首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This study examined whether development of bovine in vitro produced (IVP) blastocysts in the sheep uterus resulted in morphologically and karyotypically normal elongation stage bovine blastocysts. Seven day IVP bovine blastocysts, resulting from either in vitro maturation and fertilization, nuclear transfer (NT), or parthenogenic activation, were surgically transferred at the blastocyst stage into sheep uteri. Sheep were sacrificed after 7-9 days, and blastocysts were flushed from their uteri. One of each kind of IVP bovine blastocyst was recovered from sheep uteri for analysis by transmission electron microscopy, and nine NT blastocysts were used to establish cell cultures that were analysed for chromosome complement. TEM analysis of in vivo-derived elongation stage bovine and ovine blastocysts was done for comparative purposes. Most ultrastructural features of the 13-19 day blastocysts were similar to earlier stage blastocysts except that distinct alternative mitochondrial morphologies were found between epiblast and trophectoderm cells. Monociliated cells, presumably nodal cells, were observed in the bovine epiblast and hypoblast, and retrovirus-like particles were elaborated by cells in these same areas. Development in the sheep uterus of IVP bovine blastocysts resulted in the presence of crystalloid bodies in the trophectoderm cells, and apoptotic and necrotic cells were observed in the epiblast tissue. Thus, in vivo incubation in the sheep uterus allowed nearly normal development to the elongated blastocyst stage and may be useful for assessment of NT bovine blastocyst developmental competence. Cell cultures derived from the NT blastocysts had normal chromosome complements suggesting that activation by ionomycin and 6-dimethyl-aminopurine did not cause detrimental changes in ploidy in those blastocysts that developed.  相似文献   

3.
4.
5.
Wang B  Li Y  Tan Y  Miao X  Liu XD  Shao C  Yang XH  Turdi S  Ma LJ  Ren J  Cai L 《PloS one》2012,7(3):e33853
BACKGROUND: Cadmium (Cd) is classified as a human carcinogen probably associated with epigenetic changes. DNA methylation is one of epigenetic mechanisms by which cells control gene expression. Therefore, the present study genome-widely screened the methylation-altered genes in the liver of rats previously exposed to low-dose Cd. METHODOLOGY PRINCIPAL FINDINGS: Rats were exposed to Cd at 20 nmol/kg every other day for 4 weeks and gene methylation was analyzed at the 48(th) week with methylated DNA immunoprecipitation-CpG island microarray. Among the 1629 altered genes, there were 675 genes whose promoter CpG islands (CGIs) were hypermethylated, 899 genes whose promoter CGIs were hypomethylated, and 55 genes whose promoter CGIs were mixed with hyper- and hypo-methylation. Caspase-8 gene promoter CGIs and TNF gene promoter CGIs were hypermethylated and hypomethylated, respectively, along with a low apoptosis rate in Cd-treated rat livers. To link the aberrant methylation of caspase-8 and TNF genes to the low apoptosis induced by low-dose Cd, mice were given chronic exposure to low-dose Cd with and without methylation inhibitor (5-aza-2'-deoxyctidene, 5-aza). At the 48(th) week after Cd exposure, livers from Cd-treated mice displayed the increased caspase-8 CGI methylation and decreased caspase-8 protein expression, along with significant increases in cell proliferation and overexpression of TGF-β1 and cytokeratin 8/18 (the latter is a new marker of mouse liver preneoplastic lesions), all which were prevented by 5-aza treatment. CONCLUSION/SIGNIFICANCE: These results suggest that Cd-induced global gene hypermethylation, most likely caspase-8 gene promoter hypermethylation that down-regulated its expression, leading to the decreased hepatic apoptosis and increased preneoplastic lesions.  相似文献   

