 millimicromole per milligram of protein.  相似文献   

6.
Mitochondria isolated from mesophyll protoplasts differed from mitochondria isolated directly from leaves of Avena sativa in that protoplast mitochondria (a) had a lower overall respiratory capacity, (b) were less able to use low concentrations of exogenous NADH, (c) did not respond rapidly or strongly to added NAD, (d) appeared to accumulate more oxaloacetate, and (e) oxidized both succinate and tetramethyl-p-phenylene-diamine (an electron donor for cytochrome oxidase) more slowly than did leaf mitochondria. It is concluded that cytochrome oxidase activity was inhibited, the external NADH dehydrogenase had a reduced affinity for NADH, succinate oxidation was inhibited, NAD and oxaloacetate porters were probably inhibited, and accessibility to respiratory paths may have been reduced in protoplast mitochondria. The results also suggest that there was a reduced affinity of a succinate porter for this substrate in oat mitochondria. In addition, all oat mitochondria required salicylhydroxamic acid (SHAM) as well as cyanide to block malate and succinate oxidation. Malate oxidation that did not appear to saturate the cytochrome pathway was sensitive to SHAM in the absence of cyanide, suggesting that the oat mitochondria studied had concomitant alternative and subsaturating cytochrome oxidase pathway activity.  相似文献   

7.
External NADH and succinate were oxidized at similar rates by soybean (Glycine max) cotyledon and leaf mitochondria when the cytochrome chain was operating, but the rate of NADH oxidation via the alternative oxidase was only half that of succinate. However, measurements of the redox poise of the endogenous quinone pool and reduction of added quinones revealed that external NADH reduced them to the same, or greater, extent than did succinate. A kinetic analysis of the relationship between alternative oxidase activity and the redox state of ubiquinone indicated that the degree of ubiquinone reduction during external NADH oxidation was sufficient to fully engage the alternative oxidase. Measurements of NADH oxidation in the presence of succinate showed that the two substrates competed for cytochrome chain activity but not for alternative oxidase activity. Both reduced Q-1 and duroquinone were readily oxidized by the cytochrome oxidase pathway but only slowly by the alternative oxidase pathway in soybean mitochondria. In mitochondria isolated from the thermogenic spadix of Philodendron selloum, on the other hand, quinol oxidation via the alternative oxidase was relatively rapid; in these mitochondria, external NADH was also oxidized readily by the alternative oxidase. Antibodies raised against alternative oxidase proteins from Sauromatum guttatum cross-reacted with proteins of similar molecular size from soybean mitochondria, indicating similarities between the two alternative oxidases. However, it appears that the organization of the respiratory chain in soybean is different, and we suggest that some segregation of electron transport chain components may exist in mitochondria from nonthermogenic plant tissues.  相似文献   

8.
9.
When rat liver mitochondria were suspended in 0.15 m KCl, the cytochrome c appeared to be solubilized from the binding site on the outside of the inner membrane and trapped in the intermembrane space. When the outer membrane of these mitochondria was disrupted with digitonin at a digitonin concentration of 0.15 mg/mg of protein, the solubilized cytochrome c could be released from mitochondria along with adenylate kinase. When mitochondria were suspended in 0.15 m KCl instead of 0.33 m sucrose, the ADPO ratio observed with succinate, β-hydroxybutyrate, malate + pyruvate or glutamate as substrates was little affected. A number of cycles of State 4-State 3-State 4 with ADP was observed. The respiratory control ratios, however, were decreased, particularly when glutamate was used as the substrate. Cytochrome c oxidase activity was also decreased to 55% when assayed using ascorbate + N,N,N′,N′-tetramethyl-p-phenylene-diamine (TMPD) as substrates. Suspension of mitochondria in 0.15 m KCl resulted in an enhancement of the very low NADH oxidation by intact mitochondria and a twofold enhancement of sulfite oxidation. Trapped cytochrome c in outer membrane vesicles prepared from untreated and trypsin-treated intact mitochondria was found to be readily reduced by NADH and suggests that some cytochrome b5 is located on the inner surface of the outer membrane. The enhanced NADH oxidase could therefore reflect the ability of cytochrome c to mediate intermembrane electron transport. The enhanced sulfite oxidase activity was sensitive to cyanide inhibition and coupled to oxidative phosphorylation (ADPO < 1) unlike the activity of mitochondria in sucrose medium. These results suggest that free cytochrome c in the intermembrane space can mediate electron transfer between the sulfite oxidase and the inner membrane.  相似文献   

