首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the past decade, numerous reports have underscored the similarities between the metabolism of Drosophila and vertebrates, with the identification of evolutionarily conserved enzymes and analogous organs that regulate carbohydrate and lipid metabolism. It is now well established that the major metabolic, energy-sensing and endocrine signaling networks of vertebrate systems are also conserved in flies. Accordingly, studies in Drosophila are beginning to unravel how perturbed energy balance impinges on lifespan and on the ensuing diseases when energy homeostasis goes awry. Here, we highlight several emerging concepts that are at the nexus between obesity, nutrient sensing, metabolic homeostasis and aging. Specifically, we summarize the endocrine mechanisms that regulate carbohydrate and lipid metabolism, and provide an overview of the neuropeptides that regulate feeding behavior. We further describe the various efforts at modeling the effects of high-fat or -sugar diets in Drosophila and the signaling mechanisms involved in integrating organ function. Finally, we draw attention to some of the cardinal discoveries made with these disease models and how these could spur new research questions in vertebrate systems.KEY WORDS: Metabolic homeostasis, Nutrient sensing, Drosophila  相似文献   

2.
Epidemiological studies in humans suggest that skeletal muscle aging is a risk factor for the development of several age‐related diseases such as metabolic syndrome, cancer, Alzheimer's and Parkinson's disease. Here, we review recent studies in mammals and Drosophila highlighting how nutrient‐ and stress‐sensing in skeletal muscle can influence lifespan and overall aging of the organism. In addition to exercise and indirect effects of muscle metabolism, growing evidence suggests that muscle‐derived growth factors and cytokines, known as myokines, modulate systemic physiology. Myokines may influence the progression of age‐related diseases and contribute to the intertissue communication that underlies systemic aging.  相似文献   

3.
4.
5.
6.
The concept that mutations cause aging phenotypes could not be directly tested previously due to inability to identify age‐related mutations in somatic cells and determine their impact on organismal aging. Here, we subjected Saccharomyces cerevisiae to multiple rounds of replicative aging and assessed de novo mutations in daughters of mothers of different age. Mutations did increase with age, but their low numbers, < 1 per lifespan, excluded their causal role in aging. Structural genome changes also had no role. A mutant lacking thiol peroxidases had the mutation rate well above that of wild‐type cells, but this did not correspond to the aging pattern, as old wild‐type cells with few or no mutations were dying, whereas young mutant cells with many more mutations continued dividing. In addition, wild‐type cells lost mitochondrial DNA during aging, whereas shorter‐lived mutant cells preserved it, excluding a causal role of mitochondrial mutations in aging. Thus, DNA mutations do not cause aging in yeast. These findings may apply to other damage types, suggesting a causal role of cumulative damage, as opposed to individual damage types, in organismal aging.  相似文献   

7.
Adequate energy stores are essential for survival, and sophisticated neuroendocrine mechanisms evolved to stimulate foraging in response to nutrient deprivation. Food search behavior is usually investigated in young animals, and it is not known how aging alters this behavior. To address this question in Drosophila melanogaster, we compared the ability to locate food by olfaction in young and old flies using a food‐filled trap. As aging is associated with a decline in motor functions, learning, and memory, we expected that aged flies would take longer to enter the food trap than their young counterparts. Surprisingly, old flies located food with significantly shorter latency than young ones. Robust food search behavior was associated with significantly lower fat reserves and lower starvation resistance in old flies. Food‐finding latency (FFL) was shortened in young wild‐type flies that were starved until their fat was depleted but also in heterozygous chico mutants with reduced insulin receptor activity and higher fat deposits. Conversely, food trap entry was delayed in old flies with increased insulin signaling. Our results suggest that the difference in FFL between young and old flies is linked to age‐dependent differences in metabolic status and may be mediated by reduced insulin signaling.  相似文献   

8.
We test the 'free radical theory of aging' using six species of colubrid snakes (numerous, widely distributed, non-venomous snakes of the family Colubridae) that exhibit long (> 15 years) or short (< 10 years) lifespans. Because the 'rate of living theory' predicts metabolic rates to be correlated with rates of aging and oxidative damage results from normal metabolic processes we sought to answer whether physiological parameters and locomotor performance (which is a good predictor of survival in juvenile snakes) mirrored the evolution of lifespans in these colubrid snakes. We measured whole animal metabolic rate (oxygen consumption Vo2), locomotor performance, cellular metabolic rate (mitochondrial oxygen consumption), and oxidative stress potential (hydrogen peroxide production by mitochondria). Longer-lived colubrid snakes have greater locomotor performance and reduced hydrogen peroxide production than short-lived species, while whole animal metabolic rates and mitochondrial efficiency did not differ with lifespan. We present the first measures testing the 'free radical theory of aging' using reptilian species as model organisms. Using reptiles with different lifespans as model organisms should provide greater insight into mechanisms of aging.  相似文献   

