首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.

Background

Protein turnover in skeletal muscle tissue is highly responsive to nutrient intake in healthy adults.

Objective

To provide a comprehensive overview of post-prandial protein handling, ranging from dietary protein digestion and amino acid absorption, the uptake of dietary protein derived amino acids over the leg, the post-prandial stimulation of muscle protein synthesis rates, to the incorporation of dietary protein derived amino acids in de novo muscle protein.

Design

12 healthy young males ingested 20 g intrinsically [1-13C]-phenylalanine labeled protein. In addition, primed continuous L-[ring-2H5]-phenylalanine, L-[ring-2H2]-tyrosine, and L-[1-13C]-leucine infusions were applied, with frequent collection of arterial and venous blood samples, and muscle biopsies throughout a 5 h post-prandial period. Dietary protein digestion, amino acid absorption, splanchnic amino acid extraction, amino acid uptake over the leg, and subsequent muscle protein synthesis were measured within a single in vivo human experiment.

Results

55.3±2.7% of the protein-derived phenylalanine was released in the circulation during the 5 h post-prandial period. The post-prandial rise in plasma essential amino acid availability improved leg muscle protein balance (from -291±72 to 103±66 μM·min-1·100 mL leg volume-1; P<0.001). Muscle protein synthesis rates increased significantly following protein ingestion (0.029±0.002 vs 0.044±0.004%·h-1 based upon the muscle protein bound L-[ring-2H5]-phenylalanine enrichments (P<0.01)), with substantial incorporation of dietary protein derived L-[1-13C]-phenylalanine into de novo muscle protein (from 0 to 0.0201±0.0025 MPE).

Conclusion

Ingestion of a single meal-like amount of protein allows ~55% of the protein derived amino acids to become available in the circulation, thereby improving whole-body and leg protein balance. About 20% of the dietary protein derived amino acids released in the circulation are taken up in skeletal muscle tissue following protein ingestion, thereby stimulating muscle protein synthesis rates and providing precursors for de novo muscle protein synthesis.

Trial Registration

trialregister.nl 3638  相似文献   

2.

Background

Based on controlled 36 h experiments a higher dietary protein intake causes a positive protein balance and a negative fat balance. A positive net protein balance may support fat free mass accrual. However, few data are available on the impact of more prolonged changes in habitual protein intake on whole-body protein metabolism and basal muscle protein synthesis rates.

Objective

To assess changes in whole-body protein turnover and basal muscle protein synthesis rates following 12 weeks of adaptation to a low versus high dietary protein intake.

Methods

A randomized parallel study was performed in 40 subjects who followed either a high protein (2.4 g protein/kg/d) or low protein (0.4 g protein/kg/d) energy-balanced diet (30/35/35% or 5/60/35% energy from protein/carbohydrate/fat) for a period of 12 weeks. A subgroup of 7 men and 8 women (body mass index: 22.8±2.3 kg/m2, age: 24.3±4.9 y) were selected to evaluate the impact of prolonged adaptation to either a high or low protein intake on whole body protein metabolism and basal muscle protein synthesis rates. After the diet, subjects received continuous infusions with L-[ring-2H5]phenylalanine and L-[ring-2H2]tyrosine in an overnight fasted state, with blood samples and muscle biopsies being collected to assess post-absorptive whole-body protein turnover and muscle protein synthesis rates in vivo in humans.

Results

After 12 weeks of intervention, whole-body protein balance in the fasted state was more negative in the high protein treatment when compared with the low protein treatment (-4.1±0.5 vs -2.7±0.6 μmol phenylalanine/kg/h;P<0.001). Whole-body protein breakdown (43.0±4.4 vs 37.8±3.8 μmol phenylalanine/kg/h;P<0.03), synthesis (38.9±4.2 vs 35.1±3.6 μmol phenylalanine/kg/h;P<0.01) and phenylalanine hydroxylation rates (4.1±0.6 vs 2.7±0.6 μmol phenylalanine/kg/h;P<0.001) were significantly higher in the high vs low protein group. Basal muscle protein synthesis rates were maintained on a low vs high protein diet (0.042±0.01 vs 0.045±0.01%/h;P = 0.620).

Conclusions

In the overnight fasted state, adaptation to a low-protein intake (0.4 g/kg/d) does not result in a more negative whole-body protein balance and does not lower basal muscle protein synthesis rates when compared to a high-protein intake.

