首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The emergence and rapid spread of unusual DS-1-like intergenogroup reassortant rotavirus strains have been recently reported in Asia, Australia, and Europe. During rotavirus surveillance in Thailand in 2013–2014, novel DS-1-like intergenogroup reassortant strains having G8P[8] genotypes (i.e., strains KKL-17, PCB-79, PCB-84, PCB-85, PCB-103, SKT-107, SWL-12, NP-130, PCB-656, SKT-457, SSKT-269, and SSL-55) were identified in stool samples from hospitalized children with severe diarrhea. In this study, we determined and characterized the complete genomes of these 12 strains (seven strains, KKL-17, PCB-79, PCB-84, PCB-85, PCB-103, SKT-107, and SWL-12, found in 2013 (2013 strains), and five, NP-130, PCB-656, SKT-457, SSKT-269, and SSL-55, in 2014 (2014 strains)). On full genomic analysis, all 12 strains showed a unique genotype constellation comprising a mixture of genogroup 1 and 2 genes: G8-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. With the exception of the G genotype, the unique genotype constellation of the 12 strains (P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2) was found to be shared with DS-1-like intergenogroup reassortant strains. On phylogenetic analysis, six of the 11 genes of the 2013 strains (VP4, VP2, VP3, NSP1, NSP3, and NSP5) appeared to have originated from DS-1-like intergenogroup reassortant strains, while the remaining four (VP7, VP6, VP1, and NSP2) and one (NSP4) gene appeared to be of bovine and human origin, respectively. Thus, the 2013 strains appeared to be reassortant strains as to DS-1-like intergenogroup reassortant, bovine, bovine-like human, and/or human rotaviruses. On the other hand, five of the 11 genes of the 2014 strains (VP4, VP2, VP3, NSP1, and NSP3) appeared to have originated from DS-1-like intergenogroup reassortant strains, while three (VP7, VP1, and NSP2) and one (NSP4) were assumed to be of bovine and human origin, respectively. Notably, the remaining two genes, VP6 and NSP5, of the 2014 strains appeared to have originated from locally circulating DS-1-like G2P[4] human rotaviruses. Thus, the 2014 strains were assumed to be multiple reassortment strains as to DS-1-like intergenogroup reassortant, bovine, bovine-like human, human, and/or locally circulating DS-1-like G2P[4] human rotaviruses. Overall, the great genomic diversity among the DS-1-like intergenogroup reassortant strains seemed to have been generated through additional reassortment events involving animal and human strains. Moreover, all the 11 genes of three of the 2014 strains, NP-130, PCB-656, and SSL-55, were very closely related to those of Vietnamese DS-1-like G8P[8] strains that emerged in 2014–2015, indicating the derivation of these DS-1-like G8P[8] strains from a common ancestor. To our knowledge, this is the first report on full genome-based characterization of DS-1-like G8P[8] strains that have emerged in Thailand. Our observations will add to our growing understanding of the evolutionary patterns of emerging DS-1-like intergenogroup reassortant strains.  相似文献   