9.
10.
The nutritional requirements of Drosophila have mostly been studied for development and reproduction, but the minimal requirements for adult male and female flies for lifespan have not been established. Following development on a complete diet, we find substantial sex difference in the basic nutritional requirement of adult flies for full length of life. Relative to females, males require less of each nutrient, and for some nutrients that are essential for development, adult males have no requirement at all for lifespan. The most extreme (and surprising) sex differences were that chronic cholesterol and vitamin deficiencies had no effect on the lifespan of adult males, but they greatly decreased lifespan in females. Female oogenesis rather than chromosomal karyotype and mating status is the key cause of this gender difference in life‐sustaining nutritional requirements. These data are important to the way we understand the mechanisms by which diet modifies lifespan.  相似文献   

11.
Excessive production of mitochondrial reactive oxygen species (mROS) is strongly associated with mitochondrial and cellular oxidative damage, aging, and degenerative diseases. However, mROS also induces pathways of protection of mitochondria that slow aging, inhibit cell death, and increase lifespan. Recent studies show that the activation of the mitochondrial permeability transition pore (mPTP), which is triggered by mROS and mitochondrial calcium overloading, is enhanced in aged animals and humans and in aging‐related degenerative diseases. mPTP opening initiates further production and release of mROS that damage both mitochondrial and nuclear DNA, proteins, and phospholipids, and also releases matrix NAD that is hydrolyzed in the intermembrane space, thus contributing to the depletion of cellular NAD that accelerates aging. Oxidative damage to calcium transporters leads to calcium overload and more frequent opening of mPTP. Because aging enhances the opening of the mPTP and mPTP opening accelerates aging, we suggest that mPTP opening drives the progression of aging. Activation of the mPTP is regulated, directly and indirectly, not only by the mitochondrial protection pathways that are induced by mROS, but also by pro‐apoptotic signals that are induced by DNA damage. We suggest that the integration of these contrasting signals by the mPTP largely determines the rate of cell aging and the initiation of cell death, and thus animal lifespan. The suggestion that the control of mPTP activation is critical for the progression of aging can explain the conflicting and confusing evidence regarding the beneficial and deleterious effects of mROS on health and lifespan.  相似文献   

12.
Low environmental temperature and dietary restriction (DR) extend lifespan in diverse organisms. In the fruit fly Drosophila, switching flies between temperatures alters the rate at which mortality subsequently increases with age but does not reverse mortality rate. In contrast, DR acts acutely to lower mortality risk; flies switched between control feeding and DR show a rapid reversal of mortality rate. Dietary restriction thus does not slow accumulation of aging‐related damage. Molecular species that track the effects of temperatures on mortality but are unaltered with switches in diet are therefore potential biomarkers of aging‐related damage. However, molecular species that switch upon instigation or withdrawal of DR are thus potential biomarkers of mechanisms underlying risk of mortality, but not of aging‐related damage. Using this approach, we assessed several commonly used biomarkers of aging‐related damage. Accumulation of fluorescent advanced glycation end products (AGEs) correlated strongly with mortality rate of flies at different temperatures but was independent of diet. Hence, fluorescent AGEs are biomarkers of aging‐related damage in flies. In contrast, five oxidized and glycated protein adducts accumulated with age, but were reversible with both temperature and diet, and are therefore not markers either of acute risk of dying or of aging‐related damage. Our approach provides a powerful method for identification of biomarkers of aging.  相似文献   

13.
《遗传学报》2022,49(4):287-298
Maintaining metabolic homeostasis is essential for cellular and organismal health throughout life. Multiple signaling pathways that regulate metabolism also play critical roles in aging, such as PI3K/AKT, mTOR, AMPK, and sirtuins (SIRTs). Among them, sirtuins are known as a protein family with versatile functions, such as metabolic control, epigenetic modification and lifespan extension. Therefore, by understanding how sirtuins regulate metabolic processes, we can start to understand how they slow down or accelerate biological aging from the perspectives of metabolic regulation. Here, we review the biology of SIRT3, SIRT4, and SIRT5, known as the mitochondrial sirtuins due to their localization in the mitochondrial matrix. First, we will discuss canonical pathways that regulate metabolism more broadly and how these are integrated with aging regulation. Then, we will summarize the current knowledge about functional differences between SIRT3, SIRT4, and SIRT5 in metabolic control and integration in signaling networks. Finally, we will discuss how mitochondrial sirtuins regulate processes associated with aging and aging-related diseases.  相似文献   

