首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The NADPH oxidase 2 (NOX2) complex is a professional producer of reactive oxygen species (ROS) and is mainly expressed in phagocytes. While the activity of the NOX2 complex is essential for immunity against pathogens and protection against autoimmunity, its role in the development of malignant tumors remains unclear. We compared wild type and Ncf1 m1J mutated mice, which lack functional NOX2 complex, in four different tumor models. Ncf1 m1J mutated mice developed significantly smaller tumors in two melanoma models in which B16 melanoma cells expressing a hematopoietic growth factor FLT3L or luciferase reporter were used. Ncf1 m1J mutated mice developed significantly fewer Lewis Lung Carcinoma (LLC) tumors, but the tumors that did develop, grew at a pace that was similar to the wild type mice. In the spontaneously arising prostate carcinoma model (TRAMP), tumor growth was not affected. The lack of ROS-mediated protection against tumor growth was associated with increased production of immunity-associated cytokines. A significant increase in Th2 associated cytokines was observed in the LLC model. Our present data show that ROS regulate rejection of the antigenic B16-luc and LLC tumors, whereas the data do not support a role for ROS in growth of intrinsically generated tumors.  相似文献   

2.
In type 1 diabetes (T1D), reactive oxygen species (ROS) and proinflammatory cytokines produced by macrophages and other innate immune cells destroy pancreatic β cells while promoting autoreactive T cell maturation. Superoxide-deficient nonobese diabetic mice (NOD.Ncf1m1J) are resistant to spontaneous diabetes, revealing the integral role of ROS signaling in T1D. Here, we evaluate the innate immune activation state of bone marrow-derived macrophages (BM-M?) from NOD and NOD.Ncf1m1J mice after poly(I:C)-induced Toll-like receptor 3 (TLR3) signaling. We show that ROS synthesis is required for efficient activation of the NF-κB signaling pathway and concomitant expression of TLR3 and the cognate adaptor molecule, TRIF. Poly(I:C)-stimulated NOD.Ncf1m1J BM-M? exhibited a 2- and 10-fold decrease in TNF-α and IFN-β proinflammatory cytokine synthesis, respectively, in contrast to NOD BM-M?. Optimal expression of IFN-α/β is not solely dependent on superoxide synthesis, but requires p47phox to function in a NOX-independent manner to mediate type I interferon synthesis. Interestingly, MHC-II I-Ag7 expression necessary for CD4 T cell activation is increased 2-fold relative to NOD, implicating a role for superoxide in I-Ag7 downregulation. These findings suggest that defective innate immune-pattern-recognition receptor activation and subsequent decrease in TNF-α and IFN-β proinflammatory cytokine synthesis necessary for autoreactive T cell maturation may contribute to the T1D protection observed in NOD.Ncf1m1J mice.  相似文献   

3.

Introduction

Immune responses against collagen type II (CII) are crucial for the development of collagen-induced arthritis (CIA). The aim of the present study was to evaluate and compare the CII-directed T cell and antibody specificity at different time points in the course of CIA using two mouse strains on the B10 genetic background - B10.Q, expressing Aq MHC class II molecules, and B10.DR4.Ncf1*/*, expressing human rheumatoid arthritis-associated MHC II DR4 molecules (DRA*0101/DRB*0401).

Methods

B10.Q and B10.DR4.Ncf1*/* mice were immunized with CII emulsified in adjuvant and development of CIA was assessed. T cells from draining lymph nodes were restimulated in vitro with CII peptides and interferon-gamma (IFN-γ) levels in culture supernatants were evaluated by ELISA. CII-specific antibody levels in serum samples were measured by ELISA.

Results

At four different CIA time points we analyzed T cell specificity to the immunodominant CII epitope 259-273 (CII259-273) and several posttranslationally modified forms of CII259-273 as well as antibody responses to three B cell immunodominant epitopes on CII (C1, U1, J1). Our data show that CII-specific T and B cell responses increase dramatically after disease onset in both strains and are sustained during the disease course. Concerning anti-CII antibody fine specificity, during all investigated stages of CIA the B10.Q mice responded predominantly to the C1 epitope, whereas the B10.DR4.Ncf1*/* mice also recognized the U1 epitope. In the established disease phase, T cell reactivity toward the galactosylated CII259-273 peptide was similar between the DR4- and the Aq-expressing strains whereas the response to the non-modified CII peptide was dramatically enhanced in the DR4 mice compared with the B10.Q. In addition, we show that the difference in the transgenic DR4-restricted T cell specificity to CII259-273 is not dependent on the degree of glycosylation of the collagen used for immunization.