Trial Registration

Clinicaltrials.gov NCT01551238.  相似文献   

3.

Introduction

The relationship between a perioperative change in sarcopenic status and clinical outcome of liver transplantation (LT) is unknown. We investigated whether post-LT sarcopenia and changes in sarcopenic status were associated with the survival of patients.

Method

This retrospective study was based on a cohort of 145 patients from a single transplant center who during a mean of 1 year after LT underwent computed tomography imaging evaluation. The cross-sectional area of the psoas muscle of LT patients was compared with that of age- and sex-matched healthy individuals. The Cox proportional hazards regression model was used to determine whether post-LT sarcopenia and changes in sarcopenic status affect post-LT survival.

Results

The mean age at LT of the 116 male and 29 female patients was 50.2 ± 7.9 years; the mean follow-up duration was 51.6 ± 32.9 months. All pre-LT patients with sarcopenia still had sarcopenia 1 year after LT; 14 (15%) patients had newly developed sarcopenia. The mean survival duration was 91.8 ± 4.2 months for non-sarcopenic patients and 80.0 ± 5.2 months for sarcopenic patients (log-rank test, p = 0.069). In subgroup analysis, newly developed sarcopenia was an independent negative predictor for post-LT survival (hazard ratio: 10.53, 95% confidence interval: 1.37–80.93, p = 0.024).

Conclusion

Sarcopenia in LT recipients did not improve in any of the previously sarcopenic patients and newly developed within 1 year in others. Newly developed sarcopenia was associated with increased mortality. Newly developed sarcopenia can be used to stratify patients with regard to the risk of post-LT mortality.  相似文献   

4.

Background

Protein-energy wasting is common in patients with end-stage kidney disease. However, few studies have examined the relationship between early stages of chronic kidney disease (CKD) and sarcopenia.

Methods

We conducted a cross-sectional study based on data in the Korea National Health and Nutrition Examination Survey, 2008–2011. In total, 11,625 subjects aged 40 years or older who underwent dual-energy X-ray absorptiometry were analyzed. Sarcopenia was defined based on values of appendicular skeletal muscle mass as a percentage of body weight (ASM/Wt) two standard deviations below the gender-specific mean for young adults. Estimated glomerular filtration rates (eGFR) were calculated using the CKD-EPI equation.

Results

Mean age, body mass index (BMI), and HOMA-IR were higher and caloric intake, physical activity, and vitamin D level were lower in the sarcopenia groups in both men and women. As the stage of CKD increased, the prevalence of sarcopenia increased, even in the early stages of CKD (normal and CKD1, 2, and 3-5: 2.6%, 5.6%, and 18.1% in men and 5.3%, 7.1%, and 12.6% in women, respectively; p < 0.001). In addition, a correlation analysis showed that GFR and ASM/Wt had significant correlations in both men and women. Logistic regression analyses, after adjusting for age, BMI, caloric intake, log(physical activity), vitamin D level, and log(HOMA-IR), showed that the odds ratio for sarcopenia with respect to CKD 3–5 was 1.93 (95% CI = 1.02–3.68) in men but was not statistically significant in women.

Conclusions

The prevalence of sarcopenia was higher in elderly Korean patients with even mildly reduced kidney function. Stage of CKD was associated with an increased prevalence of sarcopenia in men but not women. Thus, we should evaluate the risk of sarcopenia and work to prevent it, even in patients with early CKD.  相似文献   

5.

Background

Sarcopenia, the loss of muscle mass and function with age, is associated with increased morbidity and mortality. Current understanding of the underlying mechanisms is limited. Glucocorticoids (GC) in excess cause muscle weakness and atrophy. We hypothesized that GC may contribute to sarcopenia through elevated circulating levels or increased glucocorticoid receptor (GR) signaling by increased expression of either GR or the GC-amplifying enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11βHSD1) in muscle.

Methods

There were 82 participants; group 1 comprised 33 older men (mean age 70.2years, SD 4.4) and 19 younger men (22.2years, 1.7) and group 2 comprised 16 older men (79.1years, 3.4) and 14 older women (80.1years, 3.7). We measured muscle strength, mid-thigh cross-sectional area, fasting morning plasma cortisol, quadriceps muscle GR and 11βHSD1 mRNA, and urinary glucocorticoid metabolites. Data were analysed using multiple linear regression adjusting for age, gender and body size.