14.
The oxidative stress theory of aging postulates that aging results from the accumulation of molecular damage caused by reactive oxygen species (ROS) generated during normal metabolism. Superoxide dismutases (SODs) counteract this process by detoxifying superoxide. It has previously been shown that elimination of either cytoplasmic or mitochondrial SOD in yeast, flies, and mice results in decreased lifespan. In this experiment, we examine the effect of eliminating each of the five individual sod genes present in Caenorhabditis elegans. In contrast to what is observed in other model organisms, none of the sod deletion mutants shows decreased lifespan compared to wild-type worms, despite a clear increase in sensitivity to paraquat- and juglone-induced oxidative stress. In fact, even mutants lacking combinations of two or three sod genes survive at least as long as wild-type worms. Examination of gene expression in these mutants reveals mild compensatory up-regulation of other sod genes. Interestingly, we find that sod-2 mutants are long-lived despite a significant increase in oxidatively damaged proteins. Testing the effect of sod-2 deletion on known pathways of lifespan extension reveals a clear interaction with genes that affect mitochondrial function: sod-2 deletion markedly increases lifespan in clk-1 worms while clearly decreasing the lifespan of isp-1 worms. Combined with the mitochondrial localization of SOD-2 and the fact that sod-2 mutant worms exhibit phenotypes that are characteristic of long-lived mitochondrial mutants—including slow development, low brood size, and slow defecation—this suggests that deletion of sod-2 extends lifespan through a similar mechanism. This conclusion is supported by our demonstration of decreased oxygen consumption in sod-2 mutant worms. Overall, we show that increased oxidative stress caused by deletion of sod genes does not result in decreased lifespan in C. elegans and that deletion of sod-2 extends worm lifespan by altering mitochondrial function.  相似文献   

15.
Reactive oxygen species (ROS) modulate aging and aging-related diseases. Dietary composition is critical in modulating lifespan. However, how ROS modulate dietary effects on lifespan remains poorly understood. Superoxide dismutase 1 (SOD1) is a major cytosolic enzyme responsible for scavenging superoxides. Here we investigated the role of SOD1 in lifespan modulation by diet in Drosophila. We found that a high sugar-low protein (HS-LP) diet or low-calorie diet with low-sugar content, representing protein restriction, increased lifespan but not resistance to acute oxidative stress in wild-type flies, relative to a standard base diet. A low sugar-high protein diet had an opposite effect. Our genetic analysis indicated that SOD1 overexpression or dfoxo deletion did not alter lifespan patterns of flies responding to diets. However, sod1 reduction blunted lifespan extension by the HS-LP diet but not the low-calorie diet. HS-LP and low-calorie diets both reduced target of rapamycin (TOR) signaling and only the HS-LP diet increased oxidative damage. sod1 knockdown did not affect phosphorylation of S6 kinase, suggesting that SOD1 acts in parallel with or downstream of TOR signaling. Surprisingly, rapamycin decreased lifespan in sod1 mutant but not wild-type males fed the standard, HS-LP, and low-calorie diets, whereas antioxidant N-acetylcysteine only increased lifespan in sod1 mutant males fed the HS-LP diet, when compared to diet-matched controls. Our findings suggest that SOD1 is required for lifespan extension by protein restriction only when dietary sugar is high and support the context-dependent role of ROS in aging and caution the use of rapamycin and antioxidants in aging interventions.  相似文献   

16.
Reduced mechanistic target of rapamycin (mTOR) signalling extends lifespan in yeast, nematodes, fruit flies and mice, highlighting a physiological pathway that could modulate aging in evolutionarily divergent organisms. This signalling system is also hypothesized to play a central role in lifespan extension via dietary restriction. By collating data from 48 available published studies examining lifespan with reduced mTOR signalling, we show that reduced mTOR signalling provides similar increases in median lifespan across species, with genetic mTOR manipulations consistently providing greater life extension than pharmacological treatment with rapamycin. In contrast to the consistency in changes in median lifespan, however, the demographic causes for life extension are highly species specific. Reduced mTOR signalling extends lifespan in nematodes by strongly reducing the degree to which mortality rates increase with age (aging rate). By contrast, life extension in mice and yeast occurs largely by pushing back the onset of aging, but not altering the shape of the mortality curve once aging starts. Importantly, in mice, the altered pattern of mortality induced by reduced mTOR signalling is different to that induced by dietary restriction, which reduces the rate of aging. Effects of mTOR signalling were also sex dependent, but only within mice, and not within flies, thus again species specific. An alleviation of age‐associated mortality is not a shared feature of reduced mTOR signalling across model organisms and does not replicate the established age‐related survival benefits of dietary restriction.  相似文献   