Conclusions

The present study provides important evaluation of CII-specific immune responses at different phases during CIA development as well as a comparative analysis between two CIA mouse models. We indicate significant differences in CII T cell and antibody specificities between the two strains and highlight a need for improved humanized B10.DR4 mouse model for rheumatoid arthritis.  相似文献   

4.
Reactive oxygen species (ROS) produced by the inducible NADPH oxidase type 2 (NOX2) complex are essential for clearing certain infectious organisms but may also have a role in regulating inflammation and immune response. For example, ROS is involved in myeloid derived suppressor cell (MDSC)- and regulatory T cell (Treg) mediated T- and NK-cell suppression. However, abundant ROS produced within the tumor microenvironment, or by the tumor itself may also yield oxidative stress, which can blunt anti-tumor immune responses as well as eventually leading to tumor toxicity. In this study we aimed to decipher the role of NOX2-derived ROS in a chemically (by methylcholanthrene (MCA)) induced sarcoma model. Superoxide production by NOX2 requires the p47phox (NCF1) subunit to organize the formation of the NOX2 complex on the cell membrane. Homozygous mutant mice (NCF1*/*) have a functional loss of their super oxide burst while heterozygous mice (NCF1*/+) retain this key function. Mice harboring either a homo- or a heterozygous mutation were injected intramuscularly with MCA to induce sarcoma formation. We found that NOX2 functionality does not determine tumor incidence in the tested MCA model. Comprehensive immune monitoring in tumor bearing mice showed that infiltrating immune cells experienced an increase in their oxidative state regardless of the NOX2 functionality. While MCA-induced sarcomas where characterized by a Treg and MDSC accumulation, no significant differences could be found between NCF1*/* and NCF1*/+ mice. Furthermore, infiltrating T cells showed an increase in effector-memory cell phenotype markers in both NCF1*/* and NCF1*/+ mice. Tumors established from both NCF1*/* and NCF1*/+ mice were tested for their in vitro proliferative capacity as well as their resistance to cisplatin and radiation therapy, with no differences being recorded. Overall our findings indicate that NOX2 activity does not play a key role in tumor development or immune cell infiltration in the chemically induced MCA sarcoma model.  相似文献   

5.

Background

Colitis is a common clinical complication in chronic granulomatous disease (CGD), a primary immunodeficiency caused by impaired oxidative burst. Existing experimental data from NADPH-oxidase knockout mice propose contradictory roles for the involvement of reactive oxygen species in colitis chronicity and severity. Since genetically controlled mice with a point-mutation in the Ncf1 gene are susceptible to chronic inflammation and autoimmunity, we tested whether they presented increased predisposition to develop chronic colitis.

Methods

Colitis was induced in Ncf1-mutant and wild-type mice by a 1st 7-days cycle of dextran sulfate sodium (DSS), intercalated by a 7-days resting period followed by a 2nd 7-days DSS-cycle. Cytokines were quantified locally in the colon inflammatory infiltrates and in the serum. Leukocyte infiltration and morphological alterations of the colon mucosa were assessed by immunohistochemistry.

Results

Clinical scores demonstrated a more severe colitis in Ncf1-mutant mice than controls, with no recovery during the resting period and a severe chronic colitis after the 2nd cycle, confirmed by histopathology and presence of infiltrating neutrophils, macrophages, plasmocytes and lymphocytes in the colon. Severe colitis was mediated by increased local expression of cytokines (IL-6, IL-10, TNF-α, IFN-γ and IL-17A) and phosphorylation of Leucine-rich repeat kinase 2 (LRRK2). Serological cytokine titers of those inflammatory cytokines were more elevated in Ncf1-mutant than control mice, and were accompanied by systemic changes in functional subsets of monocytes, CD4+T and B cells.

