首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A new procedure for the rapid isolation of renal cortical brush-border and basolateral membranes from the same homogenate is described. Brush-border membranes isolated using Mg2+-EGTA precipitation were enriched 18-fold for leucine aminopeptidase and had a recovery of 32.5%. Basolateral membrane fractions were isolated using a discontinuous sucrose gradient and showed an enrichment of 10.7-fold and recovery of 12.8% using (Na+, K+)-ATPase as a marker enzyme. Lipid analysis using two-dimensional TLC separation of phospholipids and gas liquid chromatography for cholesterol showed marked differences in the lipid composition of the brush-border and basolateral membranes. The brush-border membrane had increased sphingomyelin, phosphatidylserine, ethanolamine plasmalogens, and an increased cholesterol-to-phospholipid and sphingomyelin-to-phosphatidylcholine ratio compared to the basolateral membrane. The relative turnover of total membrane and individual phospholipid species using a double isotope ratio method was carried out. Phospholipids were labeled with either phosphorus 32 and 33 or acetate (3H, 1-14C). The relative turnover of phospholipid species and cholesterol differed strikingly. Phosphatidylcholine showed a high turnover, phosphatidylethanolamine and phosphatidylinositol had intermediate values and sphingomyelin, phosphatidylserine and cholesterol had low relative turnover rates. The order of phospholipid class relative turnover was independent of the labeled precursor used. The brush-border membrane had a significantly reduced relative turnover rate for total membrane phospholipids, sphingomyelin and cholesterol compared to the basolateral membrane. These data show marked differences in the lipid composition and relative turnover rates of the phospholipid species of the brush-border and basolateral membranes. They provide a biochemical basis for the recently reported differences in brush-border and basolateral membrane fluidity and suggest independent cellular regulation of brush-border and basolateral membrane lipids.  相似文献   

2.
The phospholipid and fatty acid composition and thermotropic behavior of total lipids were studied in the metal-accumulating marine strain Pseudomonas putida IB28 grown in the presence of Cu2+ and Cd2+ at 4 and 24°C. Despite the changes in acidic lipid content, unsaturated/saturated fatty acid ratio, and cyclopropane fatty acid level, the temperature range of calorimetric phase transitions of bacterial total lipids was slightly altered under these factors. The suppressive action of heavy metals on bacterial growth is attributable to the phase separation of lipids and, as a consequence, to a sharp increase in the ion permeability of the lipid bilayer. The increase in acidic phospholipid level under the influence of Cu2+ and Cd2+, especially at 24°C, is likely to be indicative of their complexation with heavy metal ions.  相似文献   

3.
Information on the growth rate and metabolism of microbial pathogens that cause long-term chronic infections is limited, reflecting the absence of suitable tools for measuring these parameters in vivo. Here, we have measured the replication and physiological state of Leishmania mexicana parasites in murine inflammatory lesions using 2H2O labeling. Infected BALB/c mice were labeled with 2H2O for up to 4 months, and the turnover of parasite DNA, RNA, protein and membrane lipids estimated from the rate of deuterium enrichment in constituent pentose sugars, amino acids, and fatty acids, respectively. We show that the replication rate of parasite stages in these tissues is very slow (doubling time of ~12 days), but remarkably constant throughout lesion development. Lesion parasites also exhibit markedly lower rates of RNA synthesis, protein turnover and membrane lipid synthesis than parasite stages isolated from ex vivo infected macrophages or cultured in vitro, suggesting that formation of lesions induces parasites to enter a semi-quiescent physiological state. Significantly, the determined parasite growth rate accounts for the overall increase in parasite burden indicating that parasite death and turnover of infected host cells in these lesions is minimal. We propose that the Leishmania response to lesion formation is an important adaptive strategy that minimizes macrophage activation, providing a permissive environment that supports progressive expansion of parasite burden. This labeling approach can be used to measure the dynamics of other host-microbe interactions in situ.  相似文献   