6.
Early embryonic development in the pig requires DNA methylation remodeling of the maternal and paternal genomes. Aberrant remodeling, which can be exasperated by in vitro technologies, is detrimental to development and can result in physiological and anatomic abnormalities in the developing fetus and offspring. Here, we developed and validated a microarray based approach to characterize on a global scale the CpG methylation profiles of porcine gametes and blastocyst stage embryos. The relative methylation in the gamete and blastocyst samples showed that 18.5% (921/4,992) of the DNA clones were found to be significantly different (P < 0.01) in at least one of the samples. Furthermore, for the different blastocyst groups, the methylation profile of the in vitro-produced blastocysts was less similar to the in vivo-produced blastocysts as compared to the parthenogenetic- and somatic cell nuclear transfer (SCNT)-produced blastocysts. The microarray results were validated by using bisulfite sequencing for 12 of the genomic regions in liver, sperm, and in vivo-produced blastocysts. These results suggest that a generalized change in global methylation is not responsible for the low developmental potential of blastocysts produced by using in vitro techniques. Instead, the appropriate methylation of a relatively small number of genomic regions in the early embryo may enable early development to occur.  相似文献   

7.
8.
Athletic performance is an important criteria used for the selection of superior horses. However, little is known about exercise-related epigenetic processes in the horse. DNA methylation is a key mechanism for regulating gene expression in response to environmental changes. We carried out comparative genomic analysis of genome-wide DNA methylation profiles in the blood samples of two different thoroughbred horses before and after exercise by methylated-DNA immunoprecipitation sequencing (MeDIP-Seq). Differentially methylated regions (DMRs) in the pre-and post-exercise blood samples of superior and inferior horses were identified. Exercise altered the methylation patterns. After 30 min of exercise, 596 genes were hypomethylated and 715 genes were hypermethylated in the superior horse, whereas in the inferior horse, 868 genes were hypomethylated and 794 genes were hypermethylated. These genes were analyzed based on gene ontology (GO) annotations and the exercise-related pathway patterns in the two horses were compared. After exercise, gene regions related to cell division and adhesion were hypermethylated in the superior horse, whereas regions related to cell signaling and transport were hypermethylated in the inferior horse. Analysis of the distribution of methylated CpG islands confirmed the hypomethylation in the gene-body methylation regions after exercise. The methylation patterns of transposable elements also changed after exercise. Long interspersed nuclear elements (LINEs) showed abundance of DMRs. Collectively, our results serve as a basis to study exercise-based reprogramming of epigenetic traits.  相似文献   

9.
10.
The H19 gene is imprinted with preferential expression from the maternal allele. The putative imprinting control region for this locus is hypermethylated on the repressed paternal allele. Although maternal-specific expression of H19 is observed in mouse blastocysts that develop in vivo, biallelic expression has been documented in embryos and embryonic stem cells experimentally manipulated by in vitro culture conditions. In this study the effect of culture on imprinted H19 expression and methylation was determined. After culture of 2-cell embryos to the blastocyst stage in Whitten's medium, the normally silent paternal H19 allele was aberrantly expressed, whereas little paternal expression was observed following culture in KSOM containing amino acids (KSOM+AA). Analysis of the methylation status of a CpG dinucleotide located in the upstream imprinting control region revealed a loss in methylation in embryos cultured in Whitten's medium but not in embryos cultured in KSOM+AA. Thus, H19 expression and methylation were adversely affected by culture in Whitten's medium, while the response of H19 to culture in KSOM+AA approximated more closely the in vivo situation. It is unlikely that biallelic expression of H19 following culture in Whitten's medium is a generalized effect of lower methylation levels, since the amount of DNA methyltransferase activity and the spatial distribution of Dnmt1 protein were similar in in vivo-derived and cultured embryos. Moreover, imprinted expression of Snrpn was maintained following culture in either medium, indicating that not all imprinted genes are under the same stringent imprinting controls. The finding that culture conditions can dramatically, but selectively, affect the expression of imprinted genes provides a model system for further study of the linkage between DNA methylation and gene expression.  相似文献   

11.
12.
We recently developed an air-liquid interface long-term culture of differentiated bovine oviductal epithelial cells (ALI-BOEC). This ex vivo oviduct epithelium is capable of supporting embryo development in co-culture up to the blastocyst stage without addition of embryo culture medium. However, blastocyst rates in co-culture were markedly lower than in conventional in vitro embryo production procedures. In the present study, we assessed target gene expression of ALI-BOEC derived embryos to test their similarity to embryos from conventional in vitro embryo culture. We screened previously published data from developing bovine embryos and selected 41 genes which are either differentially expressed during embryo development, or reflect differences between various in vitro culture conditions or in vitro and in vivo embryos. Target gene expression was measured in 8-cell embryos and blastocysts using a 48.48 Dynamic Array? on a Biomark HD instrument. For comparison with the ALI-BOEC system, we generated embryos by two different standard IVP protocols. The culture conditions lead to differential gene expression in both 8-cell embryos and blastocysts. Across the expression of all target genes the embryos developing on ALI-BOEC did not depart from conventional IVP embryos. These first results prove that gene expression in ALI-BOEC embryos is not largely aberrant. However, there was no clear indication for a more in vivo-like target gene expression of these embryos. This calls for further optimization of the ALI-BOEC system to increase its efficiency both quantitatively and qualitatively.  相似文献   

