首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The superoxide-generating NADPH oxidase complex of resting phagocytes includes cytochrome b559, a membrane-associated heterodimer composed of two subunits (Nox2 and p22phox), and four cytosolic proteins (p47phox, p67phox, Rac, and p40phox). Upon stimulation, the cytosolic components translocate to the membrane, as the result of a series of interactions among the cytosolic components and among the cytosolic components and cytochrome b559 and its phospholipid environment. We described the construction of a tripartite chimera (trimera) consisting of strategic domains of p47phox, p67phox, and Rac1, in which interactions among cytosolic components were replaced by fusion (Berdichevsky, Y., Mizrahi, A., Ugolev, Y., Molshanski-Mor, S., and Pick, E. (2007) J. Biol. Chem. 282, 22122–22139). We now fused green fluorescent protein (GFP) to the N terminus of the trimera and found the following. 1) The GFP-p47phox-p67phox-Rac1 trimera activates the oxidase in amphiphile-dependent and -independent (anionic phospholipid-enriched membrane) cell-free systems. 2) Geranylgeranylation of the GFP-trimera makes it a potent oxidase activator in unmodified (native) membranes and in the absence of amphiphile. 3) Prenylated GFP-trimera binds spontaneously to native membranes (as assessed by gel filtration and in-line fluorometry), forming a tight complex capable of NADPH-dependent, activator-independent superoxide production at rates similar to those measured in canonical cell-free systems. 4) Prenylation of the GFP-trimera supersedes completely the dependence of oxidase activation on the p47phox phox homology domain and, partially, on the Rac1 polybasic domain, but the requirement for Trp193 in p47phox persists. Prenylated GFP-p47phox-p67phox-Rac1 trimera acts as a quintessential single molecule oxidase activator of potential use in high throughput screening of inhibitors.  相似文献   

2.
The assembly of cytosolic subunits p47phox, p67phox, and p40phox with flavocytochrome b558 at the membrane is required for activating the neutrophil NADPH oxidase that generates superoxide for microbial killing. The p47phox subunit plays a critical role in oxidase assembly. Recent studies showed that the p47phox Phox homology (PX) domain mediates phosphoinositide binding in vitro and regulates phorbol ester-induced NADPH oxidase activity in a K562 myeloid cell model. Because the importance of the p47phox PX domain in neutrophils is unclear, we investigated its role using p47phox knock-out (KO) mouse neutrophils to express human p47phox and derivatives harboring R90A mutations in the PX domain that result in loss of phosphoinositide binding. Human p47phox proteins were expressed at levels similar to endogenous murine p47phox, with the exception of a chronic granulomatous disease-associated R42Q mutant that was poorly expressed, and wild type human p47phox rescued p47phox KO mouse neutrophil NADPH oxidase activity. Plasma membrane NAPDH oxidase activity was reduced in neutrophils expressing p47phox with Arg90 substitutions, with substantial effects on responses to either phorbol ester or formyl-Met-Leu-Phe and more modest effects to particulate stimuli. In contrast, p47phox Arg90 mutants supported normal levels of intracellular NADPH oxidase activity during phagocytosis of a variety of particles and were recruited to phagosome membranes. This study defines a differential and agonist-dependent role of the p47phox PX domain for neutrophil NADPH oxidase activation.  相似文献   

3.
The NADPH-oxidase of phagocytic cells is a multicomponent enzyme that generates superoxide. It comprises a membrane flavocytochrome b558 and four cytosolic proteins; p67phox, p47phox, p40phox and Rac. The NADPH-binding site of this complex was shown to be located on the flavocytochrome b558. However, a number of studies have suggested the presence of another site on the p67phox subunit which is the key activating component. Using several approaches like tryptophan quenching fluorescence measurement, inhibition by 2′,3′-dialdehyde NADPH, and free/bound NADPH concentration measurements, we demonstrate that no NADPH binds on p67phox, thus definitively solving the controversy on the number and location of the NADPH-binding sites on this complex.  相似文献   

4.

Background

The phagocyte NADPH-oxidase is a multicomponent enzyme that generates superoxide anions. It comprises a membrane redox component flavocytochrome b558 and four cytosolic proteins (p67phox, p47phox, p40phox and Rac) that must assemble to produce an active system. In this work we focused on the spatio-temporal control of the activation process of phagocyte NADPH oxidase.

Methods

A wide range of techniques including fast kinetics with a stopped-flow apparatus and various combinations of the activating factors was used to test the order of assembly and the role of the p47phox–p67phox complex.