4.
The distribution of ketone bodies between oxidation and lipid synthesis was analysed in homogenates of developing rat brain. The capacity for lipid synthesis of homogenized or minced brain preparations was compared with rates of lipid synthesis in vivo, assessed by incorporation of 3H from 3H2O into fatty acids and cholesterol. Brain homogenates of suckling rats (but not those of adults) incorporated label from [3-14C]ketone bodies into lipids, but this process was slow as compared to 14CO2 production (< 5%) and much slower than the total rate of ketone-body utilization (< 0.5%). Study of 3H2O incorporation demonstrated that the rates of lipogenesis and cholesterogenesis are at least one order of magnitude higher in vivo than in vitro. Maximal rates of 3H incorporation into fatty acids (3 μmol/g brain . h) and into cholesterol (0.6 μmol/g brain . h) were found during the third postnatal week. Adult rats still incorporated 3H into brain fatty acids at an appreciable rate (1 μmol/g brain . h), whereas cholesterogenesis was very low. It is concluded that in vitro measurements of lipid synthesis severely underestimate the rates that occur in developing rat brain in vivo. The high rate of 3H incorporation into lipids by developing and adult rat brain as compared to the amounts of these lipids present in the brain suggests an important contribution of endogenous lipid synthesis during brain development and an appreciable rate of fatty acid turnover during brain growth, but also in the adult brain.  相似文献   

5.
At the 2017 meeting of the Australian Society for Biophysics, we presented the combined results from two recent studies showing how hydronium ions (H3O+) modulate the structure and ion permeability of phospholipid bilayers. In the first study, the impact of H3O+ on lipid packing had been identified using tethered bilayer lipid membranes in conjunction with electrical impedance spectroscopy and neutron reflectometry. The increased presence of H3O+ (i.e. lower pH) led to a significant reduction in membrane conductivity and increased membrane thickness. A first-order explanation for the effect was assigned to alterations in the steric packing of the membrane lipids. Changes in packing were described by a critical packing parameter (CPP) related to the interfacial area and volume and shape of the membrane lipids. We proposed that increasing the concentraton of H3O+ resulted in stronger hydrogen bonding between the phosphate oxygens at the water–lipid interface leading to a reduced area per lipid and slightly increased membrane thickness. At the meeting, a molecular model for these pH effects based on the result of our second study was presented. Multiple μs-long, unrestrained molecular dynamic (MD) simulations of a phosphatidylcholine lipid bilayer were carried out and showed a concentration dependent reduction in the area per lipid and an increase in bilayer thickness, in agreement with experimental data. Further, H3O+ preferentially accumulated at the water–lipid interface, suggesting the localised pH at the membrane surface is much lower than the bulk bathing solution. Another significant finding was that the hydrogen bonds formed by H3O+ ions with lipid headgroup oxygens are, on average, shorter in length and longer-lived than the ones formed in bulk water. In addition, the H3O+ ions resided for longer periods in association with the carbonyl oxygens than with either phosphate oxygen in lipids. In summary, the MD simulations support a model where the hydrogen bonding capacity of H3O+ for carbonyl and phosphate oxygens is the origin of the pH-induced changes in lipid packing in phospholipid membranes. These molecular-level studies are an important step towards a better understanding of the effect of pH on biological membranes.  相似文献   

6.
Uptake of Tween-fatty acid esters and incorporation of the fatty acids into lipids by soybean (Glycine max [L.] Merr.) suspension cultures was investigated, together with subsequent turnover of the incorporated fatty acids and associated changes in endogenous fatty acid synthesis. Tween uptake was saturable, and fatty acids were rapidly transferred from Tweens to all acylated lipids. Patterns of incorporation into glycerolipids were similar in cells treated with Tweens carrying [1-14C]-fatty acids and in cells treated with [1-14C]acetate, indicating that exogenous fatty acids were used for glycerolipid synthesis essentially as if they had been made by the cell. In Tween-treated cells neutral lipids (which include Tweens) initially accounted for the majority of lipid radioactivity. Radioactivity was then rapidly transferred to glycerolipids. A transient pool of free fatty acids accounting for up to 10% of lipid radioactivity was observed. This was consistent with the hypothesis that fatty acids are transferred from Tweens to lipids by deacylation of the Tweens, creating a pool of free fatty acids which are then used for lipid synthesis. Sterols were only slightly labeled in cells treated with Tweens, but accounted for nearly 50% of lipid radioactivity in cells treated with acetate. This suggested very little degradation and reutilization of the radioactive fatty acids in cells treated with Tweens. In cells treated with either [1-14C]acetate or Tween-[1-14C]-18:1, 70% of the initial fatty acid radioactivity remained in fatty acids after a 100 hour chase. By contrast, fatty acids not normally present disappeared more rapidly, suggesting differential treatment of such fatty acids compared with those normally present. Cells which had incorporated large amounts of exogenous fatty acids altered fatty acid synthesis in three distinct ways: (a) amounts of [1-14C]acetate incorporated into fatty acids were reduced; (b) cells incorporating exogenous unsaturated fatty acids increased the proportion of [1-14C]acetate partitioned into saturated fatty acids, while the converse was true of cells which had incorporated exogenous saturated fatty acids; (c) desaturation of 18:1 to 18:2 and 18:3 was reduced in cells which had incorporated unsaturated fatty acids. These results suggest that Tween-fatty acid esters will be useful for supplying fatty acids to cells for a variety of studies related to fatty acid or membrane metabolism.  相似文献   

