首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The brain exhibits complex spatio-temporal patterns of activity. This phenomenon is governed by an interplay between the internal neural dynamics of cortical areas and their connectivity. Uncovering this complex relationship has raised much interest, both for theory and the interpretation of experimental data (e.g., fMRI recordings) using dynamical models. Here we focus on the so-called inverse problem: the inference of network parameters in a cortical model to reproduce empirically observed activity. Although it has received a lot of interest, recovering directed connectivity for large networks has been rather unsuccessful so far. The present study specifically addresses this point for a noise-diffusion network model. We develop a Lyapunov optimization that iteratively tunes the network connectivity in order to reproduce second-order moments of the node activity, or functional connectivity. We show theoretically and numerically that the use of covariances with both zero and non-zero time shifts is the key to infer directed connectivity. The first main theoretical finding is that an accurate estimation of the underlying network connectivity requires that the time shift for covariances is matched with the time constant of the dynamical system. In addition to the network connectivity, we also adjust the intrinsic noise received by each network node. The framework is applied to experimental fMRI data recorded for subjects at rest. Diffusion-weighted MRI data provide an estimate of anatomical connections, which is incorporated to constrain the cortical model. The empirical covariance structure is reproduced faithfully, especially its temporal component (i.e., time-shifted covariances) in addition to the spatial component that is usually the focus of studies. We find that the cortical interactions, referred to as effective connectivity, in the tuned model are not reciprocal. In particular, hubs are either receptors or feeders: they do not exhibit both strong incoming and outgoing connections. Our results sets a quantitative ground to explore the propagation of activity in the cortex.  相似文献   

2.
Recent neuroimaging studies have shown local brain aberrations in functional dyspepsia (FD) patients, yet little attention has been paid to the whole-brain resting-state functional network abnormalities. The purpose of this study was to investigate whether FD disrupts the patterns of whole-brain networks and the abnormal functional connectivity could reflect the severity of the disease. The dysfunctional interactions between brain regions at rest were investigated in FD patients as compared with 40 age- and gender- matched healthy controls. Multivariate pattern analysis was used to evaluate the discriminative power of our results for classifying patients from controls. In our findings, the abnormal brain functional connections were mainly situated within or across the limbic/paralimbic system, the prefrontal cortex, the tempo-parietal areas and the visual cortex. About 96% of the subjects among the original dataset were correctly classified by a leave one-out cross-validation approach, and 88% accuracy was also validated in a replication dataset. The classification features were significantly associated with the patients’ dyspepsia symptoms, the self-rating depression scale and self-rating anxiety scale, but it was not correlated with duration of FD patients (p>0.05). Our results may indicate the effectiveness of the altered brain functional connections reflecting the disease pathophysiology underling FD. These dysfunctional connections may be the epiphenomena or causative agents of FD, which may be affected by clinical severity and its related emotional dimension of the disease rather than the clinical course.  相似文献   

3.
This note describes a simple conditional test of the independence of two first-order, two-state Markov chains. The test is illustrated using some data from an experiment concerning animal behavior.  相似文献   

4.
As different areas within the PMC have different connectivity patterns with various cortical and subcortical regions, we hypothesized that distinct functional modules may be present within the PMC. Because the PMC appears to be the most active region during resting state, it has been postulated to play a fundamental role in the control of baseline brain functioning within the default mode network (DMN). Therefore one goal of this study was to explore which components of the PMC are specifically involved in the DMN. In a sample of seventeen healthy volunteers, we performed an unsupervised voxelwise ROI-based clustering based on resting state functional connectivity. Our results showed four clusters with different network connectivity. Each cluster showed positive and negative correlations with cortical regions involved in the DMN. Progressive shifts in PMC functional connectivity emerged from anterior to posterior and from dorsal to ventral ROIs. Ventral posterior portions of PMC were found to be part of a network implicated in the visuo-spatial guidance of movements, whereas dorsal anterior portions of PMC were interlinked with areas involved in attentional control. Ventral retrosplenial PMC selectively correlated with a network showing considerable overlap with the DMN, indicating that it makes essential contributions in self-referential processing, including autobiographical memory processing. Finally, ventral posterior PMC was shown to be functionally connected with a visual network.The paper represents the first attempt to provide a systematic, unsupervised, voxelwise clustering of the human posteromedial cortex (PMC), using resting-state functional connectivity data. Moreover, a ROI-based parcellation was used to confirm the results.  相似文献   

