首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecosystems can be severely damaged by the introduction, establishment and spread of non-indigenous species (NIS) including vertebrates, invertebrates and plants. Development and use of natural areas poses a biosecurity risk regarding the introduction of increase NIS invasion risks, so biosecurity systems including prevention and detection measures are required. Even with the most rigorous biosecurity efforts, there is potential for NIS to evade quarantine and go on to establish and spread. The cost of such an event can be great, both environmentally and financially (e.g. containment/ management or eradication). We have developed a surveillance design methodology, for an application where increased use of a natural area may result in NIS incursions, even with extensive biosecurity systems. The surveillance design methodology acknowledges heterogeneity of risk in the study area and stratifies the area to optimise surveillance deployment, achieving great efficiencies and improvement in statistical power of detection. Many of the risk decisions require lack data and so the system incorporates expert opinion with available data. The design covers the broad range of potential NIS that may be introduced by using exemplar species and a variety of surveillance system components (SSCs) (such as a combination of formal scientific surveys, trapping methods, and casual observation) distributed optimally over time and space. The mix of SSCs can be manipulated to take into account such factors as their relative financial costs and demands on expertise. The methodology has the flexibility to be applied to various groups of potential NIS (e.g. vertebrates, invertebrates and plants), and the design can evolve as data are collected (adaptive management). Overall, the surveillance design methodology allows for an efficient use of resources, providing sufficient power to detect incursions, resulting in reduced environmental and financial costs from NIS incursions.  相似文献   

2.
The eradication of newly detected alien plant species is often prescribed, but rarely successful. Eradication programs fail for many reasons, however, for eradication to remain a cost-efficient management option it is clear that good decisions must be made at the outset. Here we re-frame the project prioritization protocol (PPP), a tool widely used in conservation biology, for use with the metrics typically used by a biosecurity agency. We then use existing methods to estimate the cost-efficiency of eradicating 50 hypothetical species incursions and compare the reduction in weed risk achieved by allocating resources using the PPP framework with the allocation based on risk ranking. By allocating resources to plant eradication programs using the PPP our analysis indicated that it is possible to improve the return on public expenditure by 25% compared to investing based solely on weed risk assessment scores. We also demonstrate how the cost-efficiency of the overall portfolio is influenced by the choice of planning horizon; including the decline in overall portfolio performance that arises when attempting to eradicate individual species too quickly. Finally, we discuss the logistical benefits to a management agency that arise from the use of a generic overarching framework such as the PPP. We believe that the PPP has considerable potential for use in biosecurity and can help focus attention on those species where management can make the biggest difference.  相似文献   

3.
Invasive non-indigenous species are among the greatest threats to global biodiversity. Shipping is the principal vector for international dispersal of nonindigenous species, and shipping rates are increasing globally. The Australian government performs a range of regulatory actions to mitigate biosecurity risks associated with marine vessels, and in so doing has amassed a large volume of operational inspection data. This data can be used to quantitatively examine risk factors of vessels failing biosecurity procedures after arriving from international ports, the nature of biosecurity failures, and the types and seizure rates of biosecurity risk material (BRM). Classification trees with gradient boosting were used to assess characteristics that predict high risk vessels (n = 93,006) for carrying BRM, across 7 years of inspection data. Undeclared vessels and suspected irregular entry vessels posed the highest risk, but both were rare. Vessels that visit infrequently (<20 visits in 7 years) were common and had almost three times greater odds of failing inspection than vessels visiting frequently. On statistical analysis, yachts appeared to pose less risk than commercial vessels. In operational terms, a tentative profiled 20% fraction would contain 57% of genuine failures, and the concomitant non-screened group would contain 82% of passes. The most common reason for inspection failures was ballast water non-compliance (2.53%) and plant or insect detections (1.77%); biofouling was less common (0.13%) but testing for biofouling is not exhaustive. Invertebrate species comprised almost 90% of invasive organisms detected and seized from vessels failing biosecurity inspections. This study targets an entire transportation vector, which includes many pathways. Understanding the characteristics of transport vectors is pivotal to characterising the risk of biological invasions and applying adequate controls and prevention strategies. Our results show that biosecurity risk is not uniform on maritime pathways, so there is considerable scope for biosecurity regulators to impose risk-based intervention.  相似文献   