7.
1. 3-sn-Phosphatidylcholine was identified as the major lipid in cotyledons from the developing seeds of soya bean, linseed and safflower when tissue was steamed before lipid extraction. The proportion of oleate in this lipid decreased markedly and that of the polyunsaturated C18 fatty acids increased when detached developing cotyledons were incubated for up to 3h. Similar but less pronounced changes occurred in diacylglycerol, which had a fatty acid composition resembling that of the 3-sn-phosphatidylcholine from cotyledons of the same species. 2. [1-14C]Acetate supplied to detached cotyledons was incorporated into the acyl moieties of mainly 3-sn-phosphatidylcholine, 1,2-diacylglycerol and triacylglycerol. Initially label was predominantly in oleate, but subsequently entered at accelerating rates the linoleoyl moieties of the above lipids in soya-bean and safflower cotyledons and the linoleoyl and linolenyl moieties of these lipids in linseed cotyledons. In pulse–chase experiments label was rapidly lost from the oleate of 3-sn-phosphatidylcholine and accumulated in the linoleoyl and linolenoyl moieties of this phospholipid and of the di- and tri-acylglycerols. 3. [2-3H]Glycerol was incorporated into the glycerol moieties of mainly 3-sn-phosphatidylcholine and di- and tri-acylglycerols of developing linseed and soya-bean cotyledons. The label entered the phospholipid and diacylglycerol at rates essentially linear with time from the moment the substrate was supplied, and entered the triacylglycerol at an accelerating rate. With linseed cotyledons the labelled glycerol was incorporated initially mainly into species of 3-sn-phosphatidylcholine and diacylglycerol that contained oleate, but accumulated with time in more highly unsaturated species. In pulse–chase experiments with linseed cotyledons, label was lost from both 3-sn-phosphatidylcholine and diacylglycerol, preferentially from the dioleoyl species, and accumulated in triacylglycerol, mainly in species containing two molecules of linolenate. 4. The results suggest a rapid turnover of 3-sn-phosphatidylcholine during triacylglycerol accumulation in developing oilseeds, and are consistent with the operation of a biosynthetic route whereby oleate initially esterified to the phospholipid is first desaturated, then polyunsaturated fatty acids transferred to triacylglycerol, via diacylglycerol. The possible role of oleoyl phosphatidylcholine as a substrate for oleate desaturation is discussed.  相似文献   

8.
The interdependence of the development of wound-induced respiration and membrane-related phospholipid biosynthesis in potato tuber (Solanum tuberosum var. Russet) slices was established by the use of agents which selectively affect lipid and phospholipid synthesis. Cerulenin, a specific inhibitor of de novo fatty acid synthesis, inhibited the ultimate development of wound-induced respiration and of cyanide resistance only when given in the critical first 10 to 12 hours of slice aging. Similarly, when slices were exposed to the choline analogue dimethylaminoethanol within the first 10 hours, the phospholipid composition of the membrane lipids was drastically altered, the wound-induced respiration in a 24-hr period was substantially curtailed, and the development of cyanide insensitivity was sharply inhibited. These observations indicate that time-restricted membrane-related phospholipid synthesis is prerequisite to the development of wound-induced respiration and concurrent cyanide insensitivity.  相似文献   