Results

Muscle strength and size were not associated with plasma cortisol, total urinary glucocorticoids or the ratio of urinary 5β-tetrahydrocortisol +5α-tetrahydrocortisol to tetrahydrocortisone (an index of systemic 11βHSD activity). Muscle strength was associated with 11βHSD1 mRNA levels (β -0.35, p = 0.04), but GR mRNA levels were not significantly associated with muscle strength or size.

Conclusion

Although circulating levels of GC are not associated with muscle strength or size in either gender, increased cortisol generation within muscle by 11βHSD1 may contribute to loss of muscle strength with age, a key component of sarcopenia. Inhibition of 11βHSD1 may have therapeutic potential in sarcopenia.  相似文献   

6.

Objectives

Myostatin (MSTN), a member of TGF-β superfamily, is produced in the skeletal muscle to inhibit myocyte differentiation. MSTN expression is increased in the skeletal muscle in patients with chronic kidney disease (CKD), which may play a role in the pathogenesis of sarcopenia or in the protein energy wasting (PEW). This observation implies that the plasma MSTN level may be correlated with kidney function. Thus, we conducted a cross-sectional study to evaluate the association between the plasma MSTN concentration and the estimated glomerular filtration rate (eGFR).

Subjects and Methods

Subjects were 781 participants of a health examination performed in a rural area in Japan. Among them, 124 subjects were selected by stratified random sampling according to eGFR. Creatinine clearance (ClCr) by the Cockcroft-Gault equation was used as a measure of kidney function. Plasma concentration of MSTN was determined by ELISA.

Results

The plasma MSTN level was not different between men (3.42±1.61 ng/mL) and women (3.27±1.43 ng/mL). In a simple regression analysis, the MSTN level was significantly correlated with eGFR (r = -0.25, p<0.01) and ClCr (r = -0.20, p<0.05) but not with age and BMI. In a multiple linear regression analysis, the MSTN level showed a negative correlation with eGFR (standardized β = -0.31, p<0.01) and ClCr (standardized β = -0.35, p<0.01) under the adjustment with age, sex, BMI and LDL-C. Weak correlation was observed between the MSTN level and BMI / the serum LDL-C level. When the subjects were stratified into 4 groups according to eGFR, MSTN was significantly greater in the groups with the lowest and the 2nd lowest eGFR (3.55±1.79 and 3.76±1.75 ng/mL, respectively) than the level in the group with the highest eGFR (2.77±0.85 ng/mL).

Conclusion

Plasma MSTN level was elevated in an early stage of CKD, which could be involved in the progression of sarcopenia.  相似文献   

7.

Background

Down syndrome (DS) shows neuropathology similar to Alzheimer disease, which presents olfactory impairment. Previous work showed olfactory impairment in DS, but a comprehensive evaluation of olfactory function in DS is lacking.

Methods

We investigated a large number (n = 56; M = 31, F = 25) DS participants (age range18-57y) using the “Sniffin’ Sticks” Extended test. This comprises three subtests (threshold, discrimination, and identification) yielding a global score (TDI) defining normosmia, hyposmia, and functional anosmia. To the best of our knowledge, this is the second largest group of DS people investigated for olfactory function ever. Age- and sex matched euploid individuals (n = 53) were the control.

Results

In DS, TDI was lower (16.7±5.13 vs. 35.4±3.74; P<0.001), with DS people performing worse in any subtests (P<0.001 for all); 27 DS participants showed functional anosmia (i.e., TDI<16). In DS, age was weakly and negatively correlated with TDI (r = -0.28, P = 0.036) and identification (r = -0.34, P = 0.012). When participants were stratified in young adults (18-29y) and older adults (30-61y), a significant effect of age was found for identification in both DS (young adults, 8.3±2.58; older adults, 6.9±2.99; P = 0.031) and control (young-adult, 14.3±1.18, older adult, 13.0±1.54; P = 0.016).

Conclusion

Olfactory function is overall severely impaired in DS people and may be globally impaired at relatively young age, despite of reportedly normal smell. However, specificity of this olfactory profile to DS should be considered with some caution because cognition was not evaluated in all DS participants and comparison with a control group of non-DS individuals having cognitive disabilities was lacking. Further study is required to longitudinally assess olfactory dysfunction in DS and to correlate it with brain pathology.  相似文献   

8.