2.
The emergence and rapid spread of novel DS-1-like G1P[8] human rotaviruses in Japan were recently reported. More recently, such intergenogroup reassortant strains were identified in Thailand, implying the ongoing spread of unusual rotavirus strains in Asia. During rotavirus surveillance in Thailand, three DS-1-like intergenogroup reassortant strains having G3P[8] (RVA/Human-wt/THA/SKT-281/2013/G3P[8] and RVA/Human-wt/THA/SKT-289/2013/G3P[8]) and G2P[8] (RVA/Human-wt/THA/LS-04/2013/G2P[8]) genotypes were identified in fecal samples from hospitalized children with acute gastroenteritis. In this study, we sequenced and characterized the complete genomes of strains SKT-281, SKT-289, and LS-04. On whole genomic analysis, all three strains exhibited unique genotype constellations including both genogroup 1 and 2 genes: G3-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 for strains SKT-281 and SKT-289, and G2-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 for strain LS-04. Except for the G genotype, the unique genotype constellation of the three strains (P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2) is commonly shared with DS-1-like G1P[8] strains. On phylogenetic analysis, nine of the 11 genes of strains SKT-281 and SKT-289 (VP4, VP6, VP1-3, NSP1-3, and NSP5) appeared to have originated from DS-1-like G1P[8] strains, while the remaining VP7 and NSP4 genes appeared to be of equine and bovine origin, respectively. Thus, strains SKT-281 and SKT-289 appeared to be reassortant strains as to DS-1-like G1P[8], animal-derived human, and/or animal rotaviruses. On the other hand, seven of the 11 genes of strain LS-04 (VP7, VP6, VP1, VP3, and NSP3-5) appeared to have originated from locally circulating DS-1-like G2P[4] human rotaviruses, while three genes (VP4, VP2, and NSP1) were assumed to be derived from DS-1-like G1P[8] strains. Notably, the remaining NSP2 gene of strain LS-04 appeared to be of bovine origin. Thus, strain LS-04 was assumed to be a multiple reassortment strain as to DS-1-like G1P[8], locally circulating DS-1-like G2P[4], bovine-like human, and/or bovine rotaviruses. Overall, the great genomic diversity among the DS-1-like G1P[8] strains seemed to have been generated through reassortment involving human and animal strains. To our knowledge, this is the first report on whole genome-based characterization of DS-1-like intergenogroup reassortant strains having G3P[8] and G2P[8] genotypes that have emerged in Thailand. Our observations will provide important insights into the evolutionary dynamics of emerging DS-1-like G1P[8] strains and related reassortant ones.  相似文献   

3.
A rare human G10P[8] rotavirus with a reassortment between bovine and human viruses was detected from a patient with acute gastroenteritis in Vietnam. Genetic analysis using complete coding sequences of all segments showed a genomic constellation of this virus of G10-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1. Its VP7 region was genetically related to that of a bovine rotavirus derived from Australia (strain VICG10.01), whereas all other genes were identical to those of a human rotavirus derived from Australia (strain Victoria/CK00047). These results indicate a possibility that the reassortment of the rotavirus was caused by immune escape in Australia and the rotavirus was carried to Vietnam. Additionally, this finding will help further understanding the evolution of rotaviruses circulating in Vietnam.  相似文献   

4.
G12 rotaviruses are emerging rotavirus strains causing severe diarrhea in infants and young children worldwide. However, the whole genomes of only a few G12 strains have been fully sequenced and analyzed. In this study, we sequenced and characterized the complete genomes of six G12 strains (RVA/Human-tc/MMR/A14/2011/G12P[8], RVA/Human-tc/MMR/A23/2011/G12P[6], RVA/Human-tc/MMR/A25/2011/G12P[8], RVA/Human-tc/MMR/P02/2011/G12P[8], RVA/Human-tc/MMR/P39/2011/G12P[8], and RVA/Human-tc/MMR/P43/2011/G12P[8]) detected in six stool samples from children with acute gastroenteritis in Myanmar. On whole genomic analysis, all six Myanmarese G12 strains were found to have a Wa-like genetic backbone: G12-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1 for strains A14, A25, P02, P39, and P43, and G12-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1 for strain A23. Phylogenetic analysis showed that most genes of the six strains examined in this study were genetically related to globally circulating human G1, G3, G9, and G12 strains. Of note is that the NSP4 gene of strain A23 exhibited the closest relationship with the cognate genes of human-like bovine strains as well as human strains, suggesting the occurrence of reassortment between human and bovine strains. Furthermore, strains A14, A25, P02, P39, and P43 were very closely related to one another in all the 11 gene segments, indicating derivation of the five strains from a common origin. On the other hand, strain A23 consistently formed distinct clusters as to all the 11 gene segments, indicating a distinct origin of strain A23 from that of strains A14, A25, P02, P39, and P43. To our knowledge, this is the first report on whole genome-based characterization of G12 strains that have emerged in Myanmar. Our observations will provide important insights into the evolutionary dynamics of spreading G12 rotaviruses in Asia.  相似文献   