9.
Chlorella ellipsoidea Gerneck (IAM C-27) was synchronously grown, and cells at an intermediate stage in the ripening phase of the cell cycle were hardened at 3°C for 48 hours. A nonpolar lipid which increased greatly during hardening was analyzed by gas-liquid chromatography. Palmitic, oleic, linoleic, and linolenic acids were the main components of the lipid. Electron micrographs revealed the appearance of lipid bodies in hardened cells. When formation of free fatty acids and lipid bodies was inhibited with cycloheximide, oligomycin, and 3-(3,4-dichlorophenyl)-1,1-dimethylurea, the development of a high level of hardiness was always inhibited. However, the converse results were not always realized. Cells hardened in the dark in the absence of glucose developed a measurable hardiness in spite of their failure to form free fatty acids. The appearance of lipid bodies was invariably accompanied by the formation of the fatty acids. In pulse-labeling with [14C]NaHCO3 for 4 minutes at zero time and at the 12th hour of hardening, initial incorporation rates of 14C into total lipids of whole cells and the cellular membrane fraction were significantly higher than that into free fatty acids. These results suggest that, although fatty acids are inserted into membrane lipids during hardening, the accumulation of free fatty acids and the appearance of lipid bodies per se are not involved in the development of frost hardiness.  相似文献   

10.
In the present study, the membrane lipid composition of corals from a region with tidally induced upwelling was investigated. The coral community is subject to strong temperature oscillations yet flourishes as a result of adaptation. Glycerophosphocholine profiling of the dominant pocilloporid coral, Seriatopora caliendrum, was performed using a validated method. The coral inhabiting the upwelling region shows a definite shift in the ratio of lipid molecular species, covering several subclasses. Mainly, the coral possesses a higher percentage of saturated, monounsaturated and polyunsaturated plasmanylcholines and a lower percentage of polyunsaturated phosphatidylcholines. Higher levels of lyso–plasmanylcholines containing saturated or monounsaturated fatty acid chains were also revealed in coral tissue at the distal portion of the branch. Based on the physicochemical properties of these lipids, we proposed mechanisms for handling cellular membrane perturbations, such as tension, induced by thermal oscillation to determine how coral cells are able to spontaneously maintain their physiological functions, in both molecular and physical terms. Interestingly, the biochemical and biophysical properties of these lipids also have beneficial effects on the resistance, maintenance, and growth of the corals. The results of this study suggest that lipid metabolic adjustment is a major factor in the adaption of S. caliendrum in upwelling regions.  相似文献   

11.
Lung surfactant protein B (SP-B) is a lipophilic protein critical to lung function at ambient pressure. KL4 is a 21-residue peptide which has successfully replaced SP-B in clinical trials of synthetic lung surfactants. CD and FTIR measurements indicate KL4 is helical in a lipid bilayer environment, but its exact secondary structure and orientation within the bilayer remain controversial. To investigate the partitioning and dynamics of KL4 in phospholipid bilayers, we introduced CD3-enriched leucines at four positions along the peptide to serve as probes of side chain dynamics via 2H solid-state NMR. The chosen labels allow distinction between models of helical secondary structure as well as between a transmembrane orientation or partitioning in the plane of the lipid leaflets. Leucine side chains are also sensitive to helix packing interactions in peptides that oligomerize. The partitioning and orientation of KL4 in DPPC/POPG and POPC/POPG phospholipid bilayers, as inferred from the leucine side chain dynamics, is consistent with monomeric KL4 lying in the plane of the bilayers and adopting an unusual helical structure which confers amphipathicity and allows partitioning into the lipid hydrophobic interior. At physiologic temperatures, the partitioning depth and dynamics of the peptide are dependent on the degree of saturation present in the lipids. The deeper partitioning of KL4 relative to antimicrobial amphipathic α-helices leads to negative membrane curvature strain as evidenced by the formation of hexagonal phase structures in a POPE/POPG phospholipid mixture on addition of KL4. The unusual secondary structure of KL4 and its ability to differentially partition into lipid lamellae containing varying levels of saturation suggest a mechanism for its role in restoring lung compliance.  相似文献   