5.
6.
The functional brain connectivity studies are generally based on the synchronization of the resting-state functional magnetic resonance imaging (fMRI) signals. Functional connectivity measures usually assume a stable relationship over time; however, accumulating studies have reported time-varying properties of strength and spatial distribution of functional connectivity. The present study explored the modulation of functional connectivity between two regions by a third region using the physiophysiological interaction (PPI) technique. We first identified eight brain networks and two regions of interest (ROIs) representing each of the networks using a spatial independent component analysis. A voxel-wise analysis was conducted to identify regions that showed modulatory interactions (PPI) with the two ROIs of each network. Mostly, positive modulatory interactions were observed within regions involved in the same system. For example, the two regions of the dorsal attention network revealed modulatory interactions with the regions related to attention, while the two regions of the extrastriate network revealed modulatory interactions with the regions in the visual cortex. In contrast, the two regions of the default mode network (DMN) revealed negative modulatory interactions with the regions in the executive network, and vice versa, suggesting that the activities of one network may be associated with smaller within network connectivity of the competing network. These results validate the use of PPI analysis to study modulation of resting-state functional connectivity by a third region. The modulatory effects may provide a better understanding of complex brain functions.  相似文献   

7.
In protein-coding DNA sequences, historical patterns of selection can be inferred from amino acid substitution patterns. High relative rates of nonsynonymous to synonymous changes (=d N /d S ) are a clear indicator of positive, or directional, selection, and several recently developed methods attempt to distinguish these sites from those under neutral or purifying selection. One method uses an empirical Bayesian framework that accounts for varying selective pressures across sites while conditioning on the parameters of the model of DNA evolution and on the phylogenetic history. We describe a method that identifies sites under diversifying selection using a fully Bayesian framework. Similar to earlier work, the method presented here allows the rate of nonsynonymous to synonymous changes to vary among sites. The significant difference in using a fully Bayesian approach lies in our ability to account for uncertainty in parameters including the tree topology, branch lengths, and the codon model of DNA substitution. We demonstrate the utility of the fully Bayesian approach by applying our method to a data set of the vertebrate -globin gene. Compared to a previous analysis of this data set, the hierarchical model found most of the same sites to be in the positive selection class, but with a few striking exceptions.  相似文献   

8.
BackgroundHIV-associated neurocognitive disorder (HAND) can occur in patients without prior AIDS defining illness and can be debilitating. This study aimed to evaluate the difference in the patterns of intrinsic brain activity between patients with or without HAND for deepening our understanding of HAND.MethodsWe evaluated 24 HIV-infected individuals, 12 with previously diagnosed HAND and 12 previously diagnosed without HAND, and 11 seronegative individuals. These individuals then underwent repeat NP testing and a functional brain MRI scan. For functional MRI analysis, seed-based analysis with bilateral precuneus cortex seed was applied.ResultsAmong the 12 individuals with previously diagnosed HAND, 3 showed improvement of their neurocognitive function and 1 was excluded for worsening liver disease. Among the 12 patients who previously had normal neurocognitive function, 2 showed neurocognitive impairment. Overall, the HAND group, who had impaired cognitive function at the time of MRI scan, showed significant decrease of resting status functional connectivity between bilateral precuneus and prefrontal cortex (PFC) compared with nonHAND group, those who had normal neurocognitive function (Corrected P<0.05). The functional connectivity with the right inferior frontal operculum and right superior frontal gyrus was positively correlated with memory and learning ability.ConclusionsThis cross-sectional study found a significant difference in fMRI patterns between patients with and without HAND. Decreased functional connectivity between precuneus and PFC could be possible functional substrate for cognitive dysfunction in HIV patients, which should be characterized in a longitudinal study.  相似文献   

9.
Mol. Biol. Evol. 24:412-426. 2007 In Bayesian estimation of concordance among gene trees (Vol.24(2), 412–426)  相似文献   

10.
Obesity is a medical condition affecting billions of people. Various neuroimaging methods including magnetic resonance imaging (MRI) have been used to obtain information about obesity. We adopted a multi-modal approach combining diffusion tensor imaging (DTI) and resting state functional MRI (rs-fMRI) to incorporate complementary information and thus better investigate the brains of non-healthy weight subjects. The objective of this study was to explore multi-modal neuroimaging and use it to predict a practical clinical score, body mass index (BMI). Connectivity analysis was applied to DTI and rs-fMRI. Significant regions and associated imaging features were identified based on group-wise differences between healthy weight and non-healthy weight subjects. Six DTI-driven connections and 10 rs-fMRI-driven connectivities were identified. DTI-driven connections better reflected group-wise differences than did rs-fMRI-driven connectivity. We predicted BMI values using multi-modal imaging features in a partial least-square regression framework (percent error 15.0%). Our study identified brain regions and imaging features that can adequately explain BMI. We identified potentially good imaging biomarker candidates for obesity-related diseases.  相似文献   