Results

The data presented here are consistent with the absence of a catalytic role of the p47phox–p67phox interacting state and support the idea of independent binding sites for the cytosolic proteins on the flavocytochrome b558 allowing random binding order. However, the formation of the active complex appears to involve a synergistic process of binding of the activated cytosolic subunits to cytochrome b558. All partners should be in the vicinity for optimal assembly, a delay or the absence of one of the partners in this process seems to lead to a decrease in the efficiency of the catalytic core.

Conclusion and general significance

The activation and assembly of the NADPH oxidase components have to be achieved simultaneously for the formation of an efficient and optimal enzyme complex. This mechanism appears to be incompatible with continuous fast exchanges of the cytosolic proteins during the production of superoxide ion in the phagosome.  相似文献   

5.
Chronic granulomatous disease (CGD) is a rare inherited disorder in which phagocytes lack NADPH oxidase activity. The most common form is caused by mutations in the CYBB gene encoding gp91phox protein, the heavy chain of cytochrome b558, which is the redox element of NADPH oxidase. In some rare cases, the mutated gp91phox is normally expressed but no NADPH oxidase can be detected. This type of CGD is called X91+ CGD. We have previously reported an X+ CGD case with a double-missense mutation in gp91phox. Transgenic PLB-985 cells have now been made to study the impact of each single mutation on oxidase activity and assembly to rule out a possible new polymorphism in the CYBB gene. The His303Asn/Pro304Arg gp91phox transgenic PLB-985 cells exactly mimic the phenotype of the neutrophils of the X+ CGD patient. The His303Asn mutation is sufficient to inhibit oxidase activity in intact cells and in a broken cell system, whereas in the Pro304Arg mutant, residual activity suggests that the Pro304Arg substitution is less devastating to oxidase activity than the His303Asn mutation. The study of NADPH oxidase assembly following the in vitro and in vivo translocation of cytosolic factors p47phox and p67phox has demonstrated that, in the double mutant and in the His303Asn mutant, NADPH oxidase assembly is abolished, although the translocation is only attenuated in Pro304Arg mutant cells. Thus, even though the His303Asn mutation has a more severe inhibitory effect on NADPH oxidase activity and assembly than the Pro304Arg mutation, neither mutation can be considered as a polymorphism.Clara Bionda and Xing Jun Li contributed equally to this work  相似文献   

6.
The neutrophil NADPH oxidase is an enzymatic complex involved in innate immunity. Phosphorylation of p47phox promotes its translocation with p67phox and p40phox, followed by membrane interaction and assembly with flavocytochrome b558 into a functional complex. To characterise p47phox conformational changes during activation, we used wild-type and the S303/304/328E triple mutant mimicking the phosphorylated state. Hydrogen/deuterium exchange and limited proteolysis coupled to mass spectrometry were used to discriminate between the various structural models. An increase in deuteration confirmed that p47phox adopts an open and more flexible conformation after activation. Limited proteolysis correlated this change with increased auto-inhibitory region (AIR) accessibility. These results establish a structural link between the AIR release and the exposure of the Phox homology (PX) domain.  相似文献   

7.
The phagocyte NADPH oxidase (NOX2) is a key enzyme of the innate immune system generating superoxide anions (O2?-), precursors of reactive oxygen species. The NOX2 protein complex is composed of six subunits: two membrane proteins (gp91phox and p22phox) forming the catalytic core, three cytosolic proteins (p67phox, p47phox and p40phox) and a small GTPase Rac. The sophisticated activation mechanism of the NADPH oxidase relies on the assembly of cytosolic subunits with the membrane-bound components. A chimeric protein, called ‘Trimera’, composed of the essential domains of the cytosolic proteins p47phox (aa 1–286), p67phox (aa 1–212) and full-length Rac1Q61L, enables a constitutive and robust NOX2 activity in cells without the need of any stimulus. We employed Trimera as a single activating protein of the phagocyte NADPH oxidase in living cells and examined the consequences on the cell physiology of this continuous and long-term NOX activity. We showed that the sustained high level of NOX activity causes acidification of the intracellular pH, triggers apoptosis and leads to local peroxidation of lipids in the membrane. These local damages to the membrane correlate with the strong tendency of the Trimera to clusterize in the plasma membrane observed by FRET-FLIM microscopy.  相似文献   