12.
13.
Arctic species of Calanus are critical to energy transfer between higher and lower trophic levels and their relative abundance, and lipid content is influenced by the alternation of cold and warm years. All three species of Calanus were collected during different periods in Kongsfjorden (Svalbard, 79°N) and adjacent shelf during the abnormally warm year of 2006. Lipid composition and fatty acid structure of individual lipid classes were examined in relation with population structure. Wax esters dominated the neutral lipid fraction. Phosphatidylcholine (PC) dominated the structural lipids followed by phosphatidylethanolamine (PE). PC/PE ratios of 3–6 suggested an increase in PC proportions compared to earlier studies. Depending on the time scale, fatty acids of wax esters illustrated either trophic differences between fjord and offshore conditions for C. hyperboreus and C. finmarchicus or trophic differences related to seasonality for C. glacialis. Similarly, seasonality and trophic conditions controlled the changes in fatty acids of triglycerides, but de novo synthesis of long-chain monoenes suggested energy optimization to cope with immediate metabolic needs. Polar lipids fatty acid composition was species specific and on the long-term (comparison with data from the past decade) composition appears related to changes in trophic environment. Fatty acid composition of PC and PE indicated relative dominance of 20:5n-3 in PC and 22:6n-3 in PE for all three species. The combination of PE and PC acyl chain and phospholipid head group restructuring indicates an inter-annual variability and suggests that membrane lipids are the most likely candidate to evaluate adaptive changes in Arctic copepods to hydrothermal regime.  相似文献   

14.
The physical state of the membrane lipids, as determined by fatty acid composition and environmental temperature, has a marked effect on both the temperature range within which Acholeplasma laidlawii B cells can grow and on growth rates within the permissible temperature ranges. The minimum growth temperature of 8 °C is not defined by the fatty acid composition of the membrane lipids when cells are enriched in fatty acids giving rise to gel to liquid-crystalline membrane lipid phase transitions occurring below this temperature. The elevated minimum growth temperatures of cells enriched in fatty acids giving rise to lipid phase transitions occurring at higher temperatures, however, are clearly defined by the fatty acid composition of the membrane lipids. The optimum and maximum growth temperatures are also influenced indirectly by the physical state of the membrane lipids, being significantly reduced for cells supplemented with lower melting, unsaturated fatty acids. The temperature coefficient of growth at temperatures near or above the midpoint of the lipid phase transition is 16 to 18 kcalmol, but this value increases abruptly to 40 to 45 kcalmol at temperatures below the phase transition midpoint. Both the absolute rates and temperature coefficients of cell growth are similar for cells whose membrane lipids exist entirely or predominantly in the liquid-crystalline state, but absolute growth rates decline rapidly and temperature coefficients increase at temperatures where more than half of the membrane lipids become solidified. Cell growth ceases when the conversion of the membrane lipid to the gel state approaches completion, but growth and replication can continue at temperatures where less than one tenth of the total lipid remains in the fluid state. An appreciable heterogeneity in the physical state of the membrane lipids can apparently be tolerated by this organism without a detectable loss of membrane function.  相似文献   