13.
Aberrant DNA methylation often occurs in colorectal cancer (CRC). In our study we applied a genome-wide DNA methylation analysis approach, MethylCap-seq, to map the differentially methylated regions (DMRs) in 24 tumors and matched normal colon samples. In total, 2687 frequently hypermethylated and 468 frequently hypomethylated regions were identified, which include potential biomarkers for CRC diagnosis. Hypermethylation in the tumor samples was enriched at CpG islands and gene promoters, while hypomethylation was distributed throughout the genome. Using epigenetic data from human embryonic stem cells, we show that frequently hypermethylated regions coincide with bivalent loci in human embryonic stem cells. DNA methylation is commonly thought to lead to gene silencing; however, integration of publically available gene expression data indicates that 75% of the frequently hypermethylated genes were most likely already lowly or not expressed in normal tissue. Collectively, our study provides genome-wide DNA methylation maps of CRC, comprehensive lists of DMRs, and gives insights into the role of aberrant DNA methylation in CRC formation.  相似文献   

14.
Aberrant DNA methylation often occurs in colorectal cancer (CRC). In our study we applied a genome-wide DNA methylation analysis approach, MethylCap-seq, to map the differentially methylated regions (DMRs) in 24 tumors and matched normal colon samples. In total, 2687 frequently hypermethylated and 468 frequently hypomethylated regions were identified, which include potential biomarkers for CRC diagnosis. Hypermethylation in the tumor samples was enriched at CpG islands and gene promoters, while hypomethylation was distributed throughout the genome. Using epigenetic data from human embryonic stem cells, we show that frequently hypermethylated regions coincide with bivalent loci in human embryonic stem cells. DNA methylation is commonly thought to lead to gene silencing; however, integration of publically available gene expression data indicates that 75% of the frequently hypermethylated genes were most likely already lowly or not expressed in normal tissue. Collectively, our study provides genome-wide DNA methylation maps of CRC, comprehensive lists of DMRs, and gives insights into the role of aberrant DNA methylation in CRC formation.  相似文献   

15.
Oncogenic transformation of normal cells often involves epigenetic alterations, including histone modification and DNA methylation. We conducted whole-genome bisulfite sequencing to determine the DNA methylomes of normal breast, fibroadenoma, invasive ductal carcinomas and MCF7. The emergence, disappearance, expansion and contraction of kilobase-sized hypomethylated regions (HMRs) and the hypomethylation of the megabase-sized partially methylated domains (PMDs) are the major forms of methylation changes observed in breast tumor samples. Hierarchical clustering of HMR revealed tumor-specific hypermethylated clusters and differential methylated enhancers specific to normal or breast cancer cell lines. Joint analysis of gene expression and DNA methylation data of normal breast and breast cancer cells identified differentially methylated and expressed genes associated with breast and/or ovarian cancers in cancer-specific HMR clusters. Furthermore, aberrant patterns of X-chromosome inactivation (XCI) was found in breast cancer cell lines as well as breast tumor samples in the TCGA BRCA (breast invasive carcinoma) dataset. They were characterized with differentially hypermethylated XIST promoter, reduced expression of XIST, and over-expression of hypomethylated X-linked genes. High expressions of these genes were significantly associated with lower survival rates in breast cancer patients. Comprehensive analysis of the normal and breast tumor methylomes suggests selective targeting of DNA methylation changes during breast cancer progression. The weak causal relationship between DNA methylation and gene expression observed in this study is evident of more complex role of DNA methylation in the regulation of gene expression in human epigenetics that deserves further investigation.  相似文献   