5.
6.
An unusual rotavirus strain, SKT-27, with the G6P[14] genotypes (RVA/Human-wt/THA/SKT-27/2012/G6P[14]), was identified in a stool specimen from a hospitalized child aged eight months with severe diarrhea. In this study, we sequenced and characterized the complete genome of strain SKT-27. On whole genomic analysis, strain SKT-27 was found to have a unique genotype constellation: G6-P[14]-I2-R2-C2-M2-A3-N2-T6-E2-H3. The non-G/P genotype constellation of this strain (I2-R2-C2-M2-A3-N2-T6-E2-H3) is commonly shared with rotavirus strains from artiodactyls such as cattle. Phylogenetic analysis indicated that nine of the 11 genes of strain SKT-27 (VP7, VP4, VP6, VP2-3, NSP1, NSP3-5) appeared to be of artiodactyl (likely bovine) origin, while the remaining VP1 and NSP2 genes were assumed to be of human origin. Thus, strain SKT-27 was found to have a bovine rotavirus genetic backbone, and thus is likely to be of bovine origin. Furthermore, strain SKT-27 appeared to be derived through interspecies transmission and reassortment events involving bovine and human rotavirus strains. Of note is that the VP7 gene of strain SKT-27 was located in G6 lineage-5 together with those of bovine rotavirus strains, away from the clusters comprising other G6P[14] strains in G6 lineages-2/6, suggesting the occurrence of independent bovine-to-human interspecies transmission events. To our knowledge, this is the first report on full genome-based characterization of human G6P[14] strains that have emerged in Southeast Asia. Our observations will provide important insights into the origin of G6P[14] strains, and into dynamic interactions between human and bovine rotavirus strains.  相似文献   

7.
Li  Dandi  Wang  Mengxuan  Mao  Tongyao  Wang  Mingwen  Zhang  Qing  Wang  Hong  Pang  Lili  Sun  Xiaoman  Duan  Zhaojun 《中国病毒学》2021,36(5):1187-1196
Virologica Sinica - P[3] rotavirus (RV) has been identified in many species, including human, simian, dog, and bat. Several glycans, including sialic acid, histo-blood group antigens (HBGAs) are...  相似文献   

8.
Rotaviruses (RVs) are an important cause of severe gastroenteritis in children. It has been found that RV may recognize the histo-blood group antigens (HBGAs) as ligands or receptors and bind HBGAs in a type-dependent manner. In this study, we investigated the binding specificity of VP8* proteins from human rotaviruses (RV) that are prevalent in China including genotypes P[4], P[6], and P[8]. Through the saliva- and oligosaccharide-based binding assays, we found that the VP8* proteins of P[4] and P[8] RV showed similar reactivity with the Leb and H type 1 antigens, while P[6] RV weakly bound the Leb antigen. These findings may facilitate further research into RV host specificity and vaccine development.  相似文献   

9.
Rotaviruses are important enteric pathogens for humans and animals. Group A rotaviruses (RV-A) are the most common agents of severe gastroenteritis in infants and young children and vaccination is the most effective method to reduce RV-A-associated diseases. G1P[8], the most prevalent RV-A genotype worldwide, is included in the RV-A vaccine Rotarix?. The discrimination between wild-type G1P[8] and vaccine G1P[8] strains is an important topic in the study of RV-A epidemiology to manage outbreaks and to define control measures for vaccinated children. In this study, we developed a novel method to segregate the wild-type and vaccine strains using restriction endonucleases. The dsRNA from the Rotarix? vaccine was sequenced and the NSP3 gene was selected as the target gene. The vaccine strain has a restriction pattern that is different than that of wild-type RV-A G1P[8] isolates after digestion with the restriction endonuclease BspHI. This pattern could be used as a marker for the differentiation of wild-type G1P[8] strains from the vaccine strain.  相似文献   