10.
Rearrangements of mitochondrial DNA in MSC16 mutant of cucumber (Cucumis sativus L.) affect mitochondrial functioning due to the alteration mainly of Complex I resulting in several metabolic changes. One-dimensional Blue-Native polyacrylamide gel electrophoresis (BN-PAGE) and densitometric measurements showed that the level and in-gel capacity of Complex I were lower in MSC16 leaf and root mitochondria as compared to wild-type (WT). The level and capacity of supercomplex I + III2 were always lower in leaf but not in MSC16 root mitochondria. Two-dimensional BN/SDS-PAGE indicated that the band abundance for most of the subunits of Complex I was lower in MSC16 leaf and root mitochondria. Supercomplex I + III2 level was only altered in MSC16 leaf mitochondria as measured after 2D BN/SDS-PAGE. No differences in the qualitative composition of the subunits of Complex I and supercomplex I + III2 between MSC16 and WT mitochondria were observed. In MSC16 mitochondria Complex I impairment could be compensated to some extent by additional respiratory chain NADH dehydrogenases. A higher capacity and level of NDB-1 protein of external NADH dehydrogenase was observed in MSC16 leaf and root mitochondria as compared to WT. The level of COX II, mitochondrial-encoded subunit of Complex IV, was higher in MSC16 leaf and root mitochondria. However, the capacity of Complex IV was slightly higher only in MSC16 leaf mitochondria. The levels of complexes: III2 and V and Complex V capacity did not differ in mitochondria between genotypes. An abundance of the subunits of respiratory complexes is one of the key factors determining not only their structure and functional stability but also a formation of the supercomplexes. We discuss here mitochondrial genome rearrangements in MSC16 mutant in a relation to assembly and/or stability (the lower level and capacity) of Complex I and supercomplex I + III2.  相似文献   

11.
The inhibition of respiratory chain activities in rat liver, rat heart and bovine heart mitochondria by the anthracycline antibiotic adriamycin was measured in order to determine the adriamycin-sensitive sites. It appeared that complex III and IV are efficiently affected such that their activities were reduced to 50% of control values at 175 +/- 25 microM adriamycin. Complex I displayed a minor sensitivity to the drug. Of the complex-I-related activities tested, only duroquinone oxidation appeared sensitive (50% inhibition at approx. 450 microM adriamycin). Electron-transfer activities catalyzed by complex II remained essentially unaltered up to high drug concentrations. Of the activities measured for this complex, only duroquinone oxidation was significantly affected. However, the adriamycin concentration required to reduce this activity to 50% exceeded 1 mM. Mitochondria isolated from rat liver, rat heart and bovine heart behaved essentially identical in their response to adriamycin. These data support the conclusion that, in these three mitochondrial systems, the major drug-sensitive sites lie in complex III and IV. Cytochrome c oxidase and succinate oxidase activity in whole mitochondria exhibited a similar sensitivity towards adriamycin, as inner membrane ghosts, suggesting that the drug has direct access to its inner membrane target sites irrespective of the presence of the outer membrane. By measuring NADH and succinate oxidase activities in the presence of exogenously added cytochrome c, it appeared that adriamycin was less inhibitory under these conditions. This suggests that adriamycin competes with cytochrome c for binding to the same site on the inner membrane, presumably cardiolipin.  相似文献   

