首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent advances in magnetic resonance imaging (MRI) are allowing neuroscientists to gain critical insights into the neural networks mediating a variety of cognitive processes. This work investigates structural and functional connectivity in the human brain under different experimental conditions through multimodal MRI acquisitions. To define the nodes of a full-brain network, a set of regions was identified from resting-state functional MRI (fMRI) data using spatial independent component analysis (sICA) and a hierarchical clustering technique. Diffusion-weighted imaging (DWI) data were acquired from the same subjects and a probabilistic fiber tracking method was used to estimate the structure of this network. Using features originating from graph theory, such as small-world properties and network efficiency, we characterized the structural and functional connectivities of the full-brain network and we compared them quantitatively. We showed that structural and functional networks shared some properties in terms of topology as measured by the distribution of the node degrees, hence supporting the existence of an underlying anatomical substrate for functional networks.  相似文献   

2.
We explored properties of whole brain networks based on multivariate spectral analysis of human functional magnetic resonance imaging (fMRI) time-series measured in 90 cortical and subcortical subregions in each of five healthy volunteers studied in the (no-task) resting state. We note that undirected graphs representing conditional independence between multivariate time-series can be more readily approached in the frequency domain than the time domain. Estimators of partial coherency and normalized partial mutual information phi, an integrated measure of partial coherence over an arbitrary frequency band, are applied. Using these tools, we replicate the prior observations that bilaterally homologous brain regions tend to be strongly connected and functional connectivity is generally greater at low frequencies [0.0004, 0.1518 Hz]. We also show that long-distance intrahemispheric connections between regions of prefrontal and parietal cortex were more salient at low frequencies than at frequencies greater than 0.3 Hz, whereas many local or short-distance connections, such as those comprising segregated dorsal and ventral paths in posterior cortex, were also represented in the graph of high-frequency connectivity. We conclude that the partial coherency spectrum between a pair of human brain regional fMRI time-series depends on the anatomical distance between regions: long-distance (greater than 7 cm) edges represent conditional dependence between bilaterally symmetric neocortical regions, and between regions of prefrontal and parietal association cortex in the same hemisphere, are predominantly subtended by low-frequency components.  相似文献   

3.
Pairwise correlations are currently a popular way to estimate a large-scale network (> 1000 nodes) from functional magnetic resonance imaging data. However, this approach generally results in a poor representation of the true underlying network. The reason is that pairwise correlations cannot distinguish between direct and indirect connectivity. As a result, pairwise correlation networks can lead to fallacious conclusions; for example, one may conclude that a network is a small-world when it is not. In a simulation study and an application to resting-state fMRI data, we compare the performance of pairwise correlations in large-scale networks (2000 nodes) against three other methods that are designed to filter out indirect connections. Recovery methods are evaluated in four simulated network topologies (small world or not, scale-free or not) in scenarios where the number of observations is very small compared to the number of nodes. Simulations clearly show that pairwise correlation networks are fragmented into separate unconnected components with excessive connectedness within components. This often leads to erroneous estimates of network metrics, like small-world structures or low betweenness centrality, and produces too many low-degree nodes. We conclude that using partial correlations, informed by a sparseness penalty, results in more accurate networks and corresponding metrics than pairwise correlation networks. However, even with these methods, the presence of hubs in the generating network can be problematic if the number of observations is too small. Additionally, we show for resting-state fMRI that partial correlations are more robust than correlations to different parcellation sets and to different lengths of time-series.  相似文献   

4.
Ozaki TJ 《PloS one》2011,6(5):e20079
Previous effective connectivity analyses of functional magnetic resonance imaging (fMRI) have revealed dynamic causal streams along the dorsal attention network (DAN) during voluntary attentional control in the human brain. During resting state, however, fMRI has shown that the DAN is also intrinsically configured by functional connectivity, even in the absence of explicit task demands, and that may conflict with effective connectivity studies. To resolve this contradiction, we performed an effective connectivity analysis based on partial Granger causality (pGC) on event-related fMRI data during Posner's cueing paradigm while optimizing experimental and imaging parameters for pGC analysis. Analysis by pGC can factor out exogenous or latent influences due to unmeasured variables. Typical regions along the DAN with greater activation during orienting than withholding of attention were selected as regions of interest (ROIs). pGC analysis on fMRI data from the ROIs showed that frontal-to-parietal top-down causal streams along the DAN appeared during (voluntary) orienting, but not during other, less-attentive and/or resting-like conditions. These results demonstrate that these causal streams along the DAN exclusively mediate voluntary covert orienting. These findings suggest that neural representations of attention in frontal regions are at the top of the hierarchy of the DAN for embodying voluntary attentional control.  相似文献   