10.
Rotavirus(RV)causes acute gastroenteritis in infants and children worldwide.Recent studies showed that glycans such as histo-blood group antigens(HBGAs)function as cell attachment factors affecting RV host susceptibility and prevalence.P[8]is the predominant RV genotype in humans,but the structural basis of how P[8]RVs interact with glycan ligands remains elusive.In this study,we characterized the interactions between P[8]VP8~*s and glycans which showed that VP8~*,the RV glycan binding domain,recognized both mucin core 2 and H type 1 antigens according to the ELISA-based oligosaccharide binding assays.Importantly,we determined the structural basis of P[8]RV-glycans interaction from the crystal structures of a Rotateq P[8]VP8~*in complex with core 2 and H type 1 glycans at 1.82.3 ?,respectively,revealing a common binding pocket and similar binding mode.Structural and sequence analysis demonstrated that the glycan binding site is conserved among RVs in the P[Ⅱ]genogroup,while genotype-specific amino acid variations determined different glycan binding preference.Our data elucidated the detailed structural basis of the interactions between human P[8]RVs and different host glycan factors,shedding light on RV infection,epidemiology,and development of anti-viral agents.  相似文献   

11.
Naturally occurring bovine-human reassortant rotaviruses with a P[11] VP4 genotype exhibit a tropism for neonates. Interaction of the VP8* domain of the spike protein VP4 with sialic acid was thought to be the key mediator for rotavirus infectivity. However, recent studies have indicated a role for nonsialylated glycoconjugates, including histo-blood group antigens (HBGAs), in the infectivity of human rotaviruses. We sought to determine if the bovine rotavirus-derived VP8* of a reassortant neonatal G10P[11] virus interacts with hitherto uncharacterized glycans. In an array screen of >600 glycans, VP8* P[11] showed specific binding to glycans with the Galβ1-4GlcNAc motif, which forms the core structure of type II glycans and is the precursor of H type II HBGA. The specificity of glycan binding was confirmed through hemagglutination assays; GST-VP8* P[11] hemagglutinates type O, A, and B red blood cells as well as pooled umbilical cord blood erythrocytes. Further, G10P[11] infectivity was significantly enhanced by the expression of H type II HBGA in CHO cells. The bovine-origin VP4 was confirmed to be essential for this increased infectivity, using laboratory-derived reassortant viruses generated from sialic acid binding rotavirus SA11-4F and a bovine G10P[11] rotavirus, B223. The binding to a core glycan unit has not been reported for any rotavirus VP4. Core glycan synthesis is constitutive in most cell types, and modification of these glycans is thought to be developmentally regulated. These studies provide the first molecular basis for understanding neonatal rotavirus infections, indicating that glycan modification during neonatal development may mediate the age-restricted infectivity of neonatal viruses.  相似文献   

12.

Background

We conducted a systematic review of the diversity and fluctuation of group A rotavirus strains circulating in China.

Methods and Findings

Studies of rotavirus-based diarrhea among children less than 5 years, published in English or Chinese between 1994 and 2012, were searched in PubMed, SinoMed, and CNKI and reviewed by applying standardized algorithms. The temporal and spatial trends of genotyping and serotyping were analyzed using a random-effects model. Ninety-three studies met the inclusion/exclusion criteria and were included in the meta-analysis. Overall, 22,112 and 10,660 rotavirus samples had been examined for G and P types, respectively. The most common G types were G1 (39·5%), G3 (35·6%), G2 (1·3%), and G9 (0·1%). Among P types, P[8] (54·6%) was the predominant type, followed by P[4] (11·1%) and P6 (0·1%). The most common G-P combinations were G3P[8] (32·1%) and G1P[8] (24·5%), followed by G2P[6] (13·2%) and G2P[4] (10·1%). Before 2000, serotype G1 was the predominant strain and accounted for 74·3% of all rotavirus infections; however, since 2000, G3 (45·2%) has been the predominant strain. Rotavirus P types showed little variation over the study period.

Conclusion

Despite the variation of serotypes observed in China, the G1, G2, G3, and G4 serotypes accounted for most rotavirus strains in recent decades. These results suggest that Chinese children will be adequately protected with currently available or forthcoming rotavirus vaccines.  相似文献   

