首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the dynamics of molecular adaptation is a fundamental goal of evolutionary biology. While adaptation to constant environments has been well characterized, the effects of environmental complexity remain seldom studied. One simple but understudied factor is the rate of environmental change. Here we used experimental evolution with RNA viruses to investigate whether evolutionary dynamics varied based on the rate of environmental turnover. We used whole‐genome next‐generation sequencing to characterize evolutionary dynamics in virus populations adapting to a sudden versus gradual shift onto a novel host cell type. In support of theoretical models, we found that when populations evolved in response to a sudden environmental change, mutations of large beneficial effect tended to fix early, followed by mutations of smaller beneficial effect; as predicted, this pattern broke down in response to a gradual environmental change. Early mutational steps were highly parallel across replicate populations in both treatments. The fixation of single mutations was less common than sweeps of associated “cohorts” of mutations, and this pattern intensified when the environment changed gradually. Additionally, clonal interference appeared stronger in response to a gradual change. Our results suggest that the rate of environmental change is an important determinant of evolutionary dynamics in asexual populations.  相似文献   

2.
Virus‐host coevolution has selected for generalized host defense against viruses, exemplified by interferon production/signaling and other innate immune function in eukaryotes such as humans. Although cell‐surface binding primarily limits virus infection success, generalized adaptation to counteract innate immunity across disparate hosts may contribute to RNA virus emergence potential. We examined this idea using vesicular stomatitis virus (VSV) populations previously evolved on strictly immune‐deficient (HeLa) cells, strictly immune competent (MDCK) cells, or on alternating deficient/competent cells. By measuring viral fitness in unselected human cancer cells of differing innate immunity, we confirmed that HeLa‐adapted populations were specialized for innate immune‐deficient hosts, whereas MDCK‐adapted populations were relatively more generalized for fitness on hosts of differing innate immune capacity and of different species origin. We also confirmed that HeLa‐evolved populations maintained fitness in immune‐deficient nonhuman primate cells. These results suggest that innate immunity is more prominent than host species in determining viral fitness at the host‐cell level. Finally, our prediction was inexact that selection on alternating deficient/competent hosts should produce innate viral generalists. Rather, fitness differences among alternating host‐evolved VSV populations indicated variable capacities to evade innate immunity. Our results suggest that the evolutionary history of innate immune selection can affect whether RNA viruses evolve greater host‐breadth.  相似文献   

3.
Many viral pathogens cycle between humans and insects. These viruses must have evolved strategies for rapid adaptation to different host environments. However, the mechanistic basis for the adaptation process remains poorly understood. To study the mosquito-human adaptation cycle, we examined changes in RNA structures of the dengue virus genome during host adaptation. Deep sequencing and RNA structure analysis, together with fitness evaluation, revealed a process of host specialization of RNA elements of the viral 3’UTR. Adaptation to mosquito or mammalian cells involved selection of different viral populations harvesting mutations in a single stem-loop structure. The host specialization of the identified RNA structure resulted in a significant viral fitness cost in the non-specialized host, posing a constraint during host switching. Sequence conservation analysis indicated that the identified host adaptable stem loop structure is duplicated in dengue and other mosquito-borne viruses. Interestingly, functional studies using recombinant viruses with single or double stem loops revealed that duplication of the RNA structure allows the virus to accommodate mutations beneficial in one host and deleterious in the other. Our findings reveal new concepts in adaptation of RNA viruses, in which host specialization of RNA structures results in high fitness in the adapted host, while RNA duplication confers robustness during host switching.  相似文献   

4.
It has been suggested that HIV-1 has evolved its set-point virus load to be optimized for transmission. Previous epidemiological models and studies into the heritability of set-point virus load confirm that this mode of adaptation within the human population is feasible. However, during the many cycles of replication between infection of a host and transmission to the next host, HIV-1 is under selection for escape from immune responses, and not transmission. Here we investigate with computational and mathematical models how these two levels of selection, within-host and between-host, are intertwined. We find that when the rate of immune escape is comparable to what has been observed in patients, immune selection within hosts is dominant over selection for transmission. Surprisingly, we do find high values for set-point virus load heritability, and argue that high heritability estimates can be caused by the ‘footprints’ left by differing hosts'' immune systems on the virus.  相似文献   

