首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  1. Download : Download high-res image (329KB)
  2. Download : Download full-size image
  相似文献   

2.
Background and aimsEarlier studies have reported inconsistent association between selenium (Se) and homocysteine (Hcy) levels, while no evidence could be found from Chinese population. To fill this gap, we investigated the association between blood Se and hyperhomocysteinemia (HHcy) of rural elderly population in China.MethodsA cross-sectional study on 1823 participants aged 65 and older from four Chinese rural counties was carried out in this study. Whole blood Se and serum Hcy concentrations were measured in fasting blood samples. Analysis of covariance and restricted cubic spline models were used to examine the association between Se and Hcy levels. Logistic regression models were used to evaluate the risk of prevalent HHcy among four Se quartile groups after adjusting for covariates.ResultsFor this sample, the mean blood Se concentration was 156.34 (74.65) μg/L and the mean serum Hcy concentration was 17.25 (8.42) μmol/L. A significant non-linear relationship was found between blood Se and serum Hcy, the association was inverse when blood Se was less than 97.404 μg/L and greater than 156.919 μg/L. Participants in the top three blood Se quartile groups had significantly lower risk of prevalent HHcy compared with the lowest quartile group. When defined as Hcy> 10 μmol/L, the odds ratios and 95% confidence interval of HHcy were 0.600 (0.390, 0.924), 0.616 (0.398, 0.951) and 0.479 (0.314, 0.732) for Q2, Q3, and Q4 Se quartile groups compared with the Q1 group, respectively. When defined as Hcy≥ 15 μmol/L, the odds ratios and 95% confidence interval of HHcy were 0.833 (0.633, 1.098) and 0.827 (0.626, 1.092), 0.647 (0.489, 0.857) for Q2, Q3, and Q4 Se quartile groups compared with Q1 group.ConclusionsOur findings suggest that higher blood Se level could be a protective factor for HHcy in the elderly.  相似文献   

3.
4.
Idiopathic pulmonary fibrosis (IPF) is a progressive disease with significant mortality. Prognostic biomarkers to identify rapid progressors are urgently needed to improve patient management. Since the lysophosphatidic acid (LPA) pathway has been implicated in lung fibrosis in preclinical models and identified as a potential therapeutic target, we aimed to investigate if bioactive lipid LPA species could be prognostic biomarkers that predict IPF disease progression. LPAs and lipidomics were measured in baseline placebo plasma of a randomized IPF-controlled trial. The association of lipids with disease progression indices were assessed using statistical models. Compared to healthy, IPF patients had significantly higher levels of five LPAs (LPA16:0, 16:1, 18:1, 18:2, 20:4) and reduced levels of two triglycerides species (TAG48:4-FA12:0, -FA18:2) (false discovery rate < 0.05, fold change > 2). Patients with higher levels of LPAs had greater declines in diffusion capacity of carbon monoxide over 52 weeks (P < 0.01); additionally, LPA20:4-high (≥median) patients had earlier time to exacerbation compared to LPA20:4-low (<median) patients (hazard ratio (95% CI)): 5.71 (1.17–27.72) (P = 0.031). Higher baseline LPAs were associated with greater increases in fibrosis in lower lungs as quantified by high-resolution computed tomography at week 72 (P < 0.05). Some of these LPAs were positively associated with biomarkers of profibrotic macrophages (CCL17, CCL18, OPN, and YKL40) and lung epithelial damage (SPD and sRAGE) (P < 0.05). In summary, our study established the association of LPAs with IPF disease progression, further supporting the role of the LPA pathway in IPF pathobiology.  相似文献   