13.
14.
The presence of rotavirus strains in sewage samples from Cairo, Egypt (November 1998 to October 1999), and Barcelona, Spain (November 1998 to December 2002), was investigated by using a generic molecular detection method based on amplification of a VP6 gene fragment. Overall, 85.7 and 66.9% of the sewage samples from Cairo and Barcelona, respectively, were positive. Positive samples were characterized further, and VP7 and VP4 genotypes were determined. Although 30% of the positive samples from Cairo were G untypeable, the distribution of G types in the positive samples was 69.6% G1, 13% G3, 8.7% G4, and 8.7% G9. The percentage of untypeable samples was much higher for the Barcelona samples (56.5%), and the distribution in the positive samples was 56.4% G1, 31.5% G3, 6% G9, 4% G2, and 2% G5. When the P types were examined, 26.7% of the positive samples from Cairo were untypeable, and the distribution of types in the positive samples was 53.3% P[8], 30% P[6], and 16.6% P[4]. In Barcelona, 27.2% of the samples were P untypeable, and the frequencies of the types detected were 49.7% P[8], 37.2% P[4], 8.8% P[6], and 4.2% P[9]. The distribution for strains from Cairo was 38.5% P[8]G1, 27% P[6]G1, 11.5% P[4]G1, 11.5% P[8]G3, 7.7% P[6]G4, and 3.8% P[8]G9. Strikingly, equivalent frequencies of common and uncommon strains were observed for Barcelona samples, and the distribution was 38.8% P[8]G1, 30.6% P[4]G1, 11.6% P[8]G3, 6.6% P[4]G3, 5.8% P[6]G1, 1.6% P[6]G3, 1.6% P[9]G1, 0.8% P[4]G2, 0.8% P[6]G9, 0.8% P[8]G9, and 0.8% P[8]G5. Additionally, two P[−]G5 strains were isolated in Barcelona, and the porcine or human origin of these strains was unclear. Rotavirus variability exhibited not only a geographic pattern but also a temporal pattern.  相似文献   

15.
Pakistan harbors high disease burden of gastro-enteric infections with majority of these caused by rotavirus. Unfortunately, lack of proper surveillance programs and laboratory facilities have resulted in scarcity of available data on rotavirus associated disease burden and epidemiological information in the country. We investigated 1306 stool samples collected over two years (2008–2009) from hospitalized children under 5 years of age for the presence of rotavirus strains and its genotypic diversity in Lahore. The prevalence rate during 2008 and 2009 was found to be 34% (n = 447 out of 1306). No significant difference was found between different age groups positive for rotavirus (p>0.05). A subset of EIA positive samples was further screened for rotavirus RNA through RT-PCR and 44 (49.43%) samples, out of total 89 EIA positive samples, were found positive. G and P type prevalence was found as follows: G1P [4] = 3(6.81%); G1P [6] = 9(20.45%); G1P [8] = 1(2.27%); G2P [4] = 21(47.72%); G2P [8] = 1(2.27%); G9P [4] = 1(2.27%); G9P [6] = 1(2.27%) and G9P [8] = 7(15.90%). Phylogenetic analysis revealed that the VP7 and VP4 sequences clustered closely with the previously detected strains in the country as well as Belgian rotaviruses. Antigenic characterization was performed by analyzing major epitopes in the immunodominant VP7 and VP4 gene segments. Although the neutralization conferring motifs were found variable between the Pakistani strains and the two recommended vaccines strains (Rotarix™ and RotaTeq™), we validate the use of rotavirus vaccine in Pakistan based on the proven and recognized vaccine efficacy across the globe. Our findings constitute the first report on rotavirus’ genotype diversity, their phylogenetic relatedness and epidemiology during the pre-vaccination era in Lahore, Pakistan and support the immediate introduction of rotavirus vaccine in the routine immunization program of the country.  相似文献   