Conclusion

This suggests that an ineffective oxidative burst leads to severe chronic colitis through local accumulation of peroxynitrites, pro-inflammatory cytokines and lymphocytes and systemic immune deregulation similar to CGD.  相似文献   

6.
Chronic granulomatous disease (CGD) is an inherited disorder characterized by recurrent life-threatening bacterial and fungal infections. CGD results from defective production of reactive oxygen species by phagocytes caused by mutations in genes encoding the NADPH oxidase 2 (NOX2) complex subunits. Mice with a spontaneous mutation in Ncf1, which encodes the NCF1 (p47(phox)) subunit of NOX2, have defective phagocyte NOX2 activity. These mice occasionally develop local spontaneous infections by Staphylococcus xylosus or by the common CGD pathogen Staphylococcus aureus. Ncf1 mutant mice were more susceptible to systemic challenge with these bacteria than were wild-type mice. Transgenic Ncf1 mutant mice harboring the wild-type Ncf1 gene under the human CD68 promoter (MN(+) mice) gained the expression of NCF1 and functional NOX2 activity specifically in monocytes/macrophages, although minimal NOX2 activity was also detected in some CD11b(+)Ly6G(+) cells defined as neutrophils. MN(+) mice did not develop spontaneous infection and were more resistant to administered staphylococcal infections compared with MN(-) mice. Most strikingly, MN(+) mice survived after being administered Burkholderia cepacia, an opportunistic pathogen in CGD patients, whereas MN(-) mice died. Thus, monocyte/macrophage expression of functional NCF1 protected against spontaneous and administered bacterial infections.  相似文献   

7.
Song X  Shen J  Wen H  Zhong Z  Luo Q  Chu D  Qi Y  Xu Y  Wei W 《PloS one》2011,6(8):e23453

Background

The hygiene hypothesis suggests that helminth infections prevent a range of autoimmune diseases.

Methodology/Principal Findings

To investigate the effects of S. japonicum infection on collagen-induced arthritis (CIA), male DBA/1 mice were challenged with unisexual or bisexual S. japonicum cercariae two weeks prior to bovine type II collagen (CII) immunization or at the onset of CIA. S. japonicum infection prior to CII immunization significantly reduced the severity of CIA. ELISA (enzyme linked immunosorbent assay) showed that the levels of anti-CII IgG and IgG2a were reduced in prior schistosome-infected mice, while anti-CII IgG1 was elevated. Splenocyte proliferation against both polyclonal and antigen-specific stimuli was reduced by prior schistosome infection as measured by tritiated thymidine incorporation (3H-TdR). Cytokine profiles and CD4+ T cells subpopulation analysis by ELISA and flow cytometry (FCM) demonstrated that prior schistosome infection resulted in a significant down-regulation of pro-inflammatory cytokines (IFN-γ, TNF-α, IL-1β and IL-6) and Th1 cells, together with up-regulation of the anti-inflammatory cytokine IL-10 and Th2 cells. Interestingly, the expansion of Treg cells and the reduction of Th17 cells were only observed in bisexually infected mice. In addition, prior schistosome infection notably reduced the expression of pro-inflammatory cytokines and receptor activator of NF-κB ligand (RANKL) in the inflamed joint. However, the disease was exacerbated at one week after infection when established CIA mice were challenged with bisexual cercariae.

Conclusion/Significance

Our data provide direct evidence that the Th2 response evoked by prior S. japonicum infection can suppress the Th1 response and pro-inflammatory mediator and that bisexual infection with egg-laying up-regulates the Treg response and down-regulates the Th17 response, resulting in an amelioration of autoimmune arthritis. The beneficial effects might depend on the establishment of a Th2-dominant response rather than the presence of the eggs. Our results suggest that anti-inflammatory molecules from the parasite could treat autoimmune diseases.  相似文献   