5.
It is unclear how historical adaptation versus maladaptation in a prior environment affects population evolvability in a novel habitat. Prior work showed that vesicular stomatitis virus (VSV) populations evolved at constant 37°C improved in cellular infection at both 29°C and 37°C; in contrast, those evolved under random changing temperatures between 29°C and 37°C failed to improve. Here, we tested whether prior evolution affected the rate of adaptation at the thermal‐niche edge: 40°C. After 40 virus generations in the new environment, we observed that populations historically evolved at random temperatures showed greater adaptability. Deep sequencing revealed that most of the newly evolved mutations were de novo. Also, two novel evolved mutations in the VSV glycoprotein and replicase genes tended to co‐occur in the populations previously evolved at constant 37°C, whereas this parallelism was not seen in populations with prior random temperature evolution. These results suggest that prior adaptation under constant versus random temperatures constrained the mutation landscape that could improve fitness in the novel 40°C environment, perhaps owing to differing epistatic effects of new mutations entering genetic architectures that earlier diverged. We concluded that RNA viruses maladapted to their previous environment could “leapfrog” over counterparts of higher fitness, to achieve faster adaptability in a novel environment.  相似文献   

6.
Populations experiencing similar selection pressures can sometimes diverge in the genetic architectures underlying evolved complex traits. We used RNA virus populations of large size and high mutation rate to study the impact of historical environment on genome evolution, thus increasing our ability to detect repeatable patterns in the evolution of genetic architecture. Experimental vesicular stomatitis virus populations were evolved on HeLa cells, on MDCK cells, or on alternating hosts. Turner and Elena (2000. Cost of host radiation in an RNA virus. Genetics. 156:1465-1470.) previously showed that virus populations evolved in single-host environments achieved high fitness on their selected hosts but failed to increase in fitness relative to their ancestor on the unselected host and that alternating-host-evolved populations had high fitness on both hosts. Here we determined the complete consensus sequence for each evolved population after 95 generations to gauge whether the parallel phenotypic changes were associated with parallel genomic changes. We also analyzed the patterns of allele substitutions to discern whether differences in fitness across hosts arose through true pleiotropy or the presence of not only a mutation that is beneficial in both hosts but also 1 or more mutations at other loci that are costly in the unselected environment (mutation accumulation [MA]). We found that ecological history may influence to what extent pleiotropy and MA contribute to fitness asymmetries across environments. We discuss the degree to which current genetic architecture is expected to constrain future evolution of complex traits, such as host use by RNA viruses.  相似文献   

7.
Arthropod-borne viruses (arboviruses) are maintained in a cycle of alternating transmission between vertebrate hosts and arthropod vectors. Arboviruses possess RNA genomes capable of rapid diversification and adaptation, and the between-host trade-offs inherent to host alternation impose well-documented constraints on arbovirus evolution. Here, we investigate the less well-studied within-host trade-offs that shape arbovirus replication dynamics and transmission. Arboviruses generally establish lifelong infection in vectors but transient infection of variable magnitude (i.e. peak virus concentration) and duration in vertebrate hosts. In the majority of experimental infections of vertebrate hosts, both the magnitude and duration of arbovirus replication depended upon the dose of virus administered, with increasing dose resulting in greater magnitude but shorter duration of viraemia. This pattern suggests that the vertebrate immune response imposes a trade-off between the height and breadth of the virus replication curve. To investigate the impact of this trade-off on transmission, we used a simple modelling approach to contrast the effect of ‘tortoise’ (low magnitude, long duration viraemia) and ‘hare’ (high magnitude, short duration viraemia) arbovirus replication strategies on transmission. This model revealed that, counter to previous theory, arboviruses that adopt a tortoise strategy have higher rates of persistence in both host and vector populations.  相似文献   