4.
Invasive species are a cause for concern in natural and economic systems and require both monitoring and management. There is a trade‐off between the amount of resources spent on surveying for the species and conducting early management of occupied sites, and the resources that are ultimately spent in delayed management at sites where the species was present but undetected. Previous work addressed this optimal resource allocation problem assuming that surveys continue despite detection until the initially planned survey effort is consumed. However, a more realistic scenario is often that surveys stop after detection (i.e., follow a “removal” sampling design) and then management begins. Such an approach will indicate a different optimal survey design and can be expected to be more efficient. We analyze this case and compare the expected efficiency of invasive species management programs under both survey methods. We also evaluate the impact of mis‐specifying the type of sampling approach during the program design phase. We derive analytical expressions that optimize resource allocation between monitoring and management in surveillance programs when surveys stop after detection. We do this under a scenario of unconstrained resources and scenarios where survey budget is constrained. The efficiency of surveillance programs is greater if a “removal survey” design is used, with larger gains obtained when savings from early detection are high, occupancy is high, and survey costs are not much lower than early management costs at a site. Designing a surveillance program disregarding that surveys stop after detection can result in an efficiency loss. Our results help guide the design of future surveillance programs for invasive species. Addressing program design within a decision‐theoretic framework can lead to a better use of available resources. We show how species prevalence, its detectability, and the benefits derived from early detection can be considered.  相似文献   

5.
The management of invasive non-native species is a frequent cause of conflict in the field of biodiversity conservation because perceptions of their costs and benefits differ among stakeholder groups. A lack of cohesion between scientific researchers, the commercial sector and policy makers lies at the root of a widespread failure to develop and implement sustainable management practices for invasive species. The crisis of this situation is intensified by drivers stemming from international conventions and directives to address invasive species issues. There are further direct conflicts between legislative instruments promoting biodiversity conservation on the one hand while liberalizing trade at the national, European and global level on the other. The island of Ireland provides graphic illustration of the importance of cross-jurisdictional approaches to biological invasions. Using primarily Irish examples in this review, we emphasize the importance of approaching risk assessment, risk reduction and control or eradication policies from a cost-efficient, highly flexible perspective, incorporating linkages between environmental, economic and social objectives. The need for consolidated policies between Northern Ireland and the Republic of Ireland is particularly acute, though few model cross-border mechanisms for such consolidation are available. The importance of engaging affected stakeholders through positive interactions is discussed with regard to reducing the currently fragmented nature of invasive species management between the two jurisdictions.  相似文献   

6.
Prevention and early detection are well recognized as the best strategies for minimizing the risks posed by nonindigenous species (NIS) that have the potential to become marine pests. Central to this is the ability to rapidly and accurately identify the presence of NIS, often from complex environmental samples like biofouling and ballast water. Molecular tools have been increasingly applied to assist with the identification of NIS and can prove particularly useful for taxonomically difficult groups like ascidians. In this study, we have developed real‐time PCR assays suited to the specific identification of the ascidians Didemnum perlucidum and Didemnum vexillum. Despite being recognized as important global pests, this is the first time specific molecular detection methods have been developed that can support the early identification and detection of these species from a broad range of environmental sample types. These fast, robust and high‐throughput assays represent powerful tools for routine marine biosecurity surveillance, as detection and confirmation of the early presence of species could assist in the timely establishment of emergency responses and control strategies. This study applied the developed assays to confirm the ability to detect Didemnid eDNA in water samples. While previous work has focused on detection of marine larvae from water samples, the development of real‐time PCR assays specifically aimed at detecting eDNA of sessile invertebrate species in the marine environment represents a world first and a significant step forwards in applied marine biosecurity surveillance. Demonstrated success in the detection of D. perlucidum eDNA from water samples at sites where it could not be visually identified suggests value in incorporating such assays into biosecurity survey designs targeting Didemnid species.  相似文献   