11.
Oscillatory neuronal synchronization between cortical areas has been suggested to constitute a flexible mechanism to coordinate information flow in the human cerebral cortex. However, it remains unclear whether synchronized neuronal activity merely represents an epiphenomenon or whether it is causally involved in the selective gating of information. Here, we combined bilateral high-density transcranial alternating current stimulation (HD-tACS) at 40 Hz with simultaneous electroencephalographic (EEG) recordings to study immediate electrophysiological effects during the selective entrainment of oscillatory gamma-band signatures. We found that interhemispheric functional connectivity was modulated in a predictable, phase-specific way: In-phase stimulation enhanced synchronization, anti-phase stimulation impaired functional coupling. Perceptual correlates of these connectivity changes were found in an ambiguous motion task, which strongly support the functional relevance of long-range neuronal coupling. Additionally, our results revealed a decrease in oscillatory alpha power in response to the entrainment of gamma band signatures. This finding provides causal evidence for the antagonistic role of alpha and gamma oscillations in the parieto-occipital cortex and confirms that the observed gamma band modulations were physiological in nature. Our results demonstrate that synchronized cortical network activity across several spatiotemporal scales is essential for conscious perception and cognition.  相似文献   

12.

Background

Passive hyperthermia is a potential risk factor to human cognitive performance and work behavior in many extreme work environments. Previous studies have demonstrated significant effects of passive hyperthermia on human cognitive performance and work behavior. However, there is a lack of a clear understanding of the exact affected brain regions and inter-regional connectivities.

Methodology and Principal Findings

We simulated 1 hour environmental heat exposure to thirty-six participants under two environmental temperature conditions (25°C and 50°C), and collected resting-state functional brain activity. The functional connectivities with a preselected region of interest (ROI) in the posterior cingulate cortex and precuneus (PCC/PCu), furthermore, inter-regional connectivities throughout the entire brain using a prior Anatomical Automatic Labeling (AAL) atlas were calculated. We identified decreased correlations of a set of regions with the PCC/PCu, including the medial orbitofrontal cortex (mOFC) and bilateral medial temporal cortex, as well as increased correlations with the partial orbitofrontal cortex particularly in the bilateral orbital superior frontal gyrus. Compared with the normal control (NC) group, the hyperthermia (HT) group showed 65 disturbed functional connectivities with 50 of them being decreased and 15 of them being increased. While the decreased correlations mainly involved with the mOFC, temporal lobe and occipital lobe, increased correlations were mainly located within the limbic system. In consideration of physiological system changes, we explored the correlations of the number of significantly altered inter-regional connectivities with differential rectal temperatures and weight loss, but failed to obtain significant correlations. More importantly, during the attention network test (ANT) we found that the number of significantly altered functional connectivities was positively correlated with an increase in executive control reaction time.

Conclusions/Significance

We first identified the hyperthermia-induced altered functional connectivity patterns. The changes in the functional connectivity network might be a possible explanation for the cognitive performance and work behavior alteration.  相似文献   

13.
In Diffusion Weighted MR Imaging (DWI), the signal is affected by the biophysical properties of neuronal cells and their relative placement, as well as extra-cellular tissue compartments. Typically, microstructural indices, such as fractional anisotropy (FA) and mean diffusivity (MD), are based on a tensor model that cannot disentangle the influence of these parameters. Recently, Neurite Orientation Dispersion and Density Imaging (NODDI) has exploited multi-shell acquisition protocols to model the diffusion signal as the contribution of three tissue compartments. NODDI microstructural indices, such as intra-cellular volume fraction (ICVF) and orientation dispersion index (ODI) are directly related to neuronal density and orientation dispersion, respectively. One way of examining the neurophysiological role of these microstructural indices across neuronal fibres is to look into how they relate to brain function. Here we exploit a statistical framework based on sparse Canonical Correlation Analysis (sCCA) and randomised Lasso to identify structural connections that are highly correlated with resting-state functional connectivity measured with simultaneous EEG-fMRI. Our results reveal distinct structural fingerprints for each microstructural index that also reflect their inter-relationships.  相似文献   