8.
Picornaviruses constitute a large group of viruses comprising medically and economically important pathogens such as poliovirus, coxsackievirus, rhinovirus, enterovirus 71 and foot-and-mouth disease virus. A unique characteristic of these viruses is the use of a viral peptide (VPg) as primer for viral RNA synthesis. As a consequence, all newly formed viral RNA molecules possess a covalently linked VPg peptide. It is known that VPg is enzymatically released from the incoming viral RNA by a host protein, called TDP2, but it is still unclear whether the release of VPg is necessary to initiate RNA translation. To study the possible requirement of VPg release for RNA translation, we developed a novel method to modify the genomic viral RNA with VPg linked via a ‘non-cleavable’ bond. We coupled an azide-modified VPg peptide to an RNA primer harboring a cyclooctyne [bicyclo[6.1.0]nonyne (BCN)] by a copper-free ‘click’ reaction, leading to a VPg-triazole-RNA construct that was ‘non-cleavable’ by TDP2. We successfully ligated the VPg-RNA complex to the viral genomic RNA, directed by base pairing. We show that the lack of VPg unlinkase does not influence RNA translation or replication. Thus, the release of the VPg from the incoming viral RNA is not a prerequisite for RNA translation or replication.  相似文献   

9.
The existence of genetic variation for resistance in host populations is assumed to be essential to the spread of an emerging virus. Models predict that the rate of spread slows down with the increasing frequency and higher diversity of resistance alleles in the host population. We have been using the experimental pathosystem Arabidopsis thaliana—tobacco etch potyvirus (TEV) to explore the interplay between genetic variation in host''s susceptibility and virus diversity. We have recently shown that TEV populations evolving in A. thaliana ecotypes that differ in susceptibility to infection gained within-host fitness, virulence and infectivity in a manner compatible with a gene-for-gene model of host–parasite interactions: hard-to-infect ecotypes were infected by generalist viruses, whereas easy-to-infect ecotypes were infected by every virus. We characterized the genomes of the evolved viruses and found cases of host-driven convergent mutations. To gain further insights in the mechanistic basis of this gene-for-gene model, we have generated all viral mutations individually as well as in specific combinations and tested their within-host fitness effects across ecotypes. Most of these mutations were deleterious or neutral in their local ecotype and only a very reduced number had a host-specific beneficial effect. We conclude that most of the mutations fixed during the evolution experiment were so by drift or by selective sweeps along with the selected driver mutation. In addition, we evaluated the ruggedness of the underlying adaptive fitness landscape and found that mutational effects were mostly multiplicative, with few cases of significant epistasis.  相似文献   

10.
Human immunodeficiency virus type 1 (HIV-1) continues to be a major cause of disease and premature death. As with all viruses, HIV-1 exploits a host cell to replicate. Improving our understanding of the molecular interactions between virus and human host proteins is crucial for a mechanistic understanding of virus biology, infection and host antiviral activities. This knowledge will potentially permit the identification of host molecules for targeting by drugs with antiviral properties. Here, we propose a data-driven approach for the analysis and prediction of the HIV-1 interacting proteins (VIPs) with a focus on the directionality of the interaction: host-dependency versus antiviral factors. Using support vector machine learning models and features encompassing genetic, proteomic and network properties, our results reveal some significant differences between the VIPs and non-HIV-1 interacting human proteins (non-VIPs). As assessed by comparison with the HIV-1 infection pathway data in the Reactome database (sensitivity > 90%, threshold = 0.5), we demonstrate these models have good generalization properties. We find that the ‘direction’ of the HIV-1-host molecular interactions is also predictable due to different characteristics of ‘forward’/pro-viral versus ‘backward’/pro-host proteins. Additionally, we infer the previously unknown direction of the interactions between HIV-1 and 1351 human host proteins. A web server for performing predictions is available at http://hivpre.cvr.gla.ac.uk/.  相似文献   