7.
The international trade in ornamental aquatic organisms represents an important vector in the spread of invasive species worldwide, but the accurate identification of imported organisms as part of a biosecurity surveillance program offers an opportunity to mitigate potential problems. Species level identification is historically conducted visually, and more recently, with the use of DNA barcoding. However, new diagnostic methods targeting extracellular environmental DNA (eDNA) can offer advantages over these approaches, being non-destructive and potentially more sensitive at low population densities of target organisms (e.g. in mixed consignments). Despite their recent introduction, techniques utilising eDNA are quickly becoming recognised as an important tool for invasion biologists and ecosystem managers. Here, we present a model for the development of a biosecurity protocol for ornamental fish identification using degraded eDNA molecules in water. We demonstrate how a DNA barcode reference library can be mined for informative short-length markers, and report repeatable and accurate detection at low densities of the target species. This study represents a framework for biosecurity agencies to develop eDNA procedures as an innovative management technique for routine surveillance of high risk imports. Future up-scaling of the method will open up prospects for long term monitoring of entire quarantine facilities for a variety of harmful species.  相似文献   

8.
The threats and responses to biosecurity are constantly changing, creating decision problems for policy makers setting priorities for future biosecurity systems. In the United Kingdom during 2003–04, the Department for Environment, Food and Rural Affairs (DEFRA) commissioned a Horizon Scanning project to predict the future (20–30 years) of biosecurity needs in the United Kingdom. This project created an integrated model of key ecological, economic and technological processes involved in the development and control of invasive species, across a range of taxa, and also sought views on social values that could limit response options and affect the economic and political importance of introduced species. The model demonstrates the ability to make useful probability- based estimates of economic impact given practical assumptions on ecological, economic and technological inputs. Sensitivity analyses show where improved data could reduce uncertainty. The model establishes a framework that has been used to identify major drivers of biosecurity change affecting the next generation: increased and more diverse trade and travel increasing the entry of new species; climate change affecting establishment and spread of pests introduced from new zones that could approximate Britain’s climate; social values affecting attitudes to control measures such as animal culling and greater concern for environmental and amenity resources rather than agriculture; and technological improvements in pest detection. An important economic issue affecting the value of the impact caused by invasions is the time scale over which the impact is felt, ranging from immediate in the case of many livestock diseases through to the long-delayed recognition of loss of environmental quality from competition or diseases affecting native plants. New pest detection technology offers substantial opportunity to improve eradication of introduced species and could affect the prevention versus cure paradigm for many species for which general exclusion systems are presently adopted. An integrated modelling framework allows some quantification of these drivers and offers a tool to guide biosecurity planning.  相似文献   

9.
Three mantras often guide species and ecosystem management: (i) for preventing invasions by harmful species, ‘early detection and rapid response’; (ii) for conserving imperilled native species, ‘protection of biodiversity hotspots’; and (iii) for assessing biosecurity risk, ‘an ounce of prevention equals a pound of cure.’ However, these and other management goals are elusive when traditional sampling tools (e.g. netting, traps, electrofishing, visual surveys) have poor detection limits, are too slow or are not feasible. One visionary solution is to use an organism’s DNA in the environment (eDNA), rather than the organism itself, as the target of detection. In this issue of Molecular Ecology, Thomsen et al. (2012) provide new evidence demonstrating the feasibility of this approach, showing that eDNA is an accurate indicator of the presence of an impressively diverse set of six aquatic or amphibious taxa including invertebrates, amphibians, a fish and a mammal in a wide range of freshwater habitats. They are also the first to demonstrate that the abundance of eDNA, as measured by qPCR, correlates positively with population abundance estimated with traditional tools. Finally, Thomsen et al. (2012) demonstrate that next‐generation sequencing of eDNA can quantify species richness. Overall, Thomsen et al. (2012) provide a revolutionary roadmap for using eDNA for detection of species, estimates of relative abundance and quantification of biodiversity.  相似文献   

10.
The 2001 UK foot and mouth disease (FMD) epidemic marked a change in global FMD management, focusing less on trade isolation than on biosecurity within countries where FMD is endemic. Post 2001 policy calls for the isolation of disease-free zones in FMD-endemic countries, while increasing the opportunities for trade. The impact of the change on disease risk has yet to be tested. In this paper, we estimate an empirical model of disease risk that tests for the impact of trade volumes before and after 2001, controlling for biosecurity measures. In the pre 2001 regime, we find that poor biosecurity was associated with the probability of reporting an outbreak. In the post 2001 regime, the risks changed, with trade being a much greater source of risk. We discuss the trade-off between trade restrictions and biosecurity measures in the management of FMD disease risks.  相似文献   