12.
The possibility of direct oxidation of external NADH in rat liver mitochondria and of the inner membrane potential generation in this process is still not clear. In the present work, the energy-dependent swelling of mitochondria in the medium containing valinomycin and potassium acetate was measured as one of the main criteria of the proton-motive force generation by complex III, complex IV, and both complexes III and IV of the respiratory chain. Mitochondria swelling induced by external NADH oxidation was compared with that induced by succinate or ferrocyanide oxidation, or by electron transport from succinate to ferricyanide. Mitochondria swelling, nearly equal to that promoted by ferrocyanide oxidation, was observed under external NADH oxidation, but only after the outer mitochondrial membrane was ruptured as a result of the swelling-contraction cycle, caused by succinate oxidation and its subsequent inhibition. In this case, significantly accelerated intermembrane electron transport and well-detected inner membrane potential generation, in addition to mitochondria swelling, were also observed. Presented results suggest that exogenous NADH and cytochrome c do not support the inner membrane potential generation in intact rat liver mitochondria, because the external NADH-cytochrome c reductase system, oriented in the outer mitochondrial membrane toward the cytoplasm, is inaccessible for endogenous cytochrome c reduction; as well, the inner membrane cytochrome c oxidase is inaccessible for exogenous cytochrome c oxidation.  相似文献   

13.
Mitochondria from skeletal muscle, heart and liver of strain 129/ReJ-dy dystrophic mice and their littermate controls were characterized with respect to their respiratory and phosphorylating activities. Skeletal muscle mitochondria from dystrophic mice showed significantly lower state 3 respiratory rates than controls with both pyruvate + malate and succinate as substrates (P < 0.01). ADP/O and Ca2+/O ratios were found to be normal. A decreased rate of NADH oxidation (0.01 <P < 0.05) by sonicated mitochondrial suspensions from dystrophic mice was also seen. High respiratory rates with ascorbate + phenazine methosulfate as substrates indicated that cytochrome oxidase was not rate limiting in the oxidation of either pyruvate + malate or succinate. Skeletal muscle mitochondria from dystrophic mice showed no deficiency in any of the cytochromes or coenzyme Q. Mg2+-stimulated ATPase activity was higher in dystrophic muscle mitochondria than in controls, but basal and oligomycin-insensitive activities were virtually identical to those of controls. A significant reduction in the intramitochondrial NAD+ content (0.01 <P < 0.02) was seen in dystrophic skeletal muscle as compared to controls. Heart mitochondria from dystrophic mice showed similar, though less extensive abnormalities while liver mitochondria were essentially normal. We concluded from these results that skeletal muscle mitochondria from strain 129 dystrophic mice possess impairments in substrate utilization which may result from (1) an abnormality in the transfer of electrons on the substrate side of coenzyme Q in the case of succinate oxidation; (2) a defect on the path of electron flow from NADH to cytochrome c, and (3) a deficiency of NAD+ in the case of NAD+-linked substrates.  相似文献   

14.
B.Dean Nelson  P. Walter  L. Ernster 《BBA》1977,460(1):157-162
The antibiotic funiculosin mimics the action of antimycin in several ways. It inhibits the oxidation of NADH and succinate, but not TMPD+ascorbate. The titer for maximal inhibition in Mg2+-ATP particles (0.4–0.6 nmol/mg protein) is close to the concentrations of cytochromes b and cc1. Funiculosin also induces the oxidation of cytochromes cc1 and an extra reduction of cytochrome b in the aerobic steady state, and it inhibits duroquinol-cytochrome c reductase activity in isolated Complex III. The location of the funiculosin binding site is clearly similar to that of antimycin. In addition, funiculosin, like antimycin, prevents electron transport from duroquinol to cytochrome b in isolated Complex III if the complex is pre-reduced with ascorbate. Funiculosin and antimycin differ, however, in the manner in which they modulate the reduction of cytochrome b by ascorbate+TMPD.  相似文献   