11.
Human immunodeficiency virus type-1 (HIV-1) fitness has been associated with virus entry, a process mediated by the envelope glycoprotein (Env). We previously described Env genetic diversification in a Zambian, subtype C infected, slow-progressor child (1157i) in parallel with an evolving neutralizing antibody response. Because of the role the Variable-3 loop (V3) plays in transmission, cell tropism, neutralization sensitivity, and fitness, longitudinally isolated 1157i C2-V4 alleles were cloned into HIV-1NL4-3-eGFP and -DsRed2 infectious molecular clones. The fluorescent reporters allowed for dual-infection competitions between all patient-derived C2-V4 chimeras to quantify the effect of V3 diversification and selection on fitness. ‘Winners’ and ‘losers’ were readily discriminated among the C2-V4 alleles. Exceptional sensitivity for detection of subtle fitness differences was revealed through analysis of two alleles differing in a single synonymous amino acid. However, when the outcomes of N = 33 competitions were averaged for each chimera, the aggregate analysis showed that despite increasing diversification and divergence with time, natural selection of C2-V4 sequences in this individual did not appear to be producing a ‘survival of the fittest’ evolutionary pattern. Rather, we detected a relatively flat fitness landscape consistent with mutational robustness. Fitness outcomes were then correlated with individual components of the entry process. Env incorporation into particles correlated best with fitness, suggesting a role for Env avidity, as opposed to receptor/coreceptor affinity, in defining fitness. Nevertheless, biochemical analyses did not identify any step in HIV-1 entry as a dominant determinant of fitness. Our results lead us to conclude that multiple aspects of entry contribute to maintaining adequate HIV-1 fitness, and there is no surrogate analysis for determining fitness. The capacity for subtle polymorphisms in Env to nevertheless significantly impact viral fitness suggests fitness is best defined by head-to-head competition.  相似文献   

12.
West Nile virus has evolved in concert with its expansion across North America, but little is known about the evolutionary dynamics of the virus on local scales. We analysed viral nucleotide sequences from mosquitoes collected in 2005, 2006, and 2007 from a known transmission ‘hot spot’ in suburban Chicago, USA. Within this approximately 11 × 14 km area, the viral envelope gene has increased approximately 0.1% yr−1 in nucleotide-level genetic diversity. In each year, viral diversity was higher in ‘residential’ sites characterized by dense housing than in more open ‘urban green space’ sites such as cemeteries and parks. Phylodynamic analyses showed an increase in incidence around 2005, consistent with a higher-than-average peak in mosquito and human infection rates that year. Analyses of times to most recent common ancestor suggest that WNV in 2005 and 2006 may have arisen predominantly from viruses present during 2004 and 2005, respectively, but that WNV in 2007 had an older common ancestor, perhaps indicating a predominantly mixed or exogenous origin. These results show that the population of WNV in suburban Chicago is an admixture of viruses that are both locally derived and introduced from elsewhere, containing evolutionary information aggregated across a breadth of spatial and temporal scales.  相似文献   

13.
Mosquito-borne alphaviruses, which replicate alternately and obligately in mosquitoes and vertebrates, appear to experience lower rates of evolution than do many RNA viruses that replicate solely in vertebrates. This genetic stability is hypothesized to result from the alternating host cycle, which constrains evolution by imposing compromise fitness solutions in each host. To test this hypothesis, Sindbis virus was passaged serially, either in one cell type to eliminate host alteration or alternately between vertebrate (BHK) and mosquito (C6/36) cells. Following 20 to 50 serial passages, mutations were identified and changes in fitness were assessed using competition assays against genetically marked, surrogate parent viruses. Specialized viruses passaged in a single cell exhibited more mutations and amino acid changes per passage than those passaged alternately. Single host-adapted viruses exhibited fitness gains in the cells in which they specialized but fitness losses in the bypassed cell type. Most but not all viruses passaged alternately experienced lesser fitness gains than specialized viruses, with fewer mutations per passage. Clonal populations derived from alternately passaged viruses also exhibited adaptation to both cell lines, indicating that polymorphic populations are not required for simultaneous fitness gains in vertebrate and mosquito cells. Nearly all passaged viruses acquired Arg or Lys substitutions in the E2 envelope glycoprotein, but enhanced binding was only detected for BHK cells. These results support the hypothesis that arbovirus evolution may be constrained by alternating host transmission cycles, but they indicate a surprising ability for simultaneous adaptation to highly divergent cell types by combinations of mutations in single genomes.  相似文献   