11.
This article examines the use of economic analysis to inform bioinvasion management, with particular focus on forest resources. Economics is key for understanding invasion processes, impacts, and decision-making. Biological invasions are driven by and affect economic activities at multiple scales and stages of an invasion. Bioeconomic modeling seeks to inform how resources can be optimally allocated across invasion management activities—including prevention, surveillance programs for early detection and management, and controlling invasion populations and spread—to minimize the long-term costs and damages. Economic analysis facilitates understanding of decisions by public and private decision-makers, gaps between these, and the design of policies to achieve socially desirable outcomes. Private decision-makers may undercontrol invasions relative to socially optimal levels, because they generally account for their own costs and benefits of control but less often for broader ecosystem impacts or future spread across the landscape. Economic analysis considers approaches for increasing private invasion management and evaluates feedbacks between ecological and economic systems that can affect policy outcomes. Future research should continue evaluation and design of control strategies across the biosecurity continuum and across species to enhance cost-effectiveness, better incorporate uncertainty into policy design, increase focus on incentives and behavioral tools to influence private behaviors that affect invasion spread, and incorporate invasive species consideration within broader systems-focused science. In addition, challenges in valuing biodiversity and ecosystem service impacts and the costs and effectiveness of control measures are key data gaps. Greater collaboration between decision-makers and researchers will facilitate development and communication of usable economic research.  相似文献   

12.
Vaughan-Higgins  R. J.  Masters  N.  Sainsbury  A. W. 《EcoHealth》2016,14(1):84-91

Exposure to parasites in conservation translocations increases the risks to recipient and translocated populations from disease, and therefore there has been interest in implementing biosecurity methods. Using four case examples we described how biosecurity was applied in practical translocation scenarios prior to and during a translocation and also post-release. We implemented biosecurity, including quarantine barriers, at specific points in the translocation pathway where hazards, identified by the disease risk analysis, had the potential to induce disease. Evidence that biosecurity protected translocated and recipient populations, included an absence of mortality associated with high-risk non-native parasites, a reduction in mortality associated with endemic parasites, the absence of high-risk pathogenic parasites, or associated diseases, at the destination; and the apparent absence of diseases in closely related species at the destination site. The biosecurity protocols did not alter the level or duration of translocated species confinement and therefore probably did not act as a stressor. There is a monetary cost involved in biosecurity but the epidemiological evidence suggests that conservation translocation managers should carefully consider its use. Breakdowns in quarantine have occurred in human hospitals despite considerable investment and training for health professionals, and we therefore judge that there is a need for training in the objectives and maintenance of quarantine barriers in conservation translocations. Biosecurity protocols for conservation translocations should be continually updated in response to findings from disease risk analysis and post-release disease surveillance and we recommend further studies to evaluate their effectiveness.

  相似文献   

13.
The widespread and intensive application of biological control can create serious gaps between what may be naïve expectation versus reality. An extreme view is that there is a biological control solution for every problem. Similarly, there is the expectation that there are readily available and cheap biosecurity measures that, while having no effect on trade, work flawlessly. Such expectations can lead to two areas of difficulty. The first is that science is seen to have failed when biological control does not work as well as hoped for (and/or there are impacts on non-target species). The second is that people expect a huge amount from their biosecurity.Alongside this there has been the emergence of legislated—for precautionary principle—based expectation of technical certainty. This is particularly problematic when applied to complex ecological questions. Such circumstances have led to something of a disjunct between the expectations of legislators and what is required of the implementing agencies. This in turn has elicited difficulties in terms of what science is able to deliver for a reasonable/acceptable cost. Such cost is often borne by applicant groups, etc. It is aspects of the above situation that have contributed to the politicisation of biological control and biosecurity issues in New Zealand in the last 15 years.This contribution highlights some of the differences between legislation, policy and what science can deliver relating to biological control and biosecurity in New Zealand and Australia, and discusses some of the inconsistencies and impracticalities in their implementation with a focus on arthropod biological control examples.  相似文献   