5.
Oral and gut Bacteroidetes produce unique classes of serine-glycine lipodipeptides and glycine aminolipids that signal through host Toll-like receptor 2. These glycine lipids have also been detected in human arteries, but their effects on atherosclerosis are unknown. Here, we sought to investigate the bioactivity of bacterial glycine lipids in mouse models of atherosclerosis. Lipid 654 (L654), a serine-glycine lipodipeptide species, was first tested in a high-fat diet (HFD)-fed Ldlr?/? model of atherosclerosis. Intraperitoneal administration of L654 over 7 weeks to HFD-fed Ldlr?/? mice resulted in hypocholesterolemic effects and significantly attenuated the progression of atherosclerosis. We found that L654 also reduced liver inflammatory and extracellular matrix gene expression, which may be related to inhibition of macrophage activation as demonstrated in vivo by lower major histocompatibility complex class II gene expression and confirmed in cell experiments. In addition, L654 and other bacterial glycine lipids in feces, liver, and serum were markedly reduced alongside changes in Bacteroidetes relative abundance in HFD-fed mice. Finally, we tested the bioactivities of L654 and related lipid 567 in chow-fed Apoe?/? mice, which displayed much higher fecal glycine lipids relative to HFD-fed Ldlr?/? mice. Administration of L654 or lipid 567 for 7 weeks to these mice reduced the liver injury marker alanine aminotransferase, but other effects seen in Ldlr?/? were not observed. Therefore, we conclude that conditions in which gut microbiome-derived glycine lipids are lost, such as HFD, may exacerbate the development of atherosclerosis and liver injury, whereas correction of such depletion may protect from these disorders.  相似文献   

6.
Proteinaceous cysteine residues act as privileged sensors of oxidative stress. As reactive oxygen and nitrogen species have been implicated in numerous pathophysiological processes, deciphering which cysteines are sensitive to oxidative modification and the specific nature of these modifications is essential to understanding protein and cellular function in health and disease. While established mass spectrometry-based proteomic platforms have improved our understanding of the redox proteome, the widespread adoption of these methods is often hindered by complex sample preparation workflows, prohibitive cost of isotopic labeling reagents, and requirements for custom data analysis workflows. Here, we present the SP3-Rox redox proteomics method that combines tailored low cost isotopically labeled capture reagents with SP3 sample cleanup to achieve high throughput and high coverage proteome-wide identification of redox-sensitive cysteines. By implementing a customized workflow in the free FragPipe computational pipeline, we achieve accurate MS1-based quantitation, including for peptides containing multiple cysteine residues. Application of the SP3-Rox method to cellular proteomes identified cysteines sensitive to the oxidative stressor GSNO and cysteine oxidation state changes that occur during T cell activation.  相似文献   

7.
Sphingolipids like sphingosine-1-phosphate (S1P) have been implicated in the pathophysiology of pre-eclampsia. We hypothesized that plasma S1P would be increased in women at high risk of developing pre-eclampsia who subsequently develop the disease. Low circulating placental growth factor (PlGF) is known to be associated with development of pre-eclampsia; so further, we hypothesized that increased S1P would be associated with concurrently low PlGF. This was a case-control study using stored maternal blood samples from 14 to 24 weeks of pregnancy, collected from 95 women at increased risk of pre-eclampsia. Pregnancy outcome was classified as uncomplicated, preterm pre-eclampsia (<37 weeks), or term pre-eclampsia. Plasma lipids were extracted and analyzed by ultraperformance liquid chromatography coupled to electrospray ionization MS/MS to determine concentrations of S1P and sphingosine. Median plasma S1P was 0.339 nmol/ml, and median sphingosine was 6.77 nmol/l. There were no differences in the plasma concentrations of S1P or sphingosine in women who subsequently developed pre-eclampsia, no effect of gestational age, fetal sex, ethnicity, or the presence of pre-existing hypertension. There was a correlation between S1P and sphingosine plasma concentration (P < 0.0001). There was no relationship between S1P or sphingosine with PlGF. Previous studies have suggested that plasma S1P may be a biomarker of pre-eclampsia. In our larger study, we failed to demonstrate there are women at high risk of developing the disease. We did not show a relationship with known biomarkers of the disease, suggesting that S1P is unlikely to be a useful predictor of the development of pre-eclampsia later in pregnancy.  相似文献   