14.
Uncovering how natural selection and genetic drift shape the evolutionary dynamics of virus populations within their hosts can pave the way to a better understanding of virus emergence. Mathematical models already play a leading role in these studies and are intended to predict future emergences. Here, using high-throughput sequencing, we analyzed the within-host population dynamics of four Potato virus Y (PVY) variants differing at most by two substitutions involved in pathogenicity properties. Model selection procedures were used to compare experimental results to six hypotheses regarding competitiveness and intensity of genetic drift experienced by viruses during host plant colonization. Results indicated that the frequencies of variants were well described using Lotka-Volterra models where the competition coefficients βij exerted by variant j on variant i are equal to their fitness ratio, rj/ri. Statistical inference allowed the estimation of the effect of each mutation on fitness, revealing slight (s = −0.45%) and high (s = −13.2%) fitness costs and a negative epistasis between them. Results also indicated that only 1 to 4 infectious units initiated the population of one apical leaf. The between-host variances of the variant frequencies were described using Dirichlet-multinomial distributions whose scale parameters, closely related to the fixation index F ST, were shown to vary with time. The genetic differentiation of virus populations among plants increased from 0 to 10 days post-inoculation and then decreased until 35 days. Overall, this study showed that mathematical models can accurately describe both selection and genetic drift processes shaping the evolutionary dynamics of viruses within their hosts.  相似文献   

15.
A common paradigm holds that during cell-to-cell transmission, viruses behave as lone soldiers. Recently, we discovered not only that enteroviruses are transmitted via vesicles as populations of viral particles but also that this type of transmission enhances their infection efficiency (Y. H. Chen et al., Cell 160:619–630, 2015). This mechanism could be advantageous for the overall fitness of the viral population, promoting genetic interplay by enabling viral quasispecies to collectively infect a susceptible host cell. Here, we discuss these findings in the context of viral pathogenesis and also propose that this novel type of vesicular transmission is widespread among different virus families and includes populations of both viral particles and naked viral genomes.  相似文献   

16.
West Nile virus (WNV) is similar to other RNA viruses in that it forms genetically complex populations within hosts. The virus is maintained in nature in mosquitoes and birds, with each host type exerting distinct influences on virus populations. We previously observed that prolonged replication in mosquitoes led to increases in WNV genetic diversity and diminished pathogenesis in mice without remarkable changes to the consensus genome sequence. We therefore sought to evaluate the relationships between individual and group phenotypes in WNV and to discover novel viral determinants of pathogenesis in mice and fitness in mosquitoes and birds. Individual plaque size variants were isolated from a genetically complex population, and mutations conferring a small-plaque and mouse-attenuated phenotype were localized to the RNA helicase domain of the NS3 protein by reverse genetics. The mutation, an Asp deletion, did not alter type I interferon production in the host but rendered mutant viruses more susceptible to interferon compared to wild type (WT) WNV. Finally, we used an in vivo fitness assay in Culex quinquefasciatus mosquitoes and chickens to determine whether the mutation in NS3 influenced fitness. The fitness of the NS3 mutant was dramatically lower in chickens and moderately lower in mosquitoes, indicating that RNA helicase is a major fitness determinant of WNV and that the effect on fitness is host specific. Overall, this work highlights the complex relationships that exist between individual and group phenotypes in RNA viruses and identifies RNA helicase as an attenuation and fitness determinant in WNV.  相似文献   

17.
A phylogeny is a tree-based model of common ancestry that is an indispensable tool for studying biological variation. Phylogenies play a special role in the study of rapidly evolving populations such as viruses, where the proliferation of lineages is constantly being shaped by the mode of virus transmission, by adaptation to immune systems, and by patterns of human migration and contact. These processes may leave an imprint on the shapes of virus phylogenies that can be extracted for comparative study; however, tree shapes are intrinsically difficult to quantify. Here we present a comprehensive study of phylogenies reconstructed from 38 different RNA viruses from 12 taxonomic families that are associated with human pathologies. To accomplish this, we have developed a new procedure for studying phylogenetic tree shapes based on the ‘kernel trick’, a technique that maps complex objects into a statistically convenient space. We show that our kernel method outperforms nine different tree balance statistics at correctly classifying phylogenies that were simulated under different evolutionary scenarios. Using the kernel method, we observe patterns in the distribution of RNA virus phylogenies in this space that reflect modes of transmission and pathogenesis. For example, viruses that can establish persistent chronic infections (such as HIV and hepatitis C virus) form a distinct cluster. Although the visibly ‘star-like’ shape characteristic of trees from these viruses has been well-documented, we show that established methods for quantifying tree shape fail to distinguish these trees from those of other viruses. The kernel approach presented here potentially represents an important new tool for characterizing the evolution and epidemiology of RNA viruses.  相似文献   