Background

n-3 polyunsaturated fatty acids (PUFAs) might be useful nutritional strategy for treating patients with sarcopenia. We evaluated the effect of the intake of dietary n-3 PUFAs on the skeletal muscle mass (SMM), appendicular skeletal muscle mass (ASM), and its determinants in patients receiving standard hemodialysis (HD) treatment for the management of end stage renal disease.

Methods

In this cross-sectional study, data of 111 HD patients were analyzed. Anthropometric and bioelectrical impedance measurements used to estimate the muscle mass were performed the day of dialysis immediately after the dialysis session. Routine laboratory and 3-day dietary data were also collected. The cutoff value of adequate intake (AI) for both n-3 PUFAs and alpha-linolenic acid (ALA) was 1.6 g/day and 1.1 g/day for men and women, respectively.

Results

The mean age, mean dietary n-3 PUFAs intake, ALA intake, ratio of n-6/n-3 PUFAs intake, SMM, and ASM of patients were 61.4 ± 10.4 years, 2.0 ± 1.3 g/day, 1.5 ± 1.0 g/day, 9.5 ± 6.7 g/day, 23.9 ± 5.5 kg, and 17.5 ± 4.5 kg, respectively. A higher SMM and ASM significantly observed in patients who achieved an AI of n-3 PUFAs. Similar trends appeared to be observed among those patients who achieved the AI of ALA, but the difference was not significantly, except for ASM (P = 0.047). No relevant differences in demographics, laboratory and nutritional parameters were observed, regardless of whether the patients achieved an AI of n-3 PUFAs. Multivariate analysis showed that the BMI and equilibrated Kt/V were independent determinants of the muscle mass. Moreover, the ratio of n-6/n-3 PUFAs was an independent risk determinant of reduced ASM in HD patients.

Conclusion

Patients with an AI of n-3 PUFAs had better total-body SMM and ASM. A higher dietary ratio of n-6/n-3 PUFAs seemed to be associated with a reduced muscle mass in HD patients.  相似文献   

9.

Background

The increasingly recognized importance of vitamin D has been discussed and vitamin D status among young children has attracted widespread attention in recent years. However, study on vitamin D status in young children aged 1–3 y is limited in China.

Objective

To evaluate the nutritional vitamin D status of young children aged 1–3 y in Wuxi, southeastern China.

Methods

A large cohort of 5,571 young children aged 1–3 y were recruited in this study who visited the child health clinics at the Wuxi Maternity and Child Health Hospital (latitude 31.57°N) during January 2014 to January 2015. Wuxi was located in southeastern China at a latitude of 31.57°N. Finger-stick blood sampling was conducted in all the subjects and serum 25-Hydroxyvitamin D (25(OH)D) levels were measured to evaluate their vitamin D status.

Results

In this study, serum 25(OH)D levels of young children at the age of 1–3 years ranged from 20.6–132.9 nmol/L (Median: 71.5 nmol/L). 16.1% of the population had vitamin D deficiency (<50 nmol/L), while 38.8% of the subjects had a sufficient (50–74.9 nmol/L) vitamin D level. An optimal vitamin D status (≥75 nmol/L) was found in 45.1% of the young children. The prevalence of vitamin D deficiency was higher in autumn (19.5%) than in summer (12.1%). There was no significant difference in vitamin D status between genders. The binary logistic regression analysis revealed that child age was strongly associated with vitamin D deficiency (adjusted OR: 1.173; 95%CI: 1.053–1.308; P = 0.004).

Conclusions

The prevalence of vitamin D deficiency was 16.1% among young children aged 1–3 y in Wuxi. Season and child age were associated with their vitamin D status. It is implied that young children should receive adequate amounts of vitamin D supplementation and spend more time outdoors to prolong the sunlight exposure when they grow older.  相似文献   

10.

Background

Weight loss benefits of multi-ingredient supplements in conjunction with a low-calorie, high-protein diet in young women are unknown. Therefore, the purpose of this study was to investigate the effects of a three-week low-calorie diet with and without supplementation on body composition.

Methods

Thirty-seven recreationally-trained women (n = 37; age = 27.1 ± 4.2; height = 165.1 ± 6.4; weight = 68.5 ± 10.1; BMI = 25.1 ± 3.4) completed one of the following three-week interventions: no change in diet (CON); a high-protein, low-calorie diet supplemented with a thermogenic, conjugated linoleic acid (CLA), a protein gel, and a multi-vitamin (SUP); or the high-protein diet with isocaloric placebo supplements (PLA). Before and after the three-week intervention, body weight, %Fat via dual X-ray absorptiometry (DXA), segmental fat mass via DXA, %Fat via skinfolds, and skinfold thicknesses at seven sites were measured.