5.
Viewing cognitive functions as mediated by networks has begun to play a central role in interpreting neuroscientific data, and studies evaluating interregional functional and effective connectivity have become staples of the neuroimaging literature. The neurobiological substrates of functional and effective connectivity are, however, uncertain. We have constructed neurobiologically realistic models for visual and auditory object processing with multiple interconnected brain regions that perform delayed match-to-sample (DMS) tasks. We used these models to investigate how neurobiological parameters affect the interregional functional connectivity between functional magnetic resonance imaging (fMRI) time-series. Variability is included in the models as subject-to-subject differences in the strengths of anatomical connections, scan-to-scan changes in the level of attention, and trial-to-trial interactions with non-specific neurons processing noise stimuli. We find that time-series correlations between integrated synaptic activities between the anterior temporal and the prefrontal cortex were larger during the DMS task than during a control task. These results were less clear when the integrated synaptic activity was haemodynamically convolved to generate simulated fMRI activity. As the strength of the model anatomical connectivity between temporal and frontal cortex was weakened, so too was the strength of the corresponding functional connectivity. These results provide a partial validation for using fMRI functional connectivity to assess brain interregional relations.  相似文献   

6.
The human brain undergoes dramatic maturational changes during late stages of fetal and early postnatal life. The importance of this period to the establishment of healthy neural connectivity is apparent in the high incidence of neural injury in preterm infants, in whom untimely exposure to ex-uterine factors interrupts neural connectivity. Though the relevance of this period to human neuroscience is apparent, little is known about functional neural networks in human fetal life. Here, we apply graph theoretical analysis to examine human fetal brain connectivity. Utilizing resting state functional magnetic resonance imaging (fMRI) data from 33 healthy human fetuses, 19 to 39 weeks gestational age (GA), our analyses reveal that the human fetal brain has modular organization and modules overlap functional systems observed postnatally. Age-related differences between younger (GA <31 weeks) and older (GA≥31 weeks) fetuses demonstrate that brain modularity decreases, and connectivity of the posterior cingulate to other brain networks becomes more negative, with advancing GA. By mimicking functional principles observed postnatally, these results support early emerging capacity for information processing in the human fetal brain. Current technical limitations, as well as the potential for fetal fMRI to one day produce major discoveries about fetal origins or antecedents of neural injury or disease are discussed.  相似文献   

7.
The identification of effective connectivity from time-series data such as electroencephalogram (EEG) or time-resolved function magnetic resonance imaging (fMRI) recordings is an important problem in brain imaging. One commonly used approach to inference effective connectivity is based on vector autoregressive models and the concept of Granger causality. However, this probabilistic concept of causality can lead to spurious causalities in the presence of latent variables. Recently, graphical models have been used to discuss problems of causal inference for multivariate data. In this paper, we extend these concepts to the case of time-series and present a graphical approach for discussing Granger-causal relationships among multiple time-series. In particular, we propose a new graphical representation that allows the characterization of spurious causality and, thus, can be used to investigate spurious causality. The method is demonstrated with concurrent EEG and fMRI recordings which are used to investigate the interrelations between the alpha rhythm in the EEG and blood oxygenation level dependent (BOLD) responses in the fMRI. The results confirm previous findings on the location of the source of the EEG alpha rhythm.  相似文献   

8.
Inferring resting-state connectivity patterns from functional magnetic resonance imaging (fMRI) data is a challenging task for any analytical technique. In this paper, we review a probabilistic independent component analysis (PICA) approach, optimized for the analysis of fMRI data, and discuss the role which this exploratory technique can take in scientific investigations into the structure of these effects. We apply PICA to fMRI data acquired at rest, in order to characterize the spatio-temporal structure of such data, and demonstrate that this is an effective and robust tool for the identification of low-frequency resting-state patterns from data acquired at various different spatial and temporal resolutions. We show that these networks exhibit high spatial consistency across subjects and closely resemble discrete cortical functional networks such as visual cortical areas or sensory-motor cortex.  相似文献   