14.
Characterised and Projected Costs of Nonindigenous Species in Canada   总被引:1,自引:0,他引:1  
Biological invasions by nonindigenous species (NIS) can have adverse effects on economically important goods and services, and sometimes result in an ‘invisible tax’ on natural resources (e.g. reduced yield). The combined economic costs of NIS may be significant, with implications for environmental policy and resource management; yet economic impact assessments are rare at a national scale. Impacts of nuisance NIS may be direct (e.g. loss of hardwood trees) or indirect (e.g. alteration of ecosystem services provided by growing hardwoods). Moreover, costs associated with these effects may be accrued to resources and services with clear ‘market’ values (e.g. crop production) and to those with more ambiguous, ‘non-market’ values (e.g. aesthetic value of intact forest). We characterised and projected economic costs associated with nuisance NIS in Canada, through a combination of case-studies and an empirical model derived from 21 identified effects of 16 NIS. Despite a severe dearth of available data, characterised costs associated with ten NIS in Canadian fisheries, agriculture and forestry totalled $187 million Canadian (CDN) per year. These costs were dwarfed by the ‘invisible tax’ projected for sixteen nuisance NIS found in Canada, which was estimated at between $13.3 and $34.5 billion CDN per year. Canada remains highly vulnerable to new nuisance NIS, but available manpower and financial resources appear insufficient to deal with this problem. An erratum to this article is available at .  相似文献   

15.
The biosecurity of on-farm mortality composting   总被引:1,自引:0,他引:1  
Composting is a natural biological decomposition process that takes place under aerobic and thermophilic conditions. It can be used for the day-to-day management of mortalities on farms and for carcass disposal in emergency animal disease (EAD) outbreaks. In mortality composting, carcasses are placed in piles or bins together with supplemental carbon sources such as sawdust, litter, straw or wood shavings. Composting is particularly suitable for broiler-farm mortalities and litter. In the case of emergency disease outbreaks, composting can be conducted either inside or outside the poultry house following killing. Composting has been successfully employed for emergency disposal of carcasses in a few cases in North America, but research is lacking on the biosecurity of the process. Composting is a well-established pathogen reduction technology, but process management and heterogenous pile conditions pose particular challenges for validating the microbiological safety of mortality composting. This paper reviews the available information on the biosecurity of mortality composting, identifies potential sources of risk, and highlights emerging research needs. Reports to date of the use of composting in EAD outbreaks are also discussed.  相似文献   

16.
Introductions of invasive nonindigenous species, and the ensuing negative ecological and economic consequences, have increased with expanding global trade. Quantifying the influx of nonindigenous plant pest species through foreign trade is required for national and international risk assessments, monitoring and conservation efforts, and evaluation of ecological factors that affect invasion success. Here we use statistically robust data collected at US ports of entry and border crossings to estimate arrival rates of nonindigenous insect species via four cargo pathways and to evaluate the effectiveness of current efforts to monitor arrival of nonindigenous insect species. Interception rates were highest in refrigerated maritime cargo where a new insect species was intercepted on average every 54 inspections. Projected estimates of insect species richness stabilized only for non-refrigerated maritime cargo and US–Mexico border cargo, where inspectors likely detected 19–2% and 30–50% of the species being transported through these respective pathways. Conservative estimates of establishment suggest that 42 insect species may have become established through these four pathways between 1997 and 2001.  相似文献   

17.
The unintentional release of aquatic nonindigenous species (NIS) via ballast water has long been recognized as a primary vector of biological invasions. To reduce the risk of ballast-mediated invasions, the International Maritime Organization (IMO) will direct ships to meet standards regarding the maximum number of viable organisms discharged in ballast water, with most ships expected to install ballast water management systems (BWMSs). Currently, filtration?+?ultraviolet (UV) irradiation is utilized as a common BWMS. There are issues, however, with enumerating viable phytoplankton after treatment at the low UV doses used onboard ships because the physiological effect occurs at the DNA level—organisms are reproductively sterilized but may remain alive for hours or days after treatment. The objective of this study is to examine three techniques to measure the number of viable phytoplankton cells following filtration?+?UV treatment: pulse amplitude modulation (PAM) fluorometry, epifluorescence microscopy using fluorescein diacetate (FDA) stain, and the serial dilution culture most probable number (MPN) method. PAM and staining techniques demonstrated similar patterns of phytoplankton reduction after UV irradiation. After 14 days, the MPN method confirmed viability of treated samples in enriched culture medium incubations and may be used to indicate potential recovery of damaged cells (i.e., “re-growth”). All cells that survived treatment and showed detectable growth after 14 days of incubation were smaller than 10 µm, as determined by microscopy. Combinations of direct and/or indirect measurements and culture-based methods might be the best solution to improve detection strategies and eliminate nonindigenous species.  相似文献   