17.
Dietary restriction (DR) is a robust intervention that extends lifespan and slows the onset of age‐related diseases in diverse organisms. While significant progress has been made in attempts to uncover the genetic mechanisms of DR, there are few studies on the effects of DR on the metabolome. In recent years, metabolomic profiling has emerged as a powerful technology to understand the molecular causes and consequences of natural aging and disease‐associated phenotypes. Here, we use high‐resolution mass spectroscopy and novel computational approaches to examine changes in the metabolome from the head, thorax, abdomen, and whole body at multiple ages in Drosophila fed either a nutrient‐rich ad libitum (AL) or nutrient‐restricted (DR) diet. Multivariate analysis clearly separates the metabolome by diet in different tissues and different ages. DR significantly altered the metabolome and, in particular, slowed age‐related changes in the metabolome. Interestingly, we observed interacting metabolites whose correlation coefficients, but not mean levels, differed significantly between AL and DR. The number and magnitude of positively correlated metabolites was greater under a DR diet. Furthermore, there was a decrease in positive metabolite correlations as flies aged on an AL diet. Conversely, DR enhanced these correlations with age. Metabolic set enrichment analysis identified several known (e.g., amino acid and NAD metabolism) and novel metabolic pathways that may affect how DR effects aging. Our results suggest that network structure of metabolites is altered upon DR and may play an important role in preventing the decline of homeostasis with age.  相似文献   

18.
Cyclophilin D (CYPD) is a mitochondrial peptidyl prolyl‐cis,trans‐isomerase involved in opening of the mitochondrial permeability transition pore (mPTP). CYPD abundance increases during aging in mammalian tissues and in the aging model organism Podospora anserina. Here, we show that treatment of the P. anserina wild‐type with low concentrations of the cyclophilin inhibitor cyclosporin A (CSA) extends lifespan. Transgenic strains overexpressing PaCypD are characterized by reduced stress tolerance, suffer from pronounced mitochondrial dysfunction and are characterized by accelerated aging and induction of cell death. Treatment with CSA leads to correction of mitochondrial function and lifespan to that of the wild‐type. In contrast, PaCypD deletion strains are not affected by CSA within the investigated concentration range and show increased resistance against inducers of oxidative stress and cell death. Our data provide a mechanistic link between programmed cell death (PCD) and organismal aging and bear implications for the potential use of CSA to intervene into biologic aging.  相似文献   

19.
Dietary restriction extends lifespan in a wide variety of animals, including Drosophila, but its relationship to functional and cognitive aging is unclear. Here, we study the effects of dietary yeast content on fly performance in an aversive learning task (association between odor and mechanical shock). Learning performance declined at old age, but 50‐day‐old dietary‐restricted flies learned as poorly as equal‐aged flies maintained on yeast‐rich diet, even though the former lived on average 9 days (14%) longer. Furthermore, at the middle age of 21 days, flies on low‐yeast diets showed poorer short‐term (5 min) memory than flies on rich diet. In contrast, dietary restriction enhanced 60‐min memory of young (5 days old) flies. Thus, while dietary restriction had complex effects on learning performance in young to middle‐aged flies, it did not attenuate aging‐related decline of aversive learning performance. These results are consistent with the hypothesis that, in Drosophila, dietary restriction reduces mortality and thus leads to lifespan extension, but does not affect the rate with which somatic damage relevant for cognitive performance accumulates with age.  相似文献   

20.
Maternal age is generally known to be negatively correlated with the lifespan of offspring in several animal models including yeast, rotifers, flies, and possibly in humans. However, several reports have shown positive effects of parental age on offspring lifespan. Thus, there was a need to investigate further the inconsistent results on the effect of parental age on lifespan. In this study, the effects of parental age on offspring fitness and lifespan were examined by using Drosophila melanogaster. The lifespan of offspring from old parents was significantly increased compared with that of the young counterparts in the Canton‐S (CS) strain but not in other D. melanogaster strains, such as Oregon‐R (OR) and w1118. To find out why the lifespan is increased in the offspring from old parents in CS flies, fitness components that could modulate lifespan were examined in CS flies. Egg weight and body weight were reduced by parental aging and the offspring of old fathers or old mothers developed faster than that of the young. In addition, the offspring of old parents had increased resistance to oxidative and heat shock stresses. However, reproductive capacity, mating preference, and food intake were unaffected by parental aging. These results indicate that parental aging in CS strain D. melanogaster has beneficial effects on the lifespan and fitness of offspring. The presence of strain‐specific manner effects suggests that genetic background might be a significant factor in the parental age effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号