8.
The role of NKT cells in the pathogenesis of collagen-induced arthritis (CIA) remains unclear since most studies have used C57BL/6 (B6) mice, which are less susceptible to CIA than mice with a DBA/1 background. To clarify the immunological functions of NKT cells in CIA, it is necessary to analyze in detail the effects of NKT cell deficiency on CIA development in DBA/1 mice. The incidence and severity of CIA were significantly exacerbated in DBA/1CD1d+/− mice as compared to DBA/1CD1d−/− mice. In DBA/1CD1d+/− mice, antigen-specific responses of B and T cells against CII were remarkably increased and inflammatory cytokine levels were also increased in vivo and in vitro. The number of IL-17-producing NKT cells significantly increased in DBA/1CD1d+/− mice as the disease progressed. Our results clearly show that NKT cells are involved not only in accelerating the severity and incidence of CIA but also in perpetuating the disease progression.  相似文献   

9.
The view on reactive oxygen species (ROS) in inflammation is currently shifting from being considered damaging toward having a more complex role in regulating inflammatory reactions. We recently demonstrated a role of ROS in regulation of animal models for the autoimmune disease rheumatoid arthritis. Low levels of ROS production, due to a mutation in the Ncf1 gene coding for the Ncf1 (alias p47(phox)) subunit of the NADPH oxidase complex, was shown to be associated with increased autoimmunity and arthritis severity in both rats and mice. To further investigate the role of ROS in autoimmunity, we studied transgenic mice expressing collagen type II (CII) with a mutation (D266E) in the immunodominant epitope that mimics the rat and human CII (i.e., mutated mouse collagen or MMC). This mutation results in a stronger binding of the epitope to the MHC class II molecule and leads to more pronounced tolerance and resistance to arthritis induced with rat CII. When the Ncf1 mutation was bred into these mice, tolerance was broken, resulting in enhanced T cell autoreactivity, high titers of anti-CII Abs, and development of severe arthritis. These findings highlight the importance of a sufficient ROS production in maintenance of tolerance to self-Ags, a central mechanism in autoimmune diseases such as rheumatoid arthritis. This is important as we, for the first time, can follow the effect of ROS on molecular mechanisms where T cells are responsible for either protection or promotion of arthritis depending on the level of oxygen species produced.  相似文献   

10.
Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1) receptor and the orphan G protein receptor fifty-five (GPR55). Studies using C57BL/10 and C57BL/6 (Cnr2 tm1Zim) CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2 Dgen) receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2 tm1Zim mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational value of some transgenic/gene knockout and other studies on low-EAE susceptibility backgrounds with inconsistent disease course and susceptibility.  相似文献   

11.
AMP-activated protein kinase α1 knockout (prkaa1−/−) mice manifest splenomegaly and anemia. The underlying molecular mechanisms, however, remain to be established. In this study, we tested the hypothesis that defective autophagy-dependent mitochondrial clearance in prkaa1−/− mice exacerbates oxidative stress, thereby enhancing erythrocyte destruction. The levels of ULK1 phosphorylation, autophagical flux, mitochondrial contents, and reactive oxygen species (ROS) were examined in human erythroleukemia cell line, K562 cells, as well as prkaa1−/− mouse embryonic fibroblasts and erythrocytes. Deletion of Prkaa1 resulted in the inhibition of ULK1 phosphorylation at Ser555, prevented the formation of ULK1 and BECN1- PtdIns3K complexes, and reduced autophagy capacity. The suppression of autophagy was associated with enhanced damaged mitochondrial accumulation and ROS production. Compared with wild-type (WT) mice, prkaa1−/− mice exhibited a shortened erythrocyte life span, hemolytic destruction of erythrocytes, splenomegaly, and anemia, all of which were alleviated by the administration of either rapamycin to activate autophagy or Mito-tempol, a mitochondria-targeted antioxidant, to scavenge mitochondrial ROS. Furthermore, transplantation of WT bone marrow into prkaa1−/− mice restored mitochondrial removal, reduced intracellular ROS levels, and normalized hematologic parameters and spleen size. Conversely, transplantation of prkaa1 −/− bone marrow into WT mice recapitulated the prkaa1−/− mouse phenotypes. We conclude that PRKAA1-dependent autophagy-mediated clearance of damaged mitochondria is required for erythrocyte maturation and homeostasis.  相似文献   