8.
《Endocrine practice》2021,27(11):1149-1155
ObjectiveTo investigate the prevalence of nonalcoholic fatty liver disease (NAFLD) in adolescents and young adults with hypopituitarism and to examine the associations of growth hormone (GH) deficiency with the occurrence of NAFLD.MethodsA cross-sectional study for the determination of NAFLD prevalence included 76 patients with childhood-onset hypopituitarism and 74 controls matched by age and body mass index (BMI). We investigated the prevalence of NAFLD in adolescent and young adult patients with hypopituitarism as well as the age- and BMI-matched controls. Among patients with hypopituitarism, anthropometric, clinical, and biochemical assessments using transient elastography and magnetic resonance imaging were performed. Logistic regression was used to identify the factors associated with NAFLD.ResultsThe adolescents and young adults with hypopituitarism exhibited higher prevalence of NAFLD than the age- and BMI-matched controls. Among patients with hypopituitarism, obesity and obesity-related metabolic derangements were significantly associated with liver steatosis and fibrosis, whereas lower insulin-like growth factor (IGF)-I standard deviation score (SDS) and IGF-I/IGF-binding protein 3 molar ratios were associated with steatosis. In regression analyses adjusted for BMI SDS, steatosis was found to be associated with a lower IGF-I SDS and IGF-I/IGF-binding protein 3 molar ratios, whereas liver fibrosis was found to be associated with a lower IGF-I SDS.ConclusionOur results suggest that GH deficiency contributes to the occurrence of NAFLD, along with obesity and obesity-related metabolic changes. Because NAFLD occurs early in patients with hypopituitarism, the surveillance, weight control, and timely replacement of deficit hormones, including GH, are essential.  相似文献   

9.
BackgroundFurther in-vivo evidence is needed to support the usefulness of ablation index (AI) in guiding atrial fibrillation (AF) ablation. We aimed at evaluating the relationship between AI and other lesion indicators and the release of myocardial-specific biomarkers following radiofrequency AF ablation.MethodsForty-six patients underwent a first-time radiofrequency AF ablation and were prospectively enrolled in this study. Pulmonary vein isolation was performed by six experienced electrophysiologists with a point-by-point approach, guided by strict Visitag criteria and consistent AI target values. Myocardial-specific biomarkers troponin T and creatine kinase myocardial band were measured after 6 (TnT6 and CKMB6) and 20 h (TnT20 and CKMB20) following sheath removal. Ablation duration, impedance drop (ID), force-time integral (FTI) and AI were registered automatically and analyzed offline.ResultsTnT release was 985 ± 495 ng/L and 1038 ± 461 ng/L (p = ns) while CKMB release was 7.3 ± 2.7 μg/L and 6.5 ± 2.1 μg/L (p < 0.001) at 6 and 20 h respectively. Ablation duration, ID, FTI and AI were all significantly correlated with the release of myocardial-specific biomarkers both at 6 and 20 h. Ablation index showed the highest degree of correlation with TnT6, TnT20, CKMB6 and CKMB20 (Pearson's R 0.69, 0.69, 0.61, 0.64 respectively, p < 0.001). Multiple regression analysis demonstrated that AI had the strongest association with TnT6, TnT20, CKMB6 and CKMB20 (β 0.43, β 0.71, β 0.44 and β 0.43 respectively).ConclusionAblation index appears as the strongest lesion indicator as measured by the release of myocardial-specific biomarkers following radiofrequency catheter ablation for AF.  相似文献   

10.
Hepatocellular carcinoma (HCC) is the main threat for the patients infected with hepatitis B virus (HBV), but the oncogenic mechanism of HBV-related HCC is still controversial. Previously, we have found that several HBV surface gene (HBS) non-sense mutations are oncogenic. Among these mutations, sW182* was found to have the most potent oncogenicity. In this study, we found that Carbonic Anhydrase X (CA10) level was specifically increased in sW182* mutant-expressing cells. CA10 overexpression was also associated with HBS nonsense mutation in HBV-related HCC tumor tissues. Transformation and tumorigenesis assays revealed that CA10 had significant oncogenic activity. In addition, CA10 overexpression resulted in dysregulation of apoptosis-related proteins, including Mcl-1, Bcl-2, Bcl-xL and Bad. While searching for the regulatory mechanism of CA10, miR-27b was found to downregulate CA10 expression by regulating its mRNA degradation and its expression was decreased in sW182* mutant cells. Moreover, CA10 overexpression was associated with down-regulation of miR-27b in human HBV-related HCC tumor tissues with sW182* mutation. Therefore, induction of the expression of CA10 through repression of miR-27b by sW182* might be one mechanism involved in HBS mutation-related hepatocarcinogenesis.  相似文献   