Results

SUP and PLA significantly decreased body weight (SUP: PRE, 70.47 ± 8.01 kg to POST, 67.51 ± 8.10 kg; PLA: PRE, 67.88 ± 12.28 kg vs. POST, 66.38 ± 11.94 kg; p ≤ 0.05) with a greater (p ≤ 0.05) decrease in SUP than PLA or CON. SUP and PLA significantly decreased %Fat according to DXA (SUP: PRE, 34.98 ± 7.05% to POST, 32.99 ± 6.89%; PLA: PRE, 34.22 ± 6.36% vs. POST, 32.69 ± 5.84%; p ≤ 0.05), whereas only SUP significantly decreased %Fat according to skinfolds (SUP: PRE, 27.40 ± 4.09% to POST, 24.08 ± 4.31%; p ≤ 0.05). SUP significantly (p ≤ 0.05) decreased thicknesses at five skinfolds (chest, waist, hip, subscapular, and tricep) compared to PLA, but not at two skinfolds (axilla and thigh).

Conclusions

The addition of a thermogenic, CLA, protein, and a multi-vitamin to a three-week low-calorie diet improved weight loss, total fat loss and subcutaneous fat loss, compared to diet alone.  相似文献   

11.

Background

Physical performance is reported to have various beneficial effects on human health, especially in older individuals. Although such effects are associated with body mass index (BMI), the relationship between BMI and physical performance has not been clarified.

Design

We conducted a cross-sectional study of 966 suburb-dwelling Tianjin individuals aged ≥ 60 years (average age 67.5±6.02, men 435, women 531). Mobility, balance, and muscle strength were assessed by walking speed, timed up-and-go test (TUGT), and grip strength, respectively. The subjects were categorized into three groups based on BMI (kg/m2) as follows: normal weight, 18.5 ≤ BMI ≤ 23.9; overweight, 24.0 ≤ BMI ≤ 27.9; and obese, BMI ≥ 28.0.

Result

After adjusting for all other variables, relative grip strength decreased when BMI increased in both men and women (P for trend <0.001 and <0.001, respectively). BMI may be negatively associated with TUGT performance in the women only. There was no apparent association between walking speed and BMI in either sex, but after adjusting for age, walking speed was faster when BMI increased in women (P for trend= 0.0162).

Conclusion

This study suggests that in older individuals, higher BMI is associated with poor muscle strength in both sexes.  相似文献   

12.

Objectives

To establish age- and sex-dependent values of magnetic resonance (MR) liver fat-signal fraction (FSF) in healthy volunteers with normal body-mass index (BMI).

Methods

2-point mDIXON sequences (repetition time/echo time, 4.2msec/1.2msec, 3.1msec) at 3.0 Tesla MR were acquired in 80 healthy volunteers with normal BMI (18.2 to 25.7 kg/m2) between 20 and 62 years (10 men/10 women per decade). FSF was measured in 5 liver segments (segment II, III, VI, VII, VIII) based on mean signal intensities in regions of interest placed on mDIXON-based water and fat images. Multivariate general linear models were used to test for significant differences between BMI-corrected FSF among age subgroups. Pearson and Spearman correlations between FSF and several body measures were calculated.

Results

Mean FSF (%) ± standard deviations significantly differed between women (3.91 ± 1.10) and men (4.69 ± 1.38) and varied with age for women/men (p-value: 0.002/0.027): 3.05 ± 0.49/3.74 ± 0.60 (age group 20–29), 3.75 ± 0.66/4.99 ± 1.30 (30–39), 4.76 ± 1.16/5.25 ± 1.97 (40–49) and 4.09 ± 1.26/4.79 ± 0.93 (50–62). FSF differences among age subgroups were significant for women only (p = 0.003).

Conclusions

MR-based liver fat content is higher in men and peaks in the fifth decade for both genders.  相似文献   

13.
14.

Background

Resistance exercise alters the post-exercise response of anabolic and catabolic hormones. A previous study indicated that the turnover of muscle protein in trained individuals is reduced due to alterations in endocrine factors caused by resistance training, and that muscle protein accumulation varies between trained and untrained individuals due to differences in the timing of protein and carbohydrate intake. We investigated the effect of the timing of protein and carbohydrate intake after resistance exercise on nitrogen balance in trained and untrained young men.