12.
Interferon regulatory factor (IRF) regulation of the type I interferon response has not been extensively explored in murine retroviral infections. IRF-3−/− and select IRF-3/7−/− mice were resistant to LP-BM5-induced pathogenesis. However, further analyses strongly suggested that resistance could be attributed to strain 129-specific contamination of the known retrovirus resistance gene Fv1. Therefore, caution should be taken when interpreting phenotypes observed in these knockout mice, as strain 129-derived genetic polymorphisms may explain observed differences.  相似文献   

13.
Nm23/NDP kinases A and B encoded by the Nme1/Nme2 genes are multifunctional enzymes responsible for the majority of NDP kinase activity in mammals. This review summarizes recent studies on their physiological roles using a mouse model in which both Nme1 and Nme2 genes have been deleted. The double knockout mice are stunted in growth and die perinatally. Additionally, these mice display hematologic phenotypes, including severe anemia, abnormal erythroid cell development, loss of the iron transport receptor molecule TfR1, and reduced iron uptake by Nme1 ?/? /Nme2 ?/? erythroid cells. We hypothesize that Nm23/NDP kinases regulate TfR1 gene expression in erythroid cells in some manner, and that defective iron transport into these cells is responsible for the anemia and death. This Nme1/Nme2 mouse model also links nucleotide metabolism with erythropoiesis, suggesting alternative or additional mechanisms that may explain the observed phenomena.  相似文献   

14.
Dendritic cells (DCs) are professional antigen presenting cells that have the dual ability to stimulate immunity and maintain tolerance. However, the signalling pathways mediating tolerogenic DC function in vivo remain largely unknown. The β-catenin pathway has been suggested to promote a regulatory DC phenotype. The aim of this study was to unravel the role of β-catenin signalling to control DC function in the autoimmune collagen-induced arthritis model (CIA). Deletion of β-catenin specifically in DCs was achieved by crossing conditional knockout mice with a CD11c-Cre transgenic mouse line. Bone marrow-derived DCs (BMDCs) were generated and used to study the maturation profile of these cells in response to a TLR2 or TLR4 ligand stimulation. CIA was induced by intra-dermal immunization with 100 μg chicken type II collagen in complete Freund’s adjuvant on days 0 and 21. CIA incidence and severity was monitored macroscopically and by histology. The T cell profile as well as their cytokine production were analysed by flow cytometry. Lack of β-catenin specifically in DCs did not affect the spontaneous, TLR2- or TLR4-induced maturation and activation of BMDCs or their cytokine production. Moreover, no effect on the incidence and severity of CIA was observed in mice lacking β-catenin in CD11c+ cells. A decreased frequency of splenic CD3+CD8+ T cells and of regulatory T cells (Tregs) (CD4+CD25highFoxP3+), but no changes in the frequency of splenic Th17 (CCR6+CXCR3-CCR4+), Th2 (CCR6-CXCR3-CCR4+) and Th1 (CCR6-CXCR3+CCR4-) cells were observed in these mice under CIA condition. Furthermore, the expression of IL-17A, IL-17F, IL-22, IL-4 or IFNγ was also not affected. Our data indicate that ablation of β-catenin expression in DCs did not alter the course and severity of CIA. We conclude that although deletion of β-catenin resulted in a lower frequency of Tregs, this decrease was not sufficient to aggravate the onset and severity of CIA.  相似文献   

15.
Lamins B1 and B2 (B-type lamins) have very similar sequences and are expressed ubiquitously. In addition, both Lmnb1- and Lmnb2-deficient mice die soon after birth with neuronal layering abnormalities in the cerebral cortex, a consequence of defective neuronal migration. The similarities in amino acid sequences, expression patterns, and knockout phenotypes raise the question of whether the two proteins have redundant functions. To investigate this topic, we generated “reciprocal knock-in mice”—mice that make lamin B2 from the Lmnb1 locus (Lmnb1B2/B2) and mice that make lamin B1 from the Lmnb2 locus (Lmnb2B1/B1). Lmnb1B2/B2 mice produced increased amounts of lamin B2 but no lamin B1; they died soon after birth with neuronal layering abnormalities in the cerebral cortex. However, the defects in Lmnb1B2/B2 mice were less severe than those in Lmnb1-knockout mice, indicating that increased amounts of lamin B2 partially ameliorate the abnormalities associated with lamin B1 deficiency. Similarly, increased amounts of lamin B1 in Lmnb2B1/B1 mice did not prevent the neurodevelopmental defects elicited by lamin B2 deficiency. We conclude that lamins B1 and B2 have unique roles in the developing brain and that increased production of one B-type lamin does not fully complement loss of the other.  相似文献   