9.
In this paper, we propose the use of bilinear dynamical systems (BDS)s for model-based deconvolution of fMRI time-series. The importance of this work lies in being able to deconvolve haemodynamic time-series, in an informed way, to disclose the underlying neuronal activity. Being able to estimate neuronal responses in a particular brain region is fundamental for many models of functional integration and connectivity in the brain. BDSs comprise a stochastic bilinear neurodynamical model specified in discrete time, and a set of linear convolution kernels for the haemodynamics. We derive an expectation-maximization (EM) algorithm for parameter estimation, in which fMRI time-series are deconvolved in an E-step and model parameters are updated in an M-Step. We report preliminary results that focus on the assumed stochastic nature of the neurodynamic model and compare the method to Wiener deconvolution.  相似文献   

10.
Functional Magnetic Resonance (fMRI) data can be used to depict functional connectivity of the brain. Standard techniques have been developed to construct brain networks from this data; typically nodes are considered as voxels or sets of voxels with weighted edges between them representing measures of correlation. Identifying cognitive states based on fMRI data is connected with recording voxel activity over a certain time interval. Using this information, network and machine learning techniques can be applied to discriminate the cognitive states of the subjects by exploring different features of data. In this work we wish to describe and understand the organization of brain connectivity networks under cognitive tasks. In particular, we use a regularity partitioning algorithm that finds clusters of vertices such that they all behave with each other almost like random bipartite graphs. Based on the random approximation of the graph, we calculate a lower bound on the number of triangles as well as the expectation of the distribution of the edges in each subject and state. We investigate the results by comparing them to the state of the art algorithms for exploring connectivity and we argue that during epochs that the subject is exposed to stimulus, the inspected part of the brain is organized in an efficient way that enables enhanced functionality.  相似文献   

11.
Resting state functional magnetic resonance imaging (fMRI) has been commonly used to measure functional connectivity between cortical regions, while diffusion tensor imaging (DTI) can be used to characterize structural connectivity of white matter tracts. In principle combining resting state fMRI and DTI data could allow characterization of structure-function relations of distributed neural networks. However, due to differences in the biophysical origins of their signals and in the tissues to which they apply, there has been no direct integration of these techniques to date. We demonstrate that MRI signal variations and power spectra in a resting state are largely comparable between gray matter and white matter, that there are temporal correlations of fMRI signals that persist over long distances within distinct white matter structures, and that neighboring intervoxel correlations of low frequency resting state signals showed distinct anisotropy in many regions. These observations suggest that MRI signal variations from within white matter in a resting state may convey similar information as their corresponding fluctuations of MRI signals in gray matter. We thus derive a local spatio-temporal correlation tensor which captures directional variations of resting-state correlations and which reveals distinct structures in both white and gray matter. This novel concept is illustrated with in vivo experiments in a resting state, which demonstrate the potential of the technique for mapping the functional structure of neural networks and for direct integration of structure-function relations in the human brain.  相似文献   

12.
Functional neuroimaging, including positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), plays an important role in identifying specific brain regions associated with experimental stimuli or psychiatric disorders such as schizophrenia. PET and fMRI produce massive data sets that contain both temporal correlations from repeated scans and complex spatial correlations. Several methods exist for handling temporal correlations, some of which rely on transforming the response data to induce either a known or an independence covariance structure. Despite the presence of spatial correlations between the volume elements (voxels) comprising a brain scan, conventional methods perform voxel-by-voxel analyses of measured brain activity. We propose a two-stage spatio-temporal model for the estimation and testing of localized activity. Our second-stage model specifies a spatial auto-regression, capturing correlations within neural processing clusters defined by a data-driven cluster analysis. We use maximum likelihood methods to estimate parameters from our spatial autoregressive model. Our model protects against type-I errors, enables the detection of both localized and regional activations (including volume of interest effects), provides information on functional connectivity in the brain, and establishes a framework to produce spatially smoothed maps of distributed brain activity for each individual. We illustrate the application of our model using PET data from a study of working memory in individuals with schizophrenia.  相似文献   

13.
Graphical models play an important role in neuroscience studies, particularly in brain connectivity analysis. Typically, observations/samples are from several heterogenous groups and the group membership of each observation/sample is unavailable, which poses a great challenge for graph structure learning. In this paper, we propose a method which can achieve Simultaneous Clustering and Estimation of Heterogeneous Graphs (briefly denoted as SCEHG) for matrix-variate functional magnetic resonance imaging (fMRI) data. Unlike the conventional clustering methods which rely on the mean differences of various groups, the proposed SCEHG method fully exploits the group differences of conditional dependence relationships among brain regions for learning cluster structure. In essence, by constructing individual-level between-region network measures, we formulate clustering as penalized regression with grouping and sparsity pursuit, which transforms the unsupervised learning into supervised learning. A modified difference of convex programming with the alternating direction method of multipliers (DC-ADMM) algorithm is proposed to solve the corresponding optimization problem. We also propose a generalized criterion to specify the number of clusters. Extensive simulation studies illustrate the superiority of the SCEHG method over some state-of-the-art methods in terms of both clustering and graph recovery accuracy. We also apply the SCEHG procedure to analyze fMRI data associated with attention-deficit hyperactivity disorder (ADHD), which illustrates its empirical usefulness.  相似文献   

14.