11.
The antigenic epitope regions of pathogens (e.g., viruses) are recognized by antibodies (Abs) and subsequently cleared by the host immune system, thereby protecting us from disease. Some of these epitopes are conserved among different variants or subgroups of pathogens (e.g., Influenza (FLU) viruses, Coronaviruses), hence can be targeted for potential broad-neutralization. Here we report a web-based tool, Epitope Analyzer (EA), that rapidly identifies conformational epitope and paratope residues in an antigen–antibody complex structure. Furthermore, the tool provides the ways and means to analyze broadly neutralizing epitopes by comparing the equivalent epitope residues in similar antigen structures. The similarity in the epitope residues between (multiple) pairs of similar antigen molecules suggest the presence of conserved epitopes that can be targeted by broadly neutralizing antibodies. These details can be used as a guide in developing effective treatments, such as the design of novel vaccines and formulation of cocktail of broadly neutralizing antibodies, against multiple variants or subgroups of viruses. The web application can be freely accessed from the URL, http://viperdb.scripps.edu/ea.php.  相似文献   

12.
《Genomics》2022,114(3):110319
Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have been proposed as a promising strategy for myocardial infarction (MI). This study aims to explore the mechanism of human umbilical cord MSCs (hucMSCs)-derived EVs loaded with miR-223 on MI. Inflammation, cell biological functions, and fibrosis in vitro were measured. Furthermore, MI rat models were established to verify the role of EVs-miR-223 in vivo. The binding relationship between miR-223 and P53 was confirmed. ChIP assay was utilized to observe the combination of P53 and S100A9. The suppressed fibrosis of cardiomyocytes occurred with cells overexpressing miR-223. MiR-223 contributed to the angiogenesis of HUVECs. P53 was a target gene of miR-223. In vivo, miR-223 relieved myocardial fibrosis and inflammation infiltration, and promoted the angiogenesis in MI rats. HucMSC-derived EVs loaded with miR-223 mitigates MI and promotes myocardial repair through the P53/S100A9 axis, manifesting the underlying therapy values of hucMSC-derived EVs loaded with miR-223 in MI.  相似文献   

13.
Methyl ketones present a group of highly reduced platform chemicals industrially produced from petroleum-derived hydrocarbons. They find applications in the fragrance, flavor, pharmacological, and agrochemical industries, and are further discussed as biodiesel blends. In recent years, intense research has been carried out to achieve sustainable production of these molecules by re-arranging the fatty acid metabolism of various microbes. One challenge in the development of a highly productive microbe is the high demand for reducing power. Here, we engineered Pseudomonas taiwanensis VLB120 for methyl ketone production as this microbe has been shown to sustain exceptionally high NAD(P)H regeneration rates. The implementation of published strategies resulted in 2.1 g Laq−1 methyl ketones in fed-batch fermentation. We further increased the production by eliminating competing reactions suggested by metabolic analyses. These efforts resulted in the production of 9.8 g Laq−1 methyl ketones (corresponding to 69.3 g Lorg−1 in the in situ extraction phase) at 53% of the maximum theoretical yield. This represents a 4-fold improvement in product titer compared to the initial production strain and the highest titer of recombinantly produced methyl ketones reported to date. Accordingly, this study underlines the high potential of P. taiwanensis VLB120 to produce methyl ketones and emphasizes model-driven metabolic engineering to rationalize and accelerate strain optimization efforts.  相似文献   

14.
《Journal of Asia》2022,25(4):101990
Shoot flies (Atherigona spp.) are the members of muscidae family which have got economic importance as pest of several crops of Gramineae family mostly cereals and millets. One of the most effective management strategies for controlling shoot fly is the use of resistant wheat cultivars carrying specific resistant traits. Among thirty wheat genotypes screened at the University of Agricultural Sciences, Dharwad-Karnataka (India), two advanced germplasms UAS BW-12417 and UAS BW-11110 recorded least oviposition and dead heart due to shoot fly and found to be less preferred by Atherigona approximata Malloch. The morphological traits of different wheat genotypes revealed a significant negative correlation of shoot fly oviposition and dead heart with leaf length, leaf length to breadth ratio, seedling height, average seedling growth rate, seedling vigour, leaf glossiness and trichome density of wheat leaves, which indicated the enhanced shoot fly infestation as decrease in the values of above-mentioned morphological traits. Meanwhile, increase in leaf breadth and leaf area of wheat genotype aggrandised the oviposition and dead heart damage by shoot fly. Under the changing climate where, the minor insect pests attaining major pest status, the present investigation would pave way for breeders to tailor future breeding programmes to evolve shoot fly resistant hybrids with high yielding traits.  相似文献   

