首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The dendrite of the sensory neuron is surrounded by support cells and is composed of two specialized compartments: the inner segment and the sensory cilium. How the sensory dendrite is formed and maintained is not well understood. Hook-related proteins (HkRP) like Girdin, DAPLE, and Gipie are actin-binding proteins, implicated in actin organization and in cell motility. Here, we show that the Drosophila melanogaster single member of the Hook-related protein family, Girdin, is essential for sensory dendrite formation and function. Mutations in girdin were identified during a screen for fly mutants with no mechanosensory function. Physiological, morphological, and ultrastructural studies of girdin mutant flies indicate that the mechanosensory neurons innervating external sensory organs (bristles) initially form a ciliated dendrite that degenerates shortly after, followed by the clustering of their cell bodies. Importantly, we observed that Girdin is expressed transiently during dendrite morphogenesis in three previously unidentified actin-based structures surrounding the inner segment tip and the sensory cilium. These actin structures are largely missing in girdin mutant. Defects in cilia are observed in other sensory organs such as those mediating olfaction and taste, suggesting that Girdin has a general role in forming sensory dendrites in Drosophila. These suggest that Girdin functions temporarily within the sensory organ and that this function is essential for the formation of the sensory dendrites via actin structures.  相似文献   

3.
4.
Olfactory receptor neurons (ORNs) convey odor information to the central brain, but like other sensory neurons were thought to play a passive role in memory formation and storage. Here we show that Notch, part of an evolutionarily conserved intercellular signaling pathway, is required in adult Drosophila ORNs for the structural and functional plasticity of olfactory glomeruli that is induced by chronic odor exposure. Specifically, we show that Notch activity in ORNs is necessary for the odor specific increase in the volume of glomeruli that occurs as a consequence of prolonged odor exposure. Calcium imaging experiments indicate that Notch in ORNs is also required for the chronic odor induced changes in the physiology of ORNs and the ensuing changes in the physiological response of their second order projection neurons (PNs). We further show that Notch in ORNs acts by both canonical cleavage-dependent and non-canonical cleavage-independent pathways. The Notch ligand Delta (Dl) in PNs switches the balance between the pathways. These data define a circuit whereby, in conjunction with odor, N activity in the periphery regulates the activity of neurons in the central brain and Dl in the central brain regulates N activity in the periphery. Our work highlights the importance of experience dependent plasticity at the first olfactory synapse.  相似文献   

5.
6.
7.
Biophysics - Abstract—The effects of sensory stimulation on the model of paired Mauthner neurons of monocularly deprived goldfish have been studied by light- and electron microscopy....  相似文献   

8.
9.
Short generation times and facile genetic techniques make the fruit fly Drosophila melanogaster an excellent genetic model in fundamental neuroscience research. Ion channels are the basis of all behavior since they mediate neuronal excitability. The first voltage gated ion channel cloned was the Drosophila voltage gated potassium channel Shaker1,2. Toward understanding the role of ion channels and membrane excitability for nervous system function it is useful to combine powerful genetic tools available in Drosophila with in situ patch clamp recordings. For many years such recordings have been hampered by the small size of the Drosophila CNS. Furthermore, a robust sheath made of glia and collagen constituted obstacles for patch pipette access to central neurons. Removal of this sheath is a necessary precondition for patch clamp recordings from any neuron in the adult Drosophila CNS. In recent years scientists have been able to conduct in situ patch clamp recordings from neurons in the adult brain3,4 and ventral nerve cord of embryonic5,6, larval7,8,9,10, and adult Drosophila11,12,13,14. A stable giga-seal is the main precondition for a good patch and depends on clean contact of the patch pipette with the cell membrane to avoid leak currents. Therefore, for whole cell in situ patch clamp recordings from adult Drosophila neurons must be cleaned thoroughly. In the first step, the ganglionic sheath has to be treated enzymatically and mechanically removed to make the target cells accessible. In the second step, the cell membrane has to be polished so that no layer of glia, collagen or other material may disturb giga-seal formation. This article describes how to prepare an identified central neuron in the Drosophila ventral nerve cord, the flight motoneuron 5 (MN515), for somatic whole cell patch clamp recordings. Identification and visibility of the neuron is achieved by targeted expression of GFP in MN5. We do not aim to explain the patch clamp technique itself.  相似文献   

10.
11.
Sensory neurons of the chick embryo are supported in culture by several neurotrophic factors, including the phorbol esters. Because phorbol esters are known to activate one of the second messengers, namely, protein kinase C, it was of interest to see if the neurotrophic action of phorbol 12,13-dibutyrate (PDB) was related to the activation of protein kinase C in sensory neurons. Sensory neurons were obtained from dorsal root ganglia of 10-day-old chick embryos and maintained in a serum-free medium for several days to quantify survival and analyze protein kinase C activity. PDB (30 nM) supported the survival of approximately 50% of the total number of neurons plated. This value was comparable to that supported by nerve growth factor (NGF; 40 ng/ml). If PDB and NGF were added together, there was no additive effect on the survival. The protein kinase C activity of the particulate and cytosolic fractions of sensory neurons supported by NGF for 3 days was 1.26 +/- 0.1 and 2.9 +/- 0.32 pmol/min/mg of protein, respectively. In contrast, neurons supported by PDB showed an approximately 500% increase in enzyme activity in their particulate fraction. The enzyme activity of the cytosolic fraction was decreased by approximately 40%. If NGF-supported neurons were treated with PDB (30 nM) for 15 min, protein kinase C activity increased greater than 400% in the particulate fraction, whereas an approximately 50% decrease was observed in the cytosolic fraction. The protein kinase C value, expressed as a ratio of the activities in the particulate to cytosol fractions, showed large increases after phorbol treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
14.
  相似文献   