15.
Effects of the coenzyme Q analog (MitoQ10) carrying a positively charged decyltetraphenylphosphonium group on functional activity of phosphorylating liver mitochondria were studied. Using inhibitory analysis it was found that at micromolar concentrations this quinone is reduced by NADH-dependent DT-diaphorase. Under conditions of malate oxidation, MitoQ10 stimulates electron transfer from NADH to oxygen by shunting the block of rotenone-induced electron transport in Complex I. Steady-state mitochondrial respiration induced by rotenone and MitoQ10 (1 μM), as well as K3 shunt are both blocked by the DT-diaphorase inhibitor dicumarol, the Complex III inhibitor myxothiazole, and the cytochrome oxidase inhibitor cyanide. The electron transport chain induced in liver mitochondria by MitoQ10 in the presence of rotenone appears as follows: NADH → DT-diaphorase → MitoQ10 → Complex III → Complex IV → O2. Under conditions of malate (but not succinate) oxidation, MitoQ10 and high concentrations of vitamin K3 induce in mitochondria cyanide-resistant respiration and opening of the nonspecific pore eventually resulting in inhibition of oxidative phosphorylation. It is concluded that MitoQ10 should be regarded as an analog of hydrophilic quinones (vitamin K3, duroquinone, etc.) widely known as substrates for mitochondrial DT-diaphorase not interacting with CoQ10 rather than as a natural CoQ10 analog.  相似文献   

16.
Brad Chazotte  Garret Vanderkooi 《BBA》1981,636(2):153-161
Local anesthetics and alcohols were found to inhibit mitochondrial electron transport at several points along the chain. The anesthetics employed were the tertiary amines procaine, tetracaine, dibucaine, and chlorpromazine, and the alcohols were n-butanol, n-pentanol, n-hexanol, and benzyl alcohol. Uncoupled sonic submitochondrial particles from beef heart and rat liver were studied. We report the following: (1) All of the anesthetics were found to inhibit each of the segments of the electron transport chain assayed; these included cytochrome c oxidase, durohydroquinone oxidase, succinate oxidase, NADH oxidase, succinate dehydrogenase, succinate-cytochrome c oxidoreductase, and NADH-cytochrome c oxidoreductase. (2) NADH oxidase and NADH-cytochrome c oxidoreductase required the lowest concentrations of anesthetic for inhibition, and cytochrome c oxidase required the highest concentrations. (3) We conclude that there are several points along the chain at which inhibition occurs, the most sensitive being in the region of Complex I (NADH dehydrogenase). (4) Beef heart submitochondrial particles are less sensitive to inhibition than are rat liver particles. (5) Low concentrations of several of the anesthetics gave enhancement of electron transport activity, whereas higher concentrations of the same agents caused inhibition. (6) The concentrations of anesthetics (alcohol and tertiary amine) which gave 50% inhibition of NADH oxidase were lower than the reported concentrations required for blockage of frog sciatic nerve.  相似文献   

17.
Peter Nicholls 《BBA》1976,430(1):30-45
1. Beef heart mitochondria have a cytochrome c1 : c : aa3 ratio of 0.65 : 1.0 : 1.0 as isolated; Keilin-Hartree submitochondrial particles have a ratio of 0.65 : 0.4 : 1.0. More than 50% of the submitochondrial particle membrane is in the ‘inverted’ configuration, shielding the catalytically active cytochrome c. The ‘endogenous’ cytochrome c of particles turns over at a maximal rate between 450 and 550 s?1 during the oxidation of succinate or ascorbate plus TMPD; the maximal turnover rate for cytochrome c in mitochondria is 300–400 s?1, at 28° – 30°C, pH 7.4.2. Ascorbate plus N,N,N′,N′-tetramethyl-p-phenylene diamine added to antimycin-treated particles induces anomalous absorption increases between 555 and 565 nm during the aerobic steady state, which disappear upon anaerobiosis; succinate addition abolishes this cycle and permits the partial resolution of cytochrome c1 and cytochrome c steady states at 552.5–547 nm and 550–556.5 nm, respectively.3. Cytochrome c1 is rather more reduced than cytochrome c during the oxidation of succinate and of ascorbate+N,N,N′,N′-tetramethyl-p-phenylene diamine in both mitochondria and submitochondrial particles; a near equilibrium condition exists between cytochromes c1 and c in the aerobic steady state, with a rate constant for the c1c reduction step greater than 103 s?1.4. The greater apparent response of the caa3 electron transfer step to salts, the hyperbolic inhibition of succinate oxidation by azide and cyanide, and the kinetic behaviour of the succinate-cytochrome c reductase system, are all explicable in terms of a near-equilibrium condition prevailing at the c1c step. Endogenous cytochrome c of mitochondria and submitochondrial particles is apparently largely bound to cytochrome aa3 units in situ. Cytochrome c1 can either reduce the cytochrome c-cytochrome aa3 complex directly, or requires only a small extra amount of cytochrome c to carry the full electron transfer flux.  相似文献   