Methods

Subjects were 10 trained healthy men (mean age, 23 ± 4 years; height, 173.8 ± 3.1 cm; weight, 72.3 ± 4.3 kg) and 10 untrained healthy men (mean age, 23 ± 1 years; height, 171.8 ± 5.0 cm; weight, 64.5 ± 5.0 kg). All subjects performed four sets of 8 to 10 repetitions of a resistance exercise (comprising bench press, shoulder press, triceps pushdown, leg extension, leg press, leg curl, lat pulldown, rowing, and biceps curl) at 80% one-repetition maximum. After each resistance exercise session, subjects were randomly divided into two groups with respect to intake of protein (0.3 g/kg body weight) and carbohydrate (0.8 g/kg body weight) immediately after (P0) or 6 h (P6) after the session. All subjects were on an experimental diet that met their individual total energy requirement. We assessed whole-body protein metabolism by measuring nitrogen balance at P0 and P6 on the last 3 days of exercise training.

Results

The nitrogen balance was significantly lower in the trained men than in the untrained men at both P0 (P <0.05) and P6 (P <0.01). The nitrogen balance in trained men was significantly higher at P0 than at P6 (P <0.01), whereas that in the untrained men was not significantly different between the two periods.

Conclusion

The timing of protein and carbohydrate intake after resistance exercise influences nitrogen balance differently in trained and untrained young men.  相似文献   

15.

Subject

This study aimed to establish a normal range for ankle systolic blood pressure (SBP).

Methods

A total of 948 subjects who had normal brachial SBP (90-139 mmHg) at investigation were enrolled. Supine BP of four limbs was simultaneously measured using four automatic BP measurement devices. The ankle-arm difference (An-a) on SBP of both sides was calculated. Two methods were used for establishing normal range of ankle SBP: the 99% method was decided on the 99% reference range of actual ankle BP, and the An-a method was the sum of An-a and the low or up limits of normal arm SBP (90–139mmHg).

Results

Whether in the right or left side, the ankle SBP was significantly higher than the arm SBP (right: 137.1±16.9 vs 119.7±11.4 mmHg, P<0.05). Based on the 99% method, the normal range of ankle SBP was 94~181 mmHg for the total population, 84~166 mmHg for the young (18–44 y), 107~176 mmHg for the middle-aged(45–59 y) and 113~179 mmHg for the elderly (≥60y) group. As the An-a on SBP was 13mmHg in the young group and 20mmHg in both middle-aged and elderly groups, the normal range of ankle SBP on the An-a method was 103–153 mmHg for young and 110–160 mmHg for middle-elderly subjects.

Conclusion

A primary reference for normal ankle SBP was suggested as 100-165 mmHg in the young and 110-170 mmHg in the middle-elderly subjects.  相似文献   

16.
17.

Purpose

To investigate the activation of three unfolded protein response (UPR) pathways in the lenses of age-related, high myopia-related and congenital cataracts.

Methods and Materials

Lens specimens were collected from patients during small incision cataract surgery. Lenses from young cadaver eyes were collected as normal controls. Real-time PCR and Western blotting were performed to detect the expression of GRP78, p-eIF2α, spliced XBP1, ATF6, ATF4 and p-IRE1α in the lenses of normal human subjects and patients with age-related, myopia-related or congenital cataracts.

Results

In the lenses of the age-related and high myopia-related cataract groups, the protein levels of ATF6, p-eIF2α and p-IRE1α and the gene expression levels of spliced XBP1, GRP78, ATF6 and ATF4 were greatly increased. Additionally, in the congenital cataract group, the protein levels of p-eIF2α and p-IRE1α and the gene expression levels of spliced XBP1, GRP78 and ATF4 were greatly increased. However, the protein and gene expression levels of ATF6 were not up-regulated in the congenital cataract group compared with the normal control group.

Conclusions

The UPR is activated via different pathways in the lenses of age-related, high myopia-related and congenital cataracts. UPR activation via distinct pathways might play important roles in cataractogenesis mechanisms in different types of cataracts.  相似文献   

18.

Purpose

To examine quadriceps muscle fatigue and central motor output during fatiguing single joint exercise at 40% and 80% maximal torque output in resistance trained men.