Background

Local network connectivity disruptions in Alzheimer''s disease patients have been found using graph analysis in BOLD fMRI. Other studies using MEG and cortical thickness measures, however, show more global long distance connectivity changes, both in functional and structural imaging data. The form and role of functional connectivity changes thus remains ambiguous. The current study shows more conclusive data on connectivity changes in early AD using graph analysis on resting-state condition fMRI data.

Methodology/Principal Findings

18 mild AD patients and 21 healthy age-matched control subjects without memory complaints were investigated in resting-state condition with MRI at 1.5 Tesla. Functional coupling between brain regions was calculated on the basis of pair-wise synchronizations between regional time-series. Local (cluster coefficient) and global (path length) network measures were quantitatively defined. Compared to controls, the characteristic path length of AD functional networks is closer to the theoretical values of random networks, while no significant differences were found in cluster coefficient. The whole-brain average synchronization does not differ between Alzheimer and healthy control groups. Post-hoc analysis of the regional synchronization reveals increased AD synchronization involving the frontal cortices and generalized decreases located at the parietal and occipital regions. This effectively translates in a global reduction of functional long-distance links between frontal and caudal brain regions.

Conclusions/Significance

We present evidence of AD-induced changes in global brain functional connectivity specifically affecting long-distance connectivity. This finding is highly relevant for it supports the anterior-posterior disconnection theory and its role in AD. Our results can be interpreted as reflecting the randomization of the brain functional networks in AD, further suggesting a loss of global information integration in disease.  相似文献   

15.
Luo C  Qiu C  Guo Z  Fang J  Li Q  Lei X  Xia Y  Lai Y  Gong Q  Zhou D  Yao D 《PloS one》2011,7(1):e28196
Examining the spontaneous activity to understand the neural mechanism of brain disorder is a focus in recent resting-state fMRI. In the current study, to investigate the alteration of brain functional connectivity in partial epilepsy in a systematical way, two levels of analyses (functional connectivity analysis within resting state networks (RSNs) and functional network connectivity (FNC) analysis) were carried out on resting-state fMRI data acquired from the 30 participants including 14 healthy controls(HC) and 16 partial epilepsy patients. According to the etiology, all patients are subdivided into temporal lobe epilepsy group (TLE, included 7 patients) and mixed partial epilepsy group (MPE, 9 patients). Using group independent component analysis, eight RSNs were identified, and selected to evaluate functional connectivity and FNC between groups. Compared with the controls, decreased functional connectivity within all RSNs was found in both TLE and MPE. However, dissociating patterns were observed within the 8 RSNs between two patient groups, i.e, compared with TLE, we found decreased functional connectivity in 5 RSNs increased functional connectivity in 1 RSN, and no difference in the other 2 RSNs in MPE. Furthermore, the hierarchical disconnections of FNC was found in two patient groups, in which the intra-system connections were preserved for all three subsystems while the lost connections were confined to intersystem connections in patients with partial epilepsy. These findings may suggest that decreased resting state functional connectivity and disconnection of FNC are two remarkable characteristics of partial epilepsy. The selective impairment of FNC implicated that it is unsuitable to understand the partial epilepsy only from global or local perspective. We presumed that studying epilepsy in the multi-perspective based on RSNs may be a valuable means to assess the functional changes corresponding to specific RSN and may contribute to the understanding of the neuro-pathophysiological mechanism of epilepsy.  相似文献   