16.
B cells have recently emerged as playing regulatory role in autoimmune diseases. We have previously demonstrated that human peripheral blood CD19+ CD24hiCD27+ B cells have regulatory function both in healthy donors and in patients with autoimmune disease. However, the mechanism of this regulation is still not fully understood. In this study, microarrays were utilized to compare gene expression of CD19+ CD24hiCD27+ B cells (regulatory B cells, Bregs) with CD19+ CD24loCD27 B cells (non-Bregs) in human peripheral blood. We found that heat shock protein 70 (HSP70) expression was significantly upregulated in Bregs. In vitro studies explored that HSP70 inhibition impaired the regulatory function of peripheral blood Bregs. In mouse models of autoimmune disease, using HSP70-deficient mice or HSP70 inhibitors, Bregs suppressed effector cells and rescued disease-associated phenotypes that were dependent on HSP70. Mechanistically, Bregs secreted HSP70, directly suppressing effector cells, such as T effect cells. These findings reveal that HSP70 is a novel factor that modulates Breg function and suggest that enhancing Breg-mediated production of HSP70 could be a viable therapy for autoimmune disease.  相似文献   

17.
Trace amine-associated receptor 1 (Taar1) impacts methamphetamine (MA) intake. A mutant allele (Taar1m1J) derived from the DBA/2J mouse strain codes for a non-functional receptor, and Taar1m1J/m1J mice consume more MA than mice possessing the reference Taar1+ allele. To study the impact of this mutation in a genetically diverse population, heterogeneous stock-collaborative cross (HS-CC) mice, the product of an eight-way cross of standard and wild-derived strains, were tested for MA intake. HS-CC had low MA intake, so an HS-CC by DBA/2J strain F2 intercross was created to transfer the mutant allele onto the diverse background, and used for selective breeding. To study residual variation in MA intake existing in Taar1m1J/m1J mice, selective breeding for higher (MAH) vs lower (MAL) MA intake was initiated from Taar1m1J/m1J F2 individuals; a control line of Taar1+/+ individuals (MAC) was retained. The lines were also examined for MA-induced locomotor and thermal responses, and fluid and tastant consumption. Taar1m1J/m1J F2 mice consumed significantly more MA than Taar1+/+ F2 mice. Response to selection was significant by generation 2 and there were corresponding differences in fluid consumed. Fluid consumption was not different in non-MA drinking studies. Taar1m1J/m1J genotype (MAL or MAH vs MAC mice) was associated with heighted MA locomotor and reduced hypothermic responses. MAL mice exhibited greater sensitization than MAH mice, but the selected lines did not consistently differ for thermal or tastant phenotypes. Residual variation among high-risk Taar1m1J/m1J mice appears to involve mechanisms associated with neuroadaptation to MA, but not sensitivity to hypothermic effects of MA.  相似文献   

18.
Familial combined hyperlipidemia (FCHL) is a common lipid disorder characterized by the presence of multiple lipoprotein phenotypes that increase the risk of premature coronary heart disease. In a previous study, we identified an intragenic microsatellite marker within the protocadherin 15 (PCDH15) gene to be associated with high triglycerides (TGs) in Finnish dyslipidemic families. In this study we analyzed all four known nonsynonymous SNPs within PCDH15 in 1,268 individuals from Finnish and Dutch multigenerational families with FCHL. Association analyses of quantitative traits for SNPs were performed using the QTDT test. The nonsynonymous SNP rs10825269 resulted in a P = 0.0006 for the quantitative TG trait. Additional evidence for association was observed with the same SNP for apolipoprotein B levels (apo-B) (P = 0.0001) and total cholesterol (TC) levels (P = 0.001). None of the other three SNPs tested showed a significant association with any lipid-related trait. We investigated the expression of PCDH15 in different human tissues and observed that PCDH15 is expressed in several tissues including liver and pancreas. In addition, we measured the plasma lipid levels in mice with loss-of-function mutations in Pcdh15 (Pcdh15av-Tg and Pcdh15av-3J) to investigate possible abnormalities in their lipid profile. We observed a significant difference in plasma TG and TC concentrations for the Pcdh15av-3J carriers when compared with the wild type (P = 0.013 and P = 0.044, respectively). Our study suggests that PCDH15 is associated with lipid abnormalities.  相似文献   