18.
The potential for transported soil to harbour and spread nonindigenous species (NIS) is widely recognised and many National Plant Protection Organisations (NPPOs) restrict or prohibit its movement. However, surprisingly few studies have surveyed soil while it is in transit to provide direct support for its role in accidental introductions of NIS. Moreover, there are few border interception records for soil organisms because they are neither easily detected nor routinely isolated and identified. Better data would improve evaluations of risks from soil transported via different pathways, enable targeting of management resources at the riskiest pathways, and support development of new risk management methods. We surveyed organisms present in soil that had been removed from footwear being carried in the baggage of international aircraft passengers arriving in New Zealand and recorded high incidences, counts and diversities of viable bacteria, fungi, nematodes and seeds, as well as several live arthropods. These included taxa that have not been recorded in New Zealand and were therefore almost certainly nonindigenous to this country. In each gram of soil, there was an estimated 52–84% incidence of genera that contain species regulated by New Zealand’s NPPO, which suggests many were potentially harmful. Variation in the incidences and counts of soil organisms with sample weight, footwear type and season at the port of departure indicated it may be possible to develop methods for targeting management resources at the riskiest footwear. Comparisons with previously published data supported the hypothesis that survival of soil organisms is greater when they are transported in protected (e.g. in luggage) rather than unprotected environments (e.g. external surfaces of sea containers); this offers opportunities to develop methods for targeting management resources at the most hazardous soil pathways.  相似文献   

19.
Although ecologists commonly talk about the impacts of nonindigenous species, little formal attention has been given to defining what we mean by impact, or connecting ecological theory with particular measures of impact. The resulting lack of generalizations regarding invasion impacts is more than an academic problem; we need to be able to distinguish invaders with minor effects from those with large effects in order to prioritize management efforts. This paper focuses on defining, evaluating, and comparing a variety of measures of impact drawn from empirical examples and theoretical reasoning. We begin by arguing that the total impact of an invader includes three fundamental dimensions: range, abundance, and the per-capita or per-biomass effect of the invader. Then we summarize previous approaches to measuring impact at different organizational levels, and suggest some new approaches. Reviewing mathematical models of impact, we argue that theoretical studies using community assembly models could act as a basis for better empirical studies and monitoring programs, as well as provide a clearer understanding of the relationship among different types of impact. We then discuss some of the particular challenges that come from the need to prioritize invasive species in a management or policy context. We end with recommendations about how the field of invasion biology might proceed in order to build a general framework for understanding and predicting impacts. In particular, we advocate studies designed to explore the correlations among different measures: Are the results of complex multivariate methods adequately captured by simple composite metrics such as species richness? How well are impacts on native populations correlated with impacts on ecosystem functions? Are there useful bioindicators for invasion impacts? To what extent does the impact of an invasive species depend on the system in which it is measured? Three approaches would provide new insights in this line of inquiry: (1) studies that measure impacts at multiple scales and multiple levels of organization, (2) studies that synthesize currently available data on different response variables, and (3) models designed to guide empirical work and explore generalities.  相似文献   

20.
The results of scientific research have played a central role in convincing decision-makers of the plight of farmland birds and in the development of land management measures and policies designed to reverse the population declines. Several types of study have contributed to what is now a considerable knowledge base on the ecological requirements of key species, the reasons for their declines and the remedial measures necessary to bring about population recovery. They include: monitoring; analyses of large-scale datasets; detailed studies of particular species, land-uses or land management practices; and the development and testing of solutions. As a consequence, there is now an excellent qualitative understanding of farmland bird ecology, which is well reflected in the suite of land management schemes and other policy initiatives that currently operate in England. Future research efforts should focus on the further development and testing of solutions and gaining a better understanding of the quantitative relationship between the provision of resources (especially nesting and foraging habitats) and the population response of target bird species. Such work should ensure that land management measures are deployed at the required scale, in appropriate locations and are of sufficient quality to influence the national populations of the declining species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号