18.
The hawk–dove game famously introduced strategic game theory thinking into biology and forms the basis of arguments for limited aggression in animal populations. However, aggressive ‘hawks’ and peaceful ‘doves’, with strategies inherited in a discrete manner, have never been documented in a real animal population. Thus, the applicability of game-theoretic arguments to real populations might be contested. Here, we show that the head-colour polymorphism of red and black Gouldian finches (Erythrura gouldiae) provides a real-life example. The aggressive red morph is behaviourally dominant and successfully invades black populations, but when red ‘hawks’ become too common, their fitness is severely compromised (via decreased parental ability). We also investigate the effects of real-life deviations, particularly sexual reproduction, from the simple original game, which assumed asexual reproduction. A protected polymorphism requires mate choice to be sufficiently assortative. Assortative mating is adaptive for individuals because of genetic incompatibilities affecting hybrid offspring fitness, but by allowing red ‘hawks’ to persist, it also leads to significantly reduced population sizes. Because reductions in male contributions to parental care are generally known to lead to lower population productivity in birds, we expect zero-sum competition to often have wide ranging population consequences.  相似文献   

19.
Natural transformation is a process whereby bacteria actively take up DNA from the surrounding environment and incorporate it into their genome. Natural transformation is widespread in bacteria, but its evolutionary significance is still debated. Here, we hypothesize that transformation may confer a fitness advantage in changing environments through a process we term ‘genetic time travel’: by taking up old genes that were retained in the environment, the bacteria may revert to a past genotypic state that proves advantageous in the present or a future environment. We scrutinize our hypothesis by means of a mathematical model involving two bacterial types (transforming and non-transforming), a single locus under natural selection and a free DNA pool. The two bacterial types were competed in environments with changing selection regimes. We demonstrate that for a wide range of parameter values for the DNA turnover rate, the transformation rate and the frequency of environmental change, the transforming type outcompetes the non-transforming type. We discuss the empirical plausibility of our hypothesis, as well as its relationship to other hypotheses for the evolution of transformation in bacteria and sex more generally, speculating that ‘genetic time travel’ may also be relevant in eukaryotes that undergo horizontal gene transfer.  相似文献   

20.
Development of cervical cancer is directly associated with integration of human papillomavirus (HPV) genomes into host chromosomes and subsequent modulation of HPV oncogene expression, which correlates with multi-layered epigenetic changes at the integrated HPV genomes. However, the process of integration itself and dysregulation of host gene expression at sites of integration in our model of HPV16 integrant clone natural selection has remained enigmatic. We now show, using a state-of-the-art ‘HPV integrated site capture’ (HISC) technique, that integration likely occurs through microhomology-mediated repair (MHMR) mechanisms via either a direct process, resulting in host sequence deletion (in our case, partially homozygously) or via a ‘looping’ mechanism by which flanking host regions become amplified. Furthermore, using our ‘HPV16-specific Region Capture Hi-C’ technique, we have determined that chromatin interactions between the integrated virus genome and host chromosomes, both at short- (<500 kbp) and long-range (>500 kbp), appear to drive local host gene dysregulation through the disruption of host:host interactions within (but not exceeding) host structures known as topologically associating domains (TADs). This mechanism of HPV-induced host gene expression modulation indicates that integration of virus genomes near to or within a ‘cancer-causing gene’ is not essential to influence their expression and that these modifications to genome interactions could have a major role in selection of HPV integrants at the early stage of cervical neoplastic progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号