16.
17.
18.
19.
DNA methylation plays major roles in many biological processes, including aging, carcinogenesis, and development. Analyses of DNA methylation using next‐generation sequencing offer a new way to profile and compare methylomes across the genome in the context of aging. We explored genomewide DNA methylation and the effects of short‐term calorie restriction (CR) on the methylome of aged rat kidney. Whole‐genome methylation of kidney in young (6 months old), old (25 months old), and OCR (old with 4‐week, short‐term CR) rats was analyzed by methylated DNA immunoprecipitation and next‐generation sequencing (MeDIP‐Seq). CpG islands and repetitive regions were hypomethylated, but 5′‐UTR, exon, and 3′‐UTR hypermethylated in old and OCR rats. The methylation in the promoter and intron regions was decreased in old rats, but increased in OCR rats. Pathway enrichment analysis showed that the hypermethylated promoters in old rats were associated with degenerative phenotypes such as cancer and diabetes. The hypomethylated promoters in old rats related significantly to the chemokine signaling pathway. However, the pathways significantly enriched in old rats were not observed from the differentially methylated promoters in OCR rats. Thus, these findings suggest that short‐term CR could partially ameliorate age‐related methylation changes in promoters in old rats. From the epigenomic data, we propose that the hypermethylation found in the promoter regions of disease‐related genes during aging may indicate increases in susceptibility to age‐related diseases. Therefore, the CR‐induced epigenetic changes that ameliorate age‐dependent aberrant methylation may be important to CR's health‐ and life‐prolonging effects.  相似文献   

20.
Porcine in vitro production (IVP) systems, including in vitro maturation (IVM) and in vitro fertilization (IVF) of oocytes and their subsequent in vitro culture (IVC), have been modified by many researchers, but are still at a low level because of a low developmental rate of embryos to the blastocyst stage and their poor qualities. Our objectives were to establish reliable IVP procedures for porcine blastocysts and to examine the ability of the blastocysts to develop to term after transfer to recipients. Porcine cumulus-oocyte complexes were matured in vitro under 5% O(2) or 20% O(2), fertilized in vitro under 5% O(2), and subsequently cultured under 5% O(2) in 1) IVC medium supplemented with glucose (IVC-Glu) from Day 0 (the day of IVF) to Day 6; 2) IVC-Glu from Days 0 to 2, then IVC medium supplemented with pyruvate and lactate (IVC-PyrLac) from Days 2 to 6; 3) IVC-PyrLac from Days 0 to 2, then IVC-Glu from Days 2 to 6; and 4) IVC-PyrLac from Days 0 to 6. There were no significant differences in blastocyst formation rates on Day 6 between the 5% O(2) and 20% O(2) conditions (19.9% and 14.0%, respectively). However, the quality of blastocysts, as evaluated by the total cell number, was better after IVM under 5% O(2) than under 20% O(2) (mean cell number, 43.5 and 37.8, respectively). When IVP embryos were cultured in IVC-PyrLac from Days 0 to 2 and subsequently in IVC-Glu from Days 2 to 6, the rate of blastocyst formation (25.3%) and cell number (48.7) were higher than the rates (5.8% to 18.1%) and numbers (35.4 to 37.1) with the IVC-Glu then IVC-Glu, the IVC-Glu then IVC-PyrLac, and the IVC-PyrLac then IVC-PyrLac regimens, respectively. We then prepared conditioned medium (CM) from culture of porcine oviductal epithelial cells for 2 days in IVC-PyrLac and evaluated its effect on development to the blastocyst stage. Cultivation in CM for the first 2 days, followed by IVC-Glu for a further 4 days, had a significantly greater effect in increasing the number of cells in the blastocyst (58.3) than did in IVC-PyrLac (48.4). Finally, we evaluated the ability of blastocysts, generated by IVM under 5% O(2) and IVC in CM, to develop to term. When Day 5 expanding blastocysts (mean cell number, 49.7) were transferred to an estrus-synchronized recipient (50 blastocysts per recipient), the recipient remained pregnant and farrowed eight normal piglets. Furthermore, when Day 6 expanded blastocysts (mean cell number, 80.2) were transferred to two estrus-synchronized recipients, both gilts remained pregnant and farrowed a total of 11 piglets. These results suggest that an excellent piglet production system can be established by using this modified IVP system, which produces high-quality porcine blastocysts. This system has advantages for the generation of cloned and transgenic pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号