16.
Haoyan Hu  Yumou Qiu 《Biometrics》2023,79(2):1173-1186
Partial correlation is a common tool in studying conditional dependence for Gaussian distributed data. However, partial correlation being zero may not be equivalent to conditional independence under non-Gaussian distributions. In this paper, we propose a statistical inference procedure for partial correlations under the high-dimensional nonparanormal (NPN) model where the observed data are normally distributed after certain monotone transformations. The NPN partial correlation is the partial correlation of the normal transformed data under the NPN model, which is a more general measure of conditional dependence. We estimate the NPN partial correlations by regularized nodewise regression based on the empirical ranks of the original data. A multiple testing procedure is proposed to identify the nonzero NPN partial correlations. The proposed method can be carried out by a simple coordinate descent algorithm for lasso optimization. It is easy-to-implement and computationally more efficient compared to the existing methods for estimating NPN graphical models. Theoretical results are developed to show the asymptotic normality of the proposed estimator and to justify the proposed multiple testing procedure. Numerical simulations and a case study on brain imaging data demonstrate the utility of the proposed procedure and evaluate its performance compared to the existing methods. Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.  相似文献   

17.
We compare two common methods for detecting functional connectivity: thresholding correlations and singular value decomposition (SVD). We find that thresholding correlations are better at detecting focal regions of correlated voxels, whereas SVD is better at detecting extensive regions of correlated voxels. We apply these results to resting state networks in an fMRI dataset to look for connectivity in cortical thickness.  相似文献   

18.
In the context of Gaussian Graphical Models (GGMs) with high-dimensional small sample data, we present a simple procedure, called PACOSE – standing for PArtial COrrelation SElection – to estimate partial correlations under the constraint that some of them are strictly zero. This method can also be extended to covariance selection. If the goal is to estimate a GGM, our new procedure can be applied to re-estimate the partial correlations after a first graph has been estimated in the hope to improve the estimation of non-zero coefficients. This iterated version of PACOSE is called iPACOSE. In a simulation study, we compare PACOSE to existing methods and show that the re-estimated partial correlation coefficients may be closer to the real values in important cases. Plus, we show on simulated and real data that iPACOSE shows very interesting properties with regards to sensitivity, positive predictive value and stability.  相似文献   

19.
Understanding network features of brain pathology is essential to reveal underpinnings of neurodegenerative diseases. In this paper, we introduce a novel graph regression model (GRM) for learning structural brain connectivity of Alzheimer''s disease (AD) measured by amyloid-β deposits. The proposed GRM regards 11C-labeled Pittsburgh Compound-B (PiB) positron emission tomography (PET) imaging data as smooth signals defined on an unknown graph. This graph is then estimated through an optimization framework, which fits the graph to the data with an adjustable level of uniformity of the connection weights. Under the assumed data model, results based on simulated data illustrate that our approach can accurately reconstruct the underlying network, often with better reconstruction than those obtained by both sample correlation and ℓ1-regularized partial correlation estimation. Evaluations performed upon PiB-PET imaging data of 30 AD and 40 elderly normal control (NC) subjects demonstrate that the connectivity patterns revealed by the GRM are easy to interpret and consistent with known pathology. Moreover, the hubs of the reconstructed networks match the cortical hubs given by functional MRI. The discriminative network features including both global connectivity measurements and degree statistics of specific nodes discovered from the AD and NC amyloid-beta networks provide new potential biomarkers for preclinical and clinical AD.  相似文献   

20.
Consistent resting brain activity patterns have been repeatedly demonstrated using measures derived from resting BOLD fMRI data. While those metrics are presumed to reflect underlying spontaneous brain activity (SBA), it is challenging to prove that association because resting BOLD fMRI metrics are purely model-free and scale-free variables. Cerebral blood flow (CBF) is typically closely coupled to brain metabolism and is used as a surrogate marker for quantifying regional brain function, including resting function. Assessing the correlations between resting BOLD fMRI measures and CBF correlation should provide a means of linking of those measures to the underlying SBA, and a means to quantify those scale-free measures. The purpose of this paper was to examine the CBF correlations of 3 widely used neuroimaging-based SBA measures, including seed-region based functional connectivity (FC), regional homogeneity (ReHo), and amplitude of low frequency fluctuation (ALFF). Test-retest data were acquired to check the stability of potential correlations across time. Reproducible posterior cingulate cortex (PCC) FC vs regional CBF correlations were found in much of the default mode network and visual cortex. Dorsal anterior cingulate cortex (ACC) FC vs CBF correlations were consistently found in bilateral prefrontal cortex. Both ReHo and ALFF were found to be reliably correlated with CBF in most of brain cortex. None of the assessed SBA measures was correlated with whole brain mean CBF. These findings suggest that resting BOLD fMRI-derived measures are coupled with regional CBF and are therefore linked to regional SBA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号