18.
Here, we report for the first time in vitro reconstitution of the respiratory supercomplexes from individual complexes III and IV. Complexes III and IV were purified from Saccharomyces cerevisiae mitochondria. Complex III contained eight molecules of cardiolipin, and complex IV contained two molecules of cardiolipin, as determined by electrospray ionization-mass spectrometry. Complex IV also contained Rcf1p. No supercomplexes were formed upon mixing of the purified complexes, and low amounts of the supercomplex trimer III2IV1 were formed after reconstitution into proteoliposomes containing only phosphatidylcholine and phosphatidylethanolamine. Further addition of cardiolipin to the proteoliposome reconstitution mixture resulted in distinct formation of both the III2IV1 supercomplex trimer and III2IV2 supercomplex tetramer. No other anionic phospholipid was as effective as cardiolipin in supporting tetramer formation. Phospholipase treatment of complex IV prevented trimer formation in the absence of cardiolipin. Both trimer and tetramer formations were restored by cardiolipin. Analysis of the reconstituted tetramer by single particle electron microscopy confirmed native organization of individual complexes within the supercomplex. In conclusion, although some trimer formation occurred dependent only on tightly bound cardiolipin, tetramer formation required additional cardiolipin. This is consistent with the high cardiolipin content in the native tetramer. The dependence on cardiolipin for supercomplex formation suggests that changes in cardiolipin levels resulting from changes in physiological conditions may control the equilibrium between individual respiratory complexes and supercomplexes in vivo.  相似文献   

19.
Preparations of rat-liver mitochondria catalyze the oxidation of exogenous NADH by added cytochrome c or ferricyanide by a reaction that is insensitive to the respiratory chain inhibitors, antimycin A, amytal, and rotenone, and is not coupled to phosphorylation. Experiments with tritiated NADH are described which demonstrate that this "external" pathway of NADH oxidation resembles stereochemically the NADH-cytochrome c reductase system of liver microsomes, and differs from the respiratory chain-linked NADH dehydrogenase. Enzyme distributation data are presented which substantiate the conclusion that microsomal contamination cannot account for the rotenone-insensitive NADH-cytochrome c reductase activity observed with the mitochondria. A procedure is developed, based on swelling and shrinking of the mitochondria followed by sonication and density gradient centrifugation, which permits the separation of two particulate subfractions, one containing the bulk of the respiratory chain components, and the other the bulk of the rotenone-insensitive NADH-cytochrome c reductase system. Morphological evidence supports the conclusion that the former subfraction consists of mitochondria devoid of outer membrane, and that the latter represents derivatives of the outer membrane. The data indicate that the electron-transport system associated with the mitochondrial outer membrane involves catalytic components similar to, or identical with, the microsomal NADH-cytochrome b5 reductase and cytochrome b5.  相似文献   

20.
The role of mitochondria in the phosphorylation of ADP to ATP in the early steps of seed germination has been studied. Mitochondria were extracted from dry sunflower (Helianthus annuus) seeds. Adenylate kinase-dependent ATP synthesis was inhibited by p1,p5-di(adenosine-5′)pentaphosphate. Synthesis of ATP was observed with the different substrates: citrate, α-ketoglutarate, succinate, malate, pyruvate or NADH. This synthesis was activated by cytochrome c, and inhibited by cyanide, oligomycin, carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone, and carboxyatractyloside. The ATP/O values with succinate were 0.85 and 1.2 in the absence or presence, respectively, of cytochrome c. Electron micrographs showed that mitochondria of dry tissues have different structures when observed in situ or in vitro after aqueous extraction, suggesting that profound changes occurred after the contact with the aqueous medium. These results confirm previous data obtained in vivo showing that mitochondria present in dry seeds are able to synthesize ATP as soon as the seeds are rehydrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号