15.
Low levels of high density lipoprotein-cholesterol (HDL-C) are associated with an elevated risk of arteriosclerotic coronary heart disease. Heritability of HDL-C levels is high. In this research discovery study, we used whole-exome sequencing to identify damaging gene variants that may play significant roles in determining HDL-C levels. We studied 204 individuals with a mean HDL-C level of 27.8 ± 6.4 mg/dl (range: 4–36 mg/dl). Data were analyzed by statistical gene burden testing and by filtering against candidate gene lists. We found 120 occurrences of probably damaging variants (116 heterozygous; four homozygous) among 45 of 104 recognized HDL candidate genes. Those with the highest prevalence of damaging variants were ABCA1 (n = 20), STAB1 (n = 9), OSBPL1A (n = 8), CPS1 (n = 8), CD36 (n = 7), LRP1 (n = 6), ABCA8 (n = 6), GOT2 (n = 5), AMPD3 (n = 5), WWOX (n = 4), and IRS1 (n = 4). Binomial analysis for damaging missense or loss-of-function variants identified the ABCA1 and LDLR genes at genome-wide significance. In conclusion, whole-exome sequencing of individuals with low HDL-C showed the burden of damaging rare variants in the ABCA1 and LDLR genes is particularly high and revealed numerous occurrences in HDL candidate genes, including many genes identified in genome-wide association study reports. Many of these genes are involved in cancer biology, which accords with epidemiologic findings of the association of HDL deficiency with increased risk of cancer, thus presenting a new area of interest in HDL genomics.  相似文献   

16.
Oxylipins are important biological regulators that have received extensive research attention. Due to the extremely low concentrations, large concentration variations, and high structural similarity of many oxylipins, the quantitative analysis of oxylipins in biological samples is always a great challenge. Here, we developed a liquid chromatography-tandem mass spectrometry-based method with high sensitivity, wide linearity, and acceptable resolution for quantitative profiling of oxylipins in multiple biological samples. A total of 104 oxylipins, some with a high risk of detection crosstalk, were well separated on a 150 mm column over 20 min. The method showed high sensitivity with lower limits of quantitation for 87 oxylipins, reaching 0.05–0.5 pg. Unexpectedly, we found that the linear range for 16, 18, and 17 oxylipins reached 10,000, 20,000, and 40,000 folds, respectively. Due to the high sensitivity, while reducing sample consumption to below half the volume of previous methods, 74, 78, and 59 low-abundance oxylipins, among which some were difficult to detect like lipoxins and resolvins, were well quantified in the tested mouse plasma, mouse liver, and human plasma samples, respectively. Additionally, we determined that analytes with multifarious concentrations of over a 1,000-fold difference could be well quantified simultaneously due to the wide linearity. In conclusion, most likely due to the instrumental advancement, this method effectively improves the quantitative sensitivity and linear range over existing methods, which will facilitate and advance the study of the physiological and pathophysiological functions of oxylipins.  相似文献   