16.
Rotavirus (RV) P[11] is an unique genotype that infects neonates. The mechanism of such age-specific host restriction remains unknown. In this study, we explored host mucosal glycans as a potential age-specific factor for attachment of P[11] RVs. Using in vitro binding assays, we demonstrated that VP8* of a P[11] RV (N155) could bind saliva of infants (60.3%, N = 151) but not of adults (0%, N = 48), with a significantly negative correlation between binding of VP8* and ages of infants (P<0.01). Recognition to the infant saliva did not correlate with the ABO, secretor and Lewis histo-blood group antigens (HBGAs) but with the binding of the lectin Lycopersicon esculentum (LEA) that is known to recognize the oligomers of N-acetyllactosamine (LacNAc), a precursor of human HBGAs. Direct evidence of LacNAc involvement in P[11] binding was obtained from specific binding of VP8* with homopolymers of LacNAc in variable lengths through a glycan array analysis of 611 glycans. These results were confirmed by strong binding of VP8* to the Lec2 cell line that expresses LacNAc oligomers but not to the Lec8 cell line lacking the LacNAc. In addition, N155 VP8* and authentic P[11] RVs (human 116E and bovine B223) hemagglutinated human red blood cells that are known to express poly-LacNAc. The potential role of poly-LacNAc in host attachment and infection of RVs has been obtained by abrogation of 116E replication by the PAA-conjugated poly-LacNAc, human milk, and LEA positive infant saliva. Overall, our results suggested that the poly-LacNAc could serve as an age-specific receptor for P[11] RVs and well explained the epidemiology that P[11] RVs mainly infect neonates and young children.  相似文献   

17.
目的探讨轮状病毒D36株在MDCK细胞和Vero细胞上培养的适应性,确定其培养的最佳细胞基质及培养条件。方法将D36株以MOI 1.0按不同培养瓶分组接种MDCK细胞和Vero细胞,补充含有不同浓度胰酶的维持液,于不同时间观察两种细胞病变的情况,同时抽样检测病毒滴度,分析两种细胞对D36株的敏感性。结果D36株病毒感染MDCK细胞后第6天病毒滴度达到最高,为(5.00~5.50)lgCCID50/mL;而D36株病毒感染Vero细胞后病毒滴度于第8天达高峰,为(4.50~4.75)lgCCID50/mL。另外,在两种细胞维持液中加入约0.8μg/mL的胰酶均可提高病毒滴度。结论两种细胞系在同等条件下感染D36株病毒后,MDCK细胞比Vero细胞出现病变的时间早,每一批MDCK细胞培养物病毒滴度高于同批次试验的Vero细胞培养物。  相似文献   

18.
Six high school students in Tochigi prefecture, Japan, developed gastroenteritis after eating at a pork cutlet shop. Molecular epidemiologic analyses showed that the causative agent was genotype G1P[8] rotavirus (RV), this being detected in stool samples from both the patients and the asymptomatic food handlers. The detected RV strains were closely related genetically. The only uncooked food that all victims had eaten was raw sliced cabbage. These findings results suggest that uncooked foods contaminated with RV may be sources of infectious gastroenteritis in adolescents.  相似文献   

19.
20.
One major mechanism by which Rotavirus A (RVA) evolves is genetic reassortment between strains with different genotype constellations. However, the parental strains of the reassortants generated have seldom been identified. Here, the whole genome of two suspected reassortants, RVA/Human‐wt/VNM/SP127/2013/G1P[4] and RVA/Human‐wt/VNM/SP193/2013/G1P[4], with short RNA electropherotypes were examined by Illumina MiSeq sequencing and their ancestral phylogenies reconstructed. Their genotype constellation, G1‐P[4]‐I2‐R2‐C2‐M2‐A2‐N2‐T2‐E2‐H2, indicated that they were G1 VP7 mono‐reassortants possessing DS‐1‐like genetic backbones. The two strains were ≧99.7% identical across the genome. While their VP7 genes were ≧99.7 identical to that of a Wa‐like strain RVA/Human‐wt/VNM/SP110/2012/G1P[8] which co‐circulated during the 2012/2013 season, 10 genes were ≧99.8% identical to that of the DS‐1‐like strains RVA/Human‐wt/VNM/SP015/2012/G2P[4] (and SP108) that co‐circulated during the season. The identities were consistent with the phylogenetic relationships observed between the genes of the reassortants and those of the afore‐mentioned strains. Consequently, the G1P[4] strains appear to have been generated by genetic reassortment between SP110‐like and SP015‐like strains. In conclusion, this study provides robust molecular evidence for the first time that G1P[4] strains detected in Hanoi Vietnam were generated by inter‐genogroup reassortment between co‐circulating G1P[8] and G2P[4] strains within the same place and season.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号