15.
The Johnston’s Organ neurons (JONs) form chemical and electrical synapses onto the giant fiber neuron (GF), as part of the neuronal circuit that mediates the GF escape response in Drosophila melanogaster. The purpose of this study was to identify which of the 8 Drosophila innexins (invertebrate gap junction proteins) mediates the electrical connection at this synapse. The GF is known to express Shaking B (ShakB), specifically the ShakB(N+16) isoform only, at its output synapses in the thorax. The shakB2 mutation disrupts these GF outputs and also abolishes JON-GF synaptic transmission. However, the identity of the innexin that forms the presynaptic hemichannels in the JONs remains unknown. We used electrophysiology, immunocytochemistry and dye injection, along with presynaptically-driven RNA interference, to investigate this question. The amplitude of the compound action potential recorded in response to sound from the base of the antenna (sound-evoked potential, or SEP) was reduced by RNAi of the innexins Ogre, Inx3, Inx6 and, to a lesser extent Inx2, suggesting that they could be required in JONs for proper development, excitability, or synchronization of action potentials. The strength of the JON-GF connection itself was reduced to background levels only by RNAi of shakB, not of the other seven innexins. ShakB knockdown prevented Neurobiotin coupling between GF and JONs and removed the plaques of ShakB protein immunoreactivity that are present at the region of contact. Specific shakB RNAi lines that are predicted to target the ShakB(L) or ShakB(N) isoforms alone did not reduce the synaptic strength, implying that it is ShakB(N+16) that is required in the presynaptic neurons. Overexpression of ShakB(N+16) in JONs caused the formation of ectopic dye coupling, whereas ShakB(N) prevented it altogether, supporting this conclusion and also suggesting that gap junction proteins may have an instructive role in synaptic target choice.  相似文献   

16.
17.
李翠  石铁军 《生物磁学》2009,(15):2954-2956,2994
Dendrin作为一类新的树突蛋白,在脑内的表达随着行为活动的改变而变化。最近本课题组采用免疫组织化学方法对dendrin在小鼠初级感觉神经元内的表达进行了研究,并进一步研究外周神经损伤后dendrin在背根神经节和脊髓背角内的表达变化。本文还就dendrin的生物学特征以及在神经系统内表达情况对其近期研究成果和未来发展趋势进行综述。  相似文献   

18.
19.
The Drosophila melanogaster Spn-F, Ik2, and Javelin-like (Jvl) proteins interact to regulate oocyte mRNA localization and cytoskeleton organization. However, the mechanism by which these proteins interact remains unclear. Using antibodies to activated Ik2, we showed that this protein is found at the region of oocyte and follicle cell where microtubule minus ends are enriched. We demonstrate that germ line Ik2 activation is diminished both in jvl and in spn-F mutant ovaries. Structure-function analysis of Spn-F revealed that the C-terminal end is critical for protein function, since it alone was able to rescue spn-F sterility. On the other hand, germ line expression of Spn-F lacking its conserved C-terminal region (Spn-FΔC) phenocopied ik2, leading to production of ventralized eggshell and bicaudal embryos. In Spn-FΔC-expressing oocytes, Gurken protein is mislocalized and oskar mRNA and protein localization is disrupted. Expression of Ik2 rescued Spn-FΔC ovarian phenotypes. We found that whereas Spn-F physically interacts with Ik2 and Jvl, Spn-FΔC physically interacts with Ik2 but not with Jvl. Thus, expression of Spn-FΔC, which lacks the Jvl-interacting domain, probably interferes with interaction of Ik2 and Jvl. In summary, our results demonstrate that Spn-F mediates the interaction between Ik2 and Jvl to control Ik2 activity.  相似文献   

20.
Retrograde and transganglionic transport of horseradish peroxidase (HRP) was used to investigate the neurons innervating the upper and the lower lips and their central projections in the rat. Both the upper and the lower lips were observed to be innervated by a very large number of trigeminal sensory neurons, with their cell bodies located in the maxillary and the mandibular parts of the trigeminal ganglion, respectively. The central projections of neurons innervating the upper lip formed a long continuous column starting rostrally at midlevels of the trigeminal main sensory nucleus (5P) and extending caudally through the CI dorsal horn, with occasional fibers reaching the C3 segment. The heaviest projections appeared in the middle portions of 5P and nucleus interpolaris (51), as well as in the rostral part of nucleus caudalis (5C). A small but consistent projection to the solitary tract nucleus, originating from cells in the inferior vagal ganglion, was observed in the upper-lip experiments. The central projections from neurons innervating the lower lip also appeared as a long column located dorsally or dorsomedially to the projections from the upper lip. The most prominent projections from the lower lip were located in the caudal part of 5P, the middle part of 5I, and the caudal two-thirds of 5C. Sparse projections could be traced as far caudally as C4. At 5C and cervical levels, some labeling appeared contralaterally in the same location as on the ipsilateral side.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号