Method

Ten resistance trained men performed fatiguing isometric knee extensor exercise at 40% and 80% of maximal torque output. Maximal torque, rate of torque development, and measures of central motor output and peripheral muscle fatigue were recorded at two matched volumes of exercise, and after a final contraction performed to exhaustion. Central motor output was quantified from changes in voluntary activation, normalized surface electromyograms (EMG), and V-waves. Quadriceps muscle fatigue was assessed from changes in the size and shape of the resting potentiated twitch (Q.pot.tw). Central motor output during the exercise protocols was estimated from EMG and interpolated twitches applied during the task (VAsub).

Results

Greater reductions in maximal torque and rate of torque development were observed during the 40% protocol (p<0.05). Maximal central motor output did not change for either protocol. For the 40% protocol reductions from pre-exercise in rate and amplitude variables calculated from the Q.pot.tw between 66.2 to 70.8% (p<0.001) exceeded those observed during the 80% protocol (p<0.01). V-waves only declined during the 80% protocol between 56.8 ± 35.8% to 53.6 ± 37.4% (p<0.05). At the end of the final 80% contraction VAsub had increased from 91.2 ± 6.2% to 94.9 ± 4.7% (p = 0.005), but a greater increase was observed during the 40% contraction where VAsub had increased from 67.1 ± 6.1% to 88.9 ± 9.6% (p<0.001).

Conclusion

Maximal central motor output in resistance trained men is well preserved despite varying levels of peripheral muscle fatigue. Upregulated central motor output during the 40% contraction protocol appeared to elicit greater peripheral fatigue. V-waves declines during the 80% protocol suggest intensity dependent modulation of the Ia afferent pathway.  相似文献   

19.

Study Strategy

A retrospective clinic study.

Purpose

To evaluate the efficacy of conservative and surgical treatment for lumbosacral tuberculosis.

Methods

This study retrospectively reviewed 53 patients with lumbosacral tuberculosis who were treated in our institution between January 2005 and January 2011. There were 29 males and 24 females with average ages of 37.53 ± 17.28 years (range 6–72 years). 11 patients were given only anti-TB drugs; the remainder underwent anterior debridement, interbody fusion with and without instrumentation, or one-stage anterior debridement combined with posterior instrumentation. Outcome data for these patients included neurologic status, lumbosacral angle, erythrocyte sedimentation rate value(ESR) and C-reactive protein value(CRP) were assessed before and after treatment.

Results

The mean lumbosacral angles were 23.00°± 2.90°in the conservatively treated patients and 22.36°± 3.92o in the surgically treated patients. At the final follow-up, this had improved to 24.10o ± 2.96°in the conservatively treated patients and 28.13° ± 1.93°in the surgically treated patients (all P < 0.05). There were statistically significant differences before and after treatment in terms of ESR and CRP (all P < 0.05). All patients achieved bone fusion. The mean follow-up period was 32.34 ± 8.13 months (range 18 to 55 months). The neurological deficit did not worsen in any of the patients.

Conclusions

It has been proven that conservative and surgical treatments are safe and effective and produce good clinical outcomes for patients with lumbosacral tuberculosis. The advantages of operation include thoroughness of debridement, decompression of the spinal cord, and adequate spinal stabilization.  相似文献   

20.

Background

Ischemic heart disease (IHD) mortality has been on the decline in the United States for decades. However, declines in IHD mortality have been slower in certain groups, including young women and black individuals.

Hypothesis

Trends in IHD vary by age, sex, and race in New York City (NYC). Young female minorities are a vulnerable group that may warrant renewed efforts to reduce IHD.

Methods

IHD mortality trends were assessed in NYC 1980–2008. NYC Vital Statistics data were obtained for analysis. Age-specific IHD mortality rates and confidence bounds were estimated. Trends in IHD mortality were compared by age and race/ethnicity using linear regression of log-transformed mortality rates. Rates and trends in IHD mortality rates were compared between subgroups defined by age, sex and race/ethnicity.

Results

The decline in IHD mortality rates slowed in 1999 among individuals aged 35–54 years but not ≥55. IHD mortality rates were higher among young men than women age 35–54, but annual declines in IHD mortality were slower for women. Black women age 35–54 had higher IHD mortality rates and slower declines in IHD mortality than women of other race/ethnicity groups. IHD mortality trends were similar in black and white men age 35–54.

Conclusions

The decline in IHD mortality rates has slowed in recent years among younger, but not older, individuals in NYC. There was an association between sex and race/ethnicity on IHD mortality rates and trends. Young black women may benefit from targeted medical and public health interventions to reduce IHD mortality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号