19.
Cyclic nucleotide-gated ion channels (CNGCs) have been firmly established as Ca2+-conducting ion channels that regulate a wide variety of physiological responses in plants. CNGC2 has been implicated in plant immunity and Ca2+ signaling due to the autoimmune phenotypes exhibited by null mutants of CNGC2 in Arabidopsis thaliana. However, cngc2 mutants display additional phenotypes that are unique among autoimmune mutants, suggesting that CNGC2 has functions beyond defense and generates distinct Ca2+ signals in response to different triggers. In this study, we found that cngc2 mutants showed reduced gravitropism, consistent with a defect in auxin signaling. This was mirrored in the diminished auxin response detected by the auxin reporters DR5::GUS and DII-VENUS and in a strongly impaired auxin-induced Ca2+ response. Moreover, the cngc2 mutant exhibits higher levels of the endogenous auxin indole-3-acetic acid, indicating that excess auxin in the cngc2 mutant causes its pleiotropic phenotypes. These auxin signaling defects and the autoimmunity syndrome of the cngc2 mutant could be suppressed by loss-of-function mutations in the auxin biosynthesis gene YUCCA6 (YUC6), as determined by identification of the cngc2 suppressor mutant repressor of cngc2 (rdd1) as an allele of YUC6. A loss-of-function mutation in the upstream auxin biosynthesis gene TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA1, WEAK ETHYLENE INSENSITIVE8) also suppressed the cngc2 phenotypes, further supporting the tight relationship between CNGC2 and the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS–YUCCA -dependent auxin biosynthesis pathway. Taking these results together, we propose that the Ca2+ signal generated by CNGC2 is a part of the negative feedback regulation of auxin homeostasis in which CNGC2 balances cellular auxin perception by influencing auxin biosynthesis.

One-sentence summary: The immunity-related Ca2+ channel CYCLIC NUCLEOTIDE-GATED CHANNEL 2 modulates auxin homeostasis and balances cellular auxin perception by influencing auxin biosynthesis.  相似文献   

20.
Chronic granulomatous disease (CGD) is a rare congenital disorder in which phagocytes cannot generate superoxide (O2?) and other microbicidal oxidants due to mutations in one of the five components of the O2?-generating NADPH oxidase complex. The most common autosomal subtype of CGD is caused by mutations in NCF1, encoding the NADPH subunit p47phox. Usually, these mutations are the result of unequal exchange of chromatid between NCF1 and one of its two pseudogenes. We have now investigated in detail the breakpoints within or between these (pseudo) NCF1 genes in 43 families with p47phox-deficient CGD by means of multiplex ligase-dependent probe amplification (MLPA). In 24 families the patients totally lacked NCF1 sequences, indicating that in these families the cross-over points are located between NCF1 and its pseudogenes. Six other families were compound heterozygous for a total NCF1 deletion and another mutation in NCF1 on the other allele. In 8 families, the patients lacked NCF1 exons 1–4 but had retained NCF1 exons 6–10, indicating that a cross-over point is located within NCF1 between exons 4 and 6. Similarly, in 4 families a cross-over point was located within NCF1 between exons 2 and 4. Similar cross-overs, in heterozygous form, were observed in family members of the patients. Several patients were compound heterozygous for total and partial NCF1 deletions. Thus, at least three different cross-over points exist within the NCF1 gene cluster, indicating that autosomal p47phox-deficient CGD is genetically heterogeneous but can be dissected in detail by MLPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号