15.
Mitochondrial dysfunction is associated with many human diseases. Mitochondrial damage is exacerbated by inadequate protein quality control and often further contributes to pathogenesis. The maintenance of mitochondrial functions requires a delicate balance of continuous protein synthesis and degradation, i.e. protein turnover. To understand mitochondrial protein dynamics in vivo, we designed a metabolic heavy water (2H2O) labeling strategy customized to examine individual protein turnover in the mitochondria in a systematic fashion. Mice were fed with 2H2O at a minimal level (<5% body water) without physiological impacts. Mitochondrial proteins were analyzed from 9 mice at each of the 13 time points between 0 and 90 days (d) of labeling. A novel multiparameter fitting approach computationally determined the normalized peak areas of peptide mass isotopomers at initial and steady-state time points and permitted the protein half-life to be determined without plateau-level 2H incorporation. We characterized the turnover rates of 458 proteins in mouse cardiac and hepatic mitochondria and found median turnover rates of 0.0402 d−1 and 0.163 d−1, respectively, corresponding to median half-lives of 17.2 d and 4.26 d. Mitochondria in the heart and those in the liver exhibited distinct turnover kinetics, with limited synchronization within functional clusters. We observed considerable interprotein differences in turnover rates in both organs, with half-lives spanning from hours to months (∼60 d). Our proteomics platform demonstrates the first large-scale analysis of mitochondrial protein turnover rates in vivo, with potential applications in translational research.Mitochondrial dysfunctions are observed in disorders such as neurodegeneration, cardiovascular diseases, and aging (13). It is postulated that the failure to contain or replenish mitochondrial proteins damaged by reactive oxygen species directly underlies many pathological phenotypes (4). The development of effective treatments for these diseases therefore relies on understanding the molecular basis of protein dynamics. Outstanding questions are how the processes of mitochondrial proteome dynamics are regulated in different systems, and how their perturbations could progress to pathological remodeling of the organelle. Thus far, quantitative proteomics efforts have been predominated by steady-state measurements, which often provide fragmentary snapshots of the proteome that are difficult to comprehend in the context of other cellular events.To further understand mitochondrial dynamics in vivo, we examined the turnover rates of individual heart and liver mitochondrial proteins on a proteome scale. Both the liver and the heart contain large numbers of mitochondria, but cardiac and hepatic mitochondria differ in their protein composition, oxygen consumption, substrate utilization, and disease manifestation. However, these differences are often interpreted only by protein compositions and steady-state abundance, without the consideration of protein kinetics in the temporal dimension. Abnormal protein kinetics may indicate dysfunctions in protein quality control, the accumulation of damaged proteins, misfolding, or other proteinopathies. Protein dynamics itself is an important intrinsic property of the proteome, the disruption of which could be causal of cellular etiologies.At minimum, a kinetic definition of the proteome requires knowledge of the rate at which individual proteins are being replaced. Isotope tracers are particularly useful for tracking such continual renewal of the proteome in living systems, because they allow differentiation between preexisting and newly synthesized proteins (5). Among the available stable isotope precursors, heavy water (2H2O) labeling offers several advantages with respect to safety, labeling kinetics, and cost (6, 7). First, 2H2O administration to animals and humans at low enrichment levels is safe for months or even years (8). Second, maintaining constant 2H enrichment levels in body water following the initial intake of 2H2O is easily achieved, because administrated 2H2O rapidly equilibrates over all tissues but decays slowly (9, 10). Third, 2H2O labeling is more cost effective than other stable isotope labeling methods. Importantly, 2H2O intake induces universal 2H incorporation into biomolecules. Systematic insights into protein turnover in vivo could therefore be correlated to that of nucleic acids, carbohydrates, or lipids, enabling broad applications for this technology in studying mammalian systems, including humans.A variety of methodologies have been developed to analyze the extent of 2H incorporation in proteins following 2H2O labeling, including GC-MS measurements of hydrolyzed target proteins (1114) and peptide analysis in MALDI-TOF MS (15) and LC-MS (16, 17). More recently, Price et al. described an approach for measuring protein turnover by calculating the theoretical number of 2H-labeling sites on a peptide sequence (18) and reported the turnover rates of ∼100 human plasma proteins. Here we describe another novel strategy to determine protein turnover rates on a proteomic scale using 2H2O labeling. By computing the parameters needed to deduce fractional protein synthesis using software we developed, we were able to obtain protein half-life data without relying on the asymptotic isotopic abundance of peptide ions. Our approach also has the unique benefit of automating all steps of isotopomer quantification and postcollection data analysis, and it does not require knowledge of the exact precursor enrichment or labeling sites of peptides. We observed diverse kinetics from 458 liver and heart mitochondrial proteins that inform essential characteristics of mitochondrial dynamics and intragenomic differences between the two organs.  相似文献   

16.
The requirements for microsomal triglyceride transfer protein (MTP) during the turnover and transfer of glycerolipids from intracellular compartments into secretory very low-density lipoprotein (VLDL) were studied by pre-labelling lipids with [3H]glycerol and [14C]oleate in primary cultures of rat hepatocytes. The intracellular redistribution of pre-labelled glycerolipids was then compared at the end of subsequent chase periods during which the MTP inhibitor BMS-200150 was either present or absent in the medium. Inhibition of MTP resulted in a decreased output of VLDL triacylglycerol (TAG) and a delayed removal of labelled TAG from the cytosol and from the membranes of the smooth endoplasmic reticulum (SER), the cis- and the trans-Golgi. Inactivation of MTP did not decrease the bulk lipolytic turnover of cellular TAG as reflected by changes in its [3H]glycerol:[14C]oleate ratios. However, a larger proportion of the resultant TAG fatty acids was re-esterified and remained with the membranes of the various subcellular fractions rather than emerging as VLDL. The effects of BMS-200150 on the pattern of phospholipid (PL) mechanism and redistribution suggested that inhibition of MTP prevented the normal lipolytic transfer of PL-derived fatty acids out of the SER, cis- and trans-Golgi membrane pools. Finally, changes in the 14C specific radioactivities of the cytosolic and membrane pools of TAG suggested that inhibition of MTP prevented a normal influx of relatively unlabelled fatty acids into these pools during the chase period.  相似文献   