14.
The aim of this study was to detect the abnormality of the brain functional connectivity of the hypothalamus during acute spontaneous cluster headache (CH) attacks (‘in attack’) and headache-free intervals (‘out of attack’) using resting-state functional magnetic resonance imaging (RS-fMRI) technique. The RS-fMRI data from twelve male CH patients during ‘in attack’ and ‘out of attack’ periods and twelve age- and sex-matched normal controls were analyzed by the region-of-interest -based functional connectivity method using SPM5 software. Abnormal brain functional connectivity of the hypothalamus is present in CH, which is located mainly in the pain system during the spontaneous CH attacks. It extends beyond the pain system during CH attack intervals.  相似文献   

15.
16.
Consider the two linear regression models of Yij on Xij, namely Yij = βio + βil Xij + εij,j = 1,2,…,ni, i = 1,2, where εij are assumed to be normally distributed with zero mean and common unknown variance σ2. The estimated value of a mean of Y1 for a given value of X1 is made to depend on a preliminary test of significance of the hypothesis β11 = β21. The bias and the mean square error of the estimator for the conditional mean of Y1 are given. The relative efficiency of the estimator to the usual estimator is computed and is used to determine a proper choice of the significance level of the preliminary test.  相似文献   

17.
The abundance of different SSU rRNA (“16S”) gene sequences in environmental samples is widely used in studies of microbial ecology as a measure of microbial community structure and diversity. However, the genomic copy number of the 16S gene varies greatly – from one in many species to up to 15 in some bacteria and to hundreds in some microbial eukaryotes. As a result of this variation the relative abundance of 16S genes in environmental samples can be attributed both to variation in the relative abundance of different organisms, and to variation in genomic 16S copy number among those organisms. Despite this fact, many studies assume that the abundance of 16S gene sequences is a surrogate measure of the relative abundance of the organisms containing those sequences. Here we present a method that uses data on sequences and genomic copy number of 16S genes along with phylogenetic placement and ancestral state estimation to estimate organismal abundances from environmental DNA sequence data. We use theory and simulations to demonstrate that 16S genomic copy number can be accurately estimated from the short reads typically obtained from high-throughput environmental sequencing of the 16S gene, and that organismal abundances in microbial communities are more strongly correlated with estimated abundances obtained from our method than with gene abundances. We re-analyze several published empirical data sets and demonstrate that the use of gene abundance versus estimated organismal abundance can lead to different inferences about community diversity and structure and the identity of the dominant taxa in microbial communities. Our approach will allow microbial ecologists to make more accurate inferences about microbial diversity and abundance based on 16S sequence data.  相似文献   

18.
This paper gives an approximate Bayes procedure for the estimation of the reliability function of a two-parameter Cauchy distribution using Jeffreys' non-informative prior with a squared-error loss function, and with a log-odds ratio squared-error loss function. Based on a Monte Carlo simulation study, two such Bayes estimators of the reliability are compared with the maximum likelihood estimator.  相似文献   

19.
20.
Tinnitus is the perception of an internally generated sound that is postulated to emerge as a result of structural and functional changes in the brain. However, the precise pathophysiology of tinnitus remains unknown. Llinas’ thalamocortical dysrhythmia model suggests that neural deafferentation due to hearing loss causes a dysregulation of coherent activity between thalamus and auditory cortex. This leads to a pathological coupling of theta and gamma oscillatory activity in the resting state, localised to the auditory cortex where normally alpha oscillations should occur. Numerous studies also suggest that tinnitus perception relies on the interplay between auditory and non-auditory brain areas. According to the Global Brain Model, a network of global fronto—parietal—cingulate areas is important in the generation and maintenance of the conscious perception of tinnitus. Thus, the distress experienced by many individuals with tinnitus is related to the top—down influence of this global network on auditory areas. In this magnetoencephalographic study, we compare resting-state oscillatory activity of tinnitus participants and normal-hearing controls to examine effects on spectral power as well as functional and effective connectivity. The analysis is based on beamformer source projection and an atlas-based region-of-interest approach. We find increased functional connectivity within the auditory cortices in the alpha band. A significant increase is also found for the effective connectivity from a global brain network to the auditory cortices in the alpha and beta bands. We do not find evidence of effects on spectral power. Overall, our results provide only limited support for the thalamocortical dysrhythmia and Global Brain models of tinnitus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号