17.
Clostridioides difficile is the leading cause of postantibiotic diarrhea in adults. During infection, the bacterium must rapidly adapt to the host environment by using survival strategies. Protein phosphorylation is a reversible post-translational modification employed ubiquitously for signal transduction and cellular regulation. Hanks-type serine/threonine kinases (STKs) and serine/threonine phosphatases have emerged as important players in bacterial cell signaling and pathogenicity. C. difficile encodes two STKs (PrkC and CD2148) and one phosphatase. We optimized a titanium dioxide phosphopeptide enrichment approach to determine the phosphoproteome of C. difficile. We identified and quantified 2500 proteins representing 63% of the theoretical proteome. To identify STK and serine/threonine phosphatase targets, we then performed comparative large-scale phosphoproteomics of the WT strain and isogenic ΔprkC, CD2148, Δstp, and prkC CD2148 mutants. We detected 635 proteins containing phosphorylated peptides. We showed that PrkC is phosphorylated on multiple sites in vivo and autophosphorylates in vitro. We were unable to detect a phosphorylation for CD2148 in vivo, whereas this kinase was phosphorylated in vitro only in the presence of PrkC. Forty-one phosphoproteins were identified as phosphorylated under the control of CD2148, whereas 114 proteins were phosphorylated under the control of PrkC including 27 phosphoproteins more phosphorylated in the ?stp mutant. We also observed enrichment for phosphothreonine among the phosphopeptides more phosphorylated in the Δstp mutant. Both kinases targeted pathways required for metabolism, translation, and stress response, whereas cell division and peptidoglycan metabolism were more specifically controlled by PrkC-dependent phosphorylation in agreement with the phenotypes of the ΔprkC mutant. Using a combination of approaches, we confirmed that FtsK was phosphorylated in vivo under the control of PrkC and that Spo0A was a substrate of PrkC in vitro. This study provides a detailed mapping of kinase–substrate relationships in C. difficile, paving the way for the identification of new biomarkers and therapeutic targets.  相似文献   

18.
Epidermal omega-O-acylceramides (ω-O-acylCers) are essential components of a competent skin barrier. These unusual sphingolipids with ultralong N-acyl chains contain linoleic acid esterified to the terminal hydroxyl of the N-acyl, the formation of which requires the transacylase activity of patatin-like phospholipase domain containing 1 (PNPLA1). In ichthyosis with dysfunctional PNPLA1, ω-O-acylCer levels are significantly decreased, and ω-hydroxylated Cers (ω-OHCers) accumulate. Here, we explore the role of the linoleate moiety in ω-O-acylCers in the assembly of the skin lipid barrier. Ultrastructural studies of skin samples from neonatal Pnpla1+/+ and Pnpla1-/- mice showed that the linoleate moiety in ω-O-acylCers is essential for lamellar pairing in lamellar bodies, as well as for stratum corneum lipid assembly into the long periodicity lamellar phase. To further study the molecular details of ω-O-acylCer deficiency on skin barrier lipid assembly, we built in vitro lipid models composed of major stratum corneum lipid subclasses containing either ω-O-acylCer (healthy skin model), ω-OHCer (Pnpla1-/- model), or combination of the two. X-ray diffraction, infrared spectroscopy, and permeability studies indicated that ω-OHCers could not substitute for ω-O-acylCers, although in favorable conditions, they form a medium lamellar phase with a 10.8 nm-repeat distance and permeability barrier properties similar to long periodicity lamellar phase. In the absence of ω-O-acylCers, skin lipids were prone to separation into two phases with diminished barrier properties. The models combining ω-OHCers with ω-O-acylCers indicated that accumulation of ω-OHCers does not prevent ω-O-acylCer-driven lamellar stacking. These data suggest that ω-O-acylCer supplementation may be a viable therapeutic option in patients with PNPLA1 deficiency.  相似文献   

19.
Cisplatin is a commonly used chemotherapeutic for the treatment of many solid organ cancers; however, its effectiveness is limited by the development of acute kidney injury (AKI) in 30% of patients. AKI is driven by proximal tubule cell death, leading to rapid decline in renal function. It has previously been shown that sphingolipid metabolism plays a role in regulating many of the biological processes involved in cisplatin-induced AKI. For example, neutral ceramidase (nCDase) is an enzyme responsible for converting ceramide into sphingosine, which is then phosphorylated to become sphingosine-1-phosphate, and our lab previously demonstrated that nCDase knockout (nCDase?/?) in mouse embryonic fibroblasts led to resistance to nutrient and energy deprivation–induced cell death via upregulation of autophagic flux. In this study, we further characterized the role of nCDase in AKI by demonstrating that nCDase?/? mice are resistant to cisplatin-induced AKI. nCDase?/? mice display improved kidney function, reduced injury and structural damage, lower rates of apoptosis, and less ER stress compared to wild-type mice following cisplatin treatment. Although the mechanism of protection is still unknown, we propose that it could be mediated by increased autophagy, as chloroquine treatment resensitized nCDase?/? mice to AKI development. Taken together, we conclude that nCDase may represent a novel target to prevent cisplatin-induced nephrotoxicity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号