17.
Analyses of brain phospholipid fatty acid profiles reveal a selective deficiency and enrichment in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), respectively. In order to account for this difference in brain fatty acid levels, we hypothesized that EPA is more rapidly β-oxidized upon its entry into the brain. Wild-type C57BL/6 mice were perfused with either 14C-EPA or 14C-DHA via in situ cerebral perfusion for 40 s, followed by a bicarbonate buffer to wash out the residual radiolabeled polyunsaturated fatty acid (PUFA) in the capillaries. 14C-PUFA-perfused brains were extracted for chemical analyses of neutral lipid and phospholipid fatty acids. Based on the radioactivity in aqueous, total lipid, neutral lipid and phospholipid fractions, volume of distribution (VD, μl/g) was calculated. The VD between 14C-EPA- and 14C-DHA-perfused samples was not statistically different for total lipid, neutral lipids or total phospholipids. However, the VD of 14C-EPA in the aqueous fraction was 2.5 times higher than that of 14C-DHA (p=0.025), suggesting a more extensive β-oxidation than DHA. Furthermore, radiolabeled palmitoleic acid, a fatty acid that can be synthesized de novo, was detected in brain phospholipids from 14C-EPA but not from 14C-DHA-perfused mice suggesting that β-oxidation products of EPA were recycled into endogenous fatty acid biosynthetic pathways. These findings suggest that low levels of EPA in brain phospholipids compared to DHA may be the result of its rapid β-oxidation upon uptake by the brain.  相似文献   

18.
In low-phosphorus (P) marine systems, phytoplankton replace membrane phospholipids with non-phosphorus lipids, but it is not known how rapidly this substitution occurs. Here, when cells of the model diatom Thalassiosira pseudonana were transferred from P-replete medium to P-free medium, the phospholipid content of the cells rapidly declined within 48 h from 45±0.9 to 21±4.5% of the total membrane lipids; the difference was made up by non-phosphorus lipids. Conversely, when P-limited T. pseudonana were resupplied with P, cells reduced the percentage of their total membrane lipids contributed by a non-phosphorus lipid from 43±1.5 to 7.3±0.9% within 24 h, whereas the contribution by phospholipids rose from 2.2±0.1 to 44±3%. This dynamic phospholipid reservoir contained sufficient P to synthesize multiple haploid genomes, suggesting that phospholipid turnover could be an important P source for cells. Field observations of phytoplankton lipid content may thus reflect short-term changes in P supply and cellular physiology, rather than simply long-term adjustment to the environment.  相似文献   

19.
20.
Summary Benthic microbial communities of the Arthur Harbor area were described by analysis of their cell membrane phospholipid ester-linked fatty acids (PELFA) and metabolic rates. Analysis revealed a biomass averaging 6 nM (phospholipid) or 3.5×108 cells per gram dry weight (gdw) of sediment for the four sites. Only slight biomass differences were detected between the four peninsula sites. All Arthur Harbor sites were determined to have a biomass similar to the lowest amount reported for a previously described McMurdo Sound site at New Harbor. Community structure based on signature phospholipids indicated only slight differences between the four peninsula sites with greater relative amounts of diatom marker lipids at a deeper site. Bacterial biomarker lipids were also determined in relatively equal proportions for the four Arthur Harbor sites with only one site indicating a somewhat decreased proportion. Metabolic rates of sodium [14C]-acetate and methyl [3H]-thymidine incorporation into lipid and bacterial DNA respectively also indicated only slight relative differences in microbial communities of Arthur Harbor study sites. Lipid metabolism (14C-acetate) ranged between 6 and 12 (x104) DPM/g/h for the four sites with 8 being the average. Bacterial (excluding sulfate-reducing bacteria (SRB)) cell divisions per g per h indicated increased rates at a deeper site with 14×105, compared to the average (5×105) for the three remaining sites. Average estimated total bacterial (excluding SRB's) community turnover was on the order of 0.6%/h for the four sites. Metabolic rate comparisons of Arthur Harbor with those of previously determined McMurdo Sound indicated a somewhat increased lipid metabolism and an order of magnitude greater bacterial cell division rate at Arthur Harbor.This paper is part 4 in the series: Microbial Ecology in Antarctic Sea-Ice and Benthic Communities  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号