8.
The assembly of cytosolic p47phox and p67phox with flavocytochrome b558 at the membrane is crucial for activating the leukocyte NADPH oxidase that generates superoxide for microbial killing. p47phox and p67phox are linked via a high-affinity, tail-to-tail interaction involving a proline-rich region (PRR) and a C-terminal SH3 domain (SH3b), respectively, in their C-termini. This interaction mediates p67phox translocation in neutrophils, but is not required for oxidase activity in model systems. Here we examined phagocytosis-induced NADPH oxidase assembly, showing the sequential recruitment of YFP-tagged p67phox to the phagosomal cup, and, after phagosome internalization, a probe for PI(3)P followed by a YFP-tagged fragment derived from the p47phox PRR. This fragment was recruited in a flavocytochrome b558-dependent, p67phox-specific, and PI(3)P-independent manner. These findings indicate that p47PRR fragment probes the status of the p67phox SH3b domain and suggest that the p47phox/p67phox tail-to-tail interaction is disrupted after oxidase assembly such that the p67phox-SH3b domain becomes accessible. Superoxide generation was sustained within phagosomes, indicating that this change does not correlate with loss of enzyme activity. This study defines a sequence of events during phagocytosis-induced NADPH oxidase assembly and provides experimental evidence that intermolecular interactions within this complex are dynamic and modulated after assembly on phagosomes.  相似文献   

9.
The superoxide-generating NADPH oxidase is converted to an active state by the assembly of a membrane-localized cytochrome b(559) with three cytosolic components: p47(phox), p67(phox), and GTPase Rac1 or Rac2. Assembly involves two sets of protein-protein interactions: among cytosolic components and among cytosolic components and cytochrome b(559) within its lipid habitat. We circumvented the need for interactions among cytosolic components by constructing a recombinant tripartite chimera (trimera) consisting of the Phox homology (PX) and Src homology 3 (SH3) domains of p47(phox), the tetratricopeptide repeat and activation domains of p67(phox), and full-length Rac1. Upon addition to phagocyte membrane, the trimera was capable of oxidase activation in vitro in the presence of an anionic amphiphile. The trimera had a higher affinity (lower EC(50)) for and formed a more stable complex (longer half-life) with cytochrome b(559) compared with the combined individual components, full-length or truncated. Supplementation of membrane with anionic but not neutral phospholipids made activation by the trimera amphiphile-independent. Mutagenesis, truncations, and domain replacements revealed that oxidase activation by the trimera was dependent on the following interactions: 1) interaction with anionic membrane phospholipids via the poly-basic stretch at the C terminus of the Rac1 segment; 2) interaction with p22(phox) via Trp(193) in the N-terminal SH3 domain of the p47(phox) segment, supplementing the electrostatic attraction; and 3) an intrachimeric bond among the p67(phox) and Rac1 segments complementary to their physical fusion. The PX domain of the p47(phox) segment and the insert domain of the Rac1 segment made only minor contributions to oxidase assembly.  相似文献   

10.
Assembly of the phagocyte NADPH oxidase   总被引:5,自引:5,他引:0  
Stimulated phagocytes undergo a burst in respiration whereby molecular oxygen is converted to superoxide anion through the action of an NADPH-dependent oxidase. The multicomponent phagocyte oxidase is unassembled and inactive in resting cells but assembles at the plasma or phagosomal membrane upon phagocyte activation. Oxidase components include flavocytochrome b558, an integral membrane heterodimer comprised of gp91phox and p22phox, and three cytosolic proteins, p47phox, p67phox, and Rac1 or Rac2, depending on the species and phagocytic cell. In a sense, the phagocyte oxidase is spatially regulated, with critical elements segregated in the membrane and cytosol but ready to undergo nearly immediate assembly and activation in response to stimulation. To achieve such spatial regulation, the individual components in the resting phagocyte adopt conformations that mask potentially interactive structural domains that might mediate productive intermolecular associations and oxidase assembly. In response to stimulation, post-translational modifications of the oxidase components release these constraints and thereby render potential interfaces accessible and interactive, resulting in translocation of the cytosolic elements to the membrane where the functional oxidase is assembled and active. This review summarizes data on the structural features of the phagocyte oxidase components and on the agonist-dependent conformational rearrangements that contribute to oxidase assembly and activation.  相似文献   

11.
Cytosolic components of the NADPH oxidase interact with the actin cytoskeleton. These interactions are thought to be important for the activation of this enzyme system but they are poorly characterised at the molecular level. Here we have explored the interaction between the actin cytoskeleton and p40phox, one of the cytosolic components of NADPH oxidase. Full length p40phox expressed in COS cells co-localised with F-actin in a peripheral lamellar compartment. The co-localisation was lost after deletion of the Phox homology (PX) domain and the PX domain in isolation (p40PX) showed the same F-actin co-localisation as the full length protein. PX domains are known lipid-binding modules however, a mutant p40PX which did not bind lipids still co-localised with F-actin suggesting that lipid-independent interactions underlie the localisation. Affinity chromatography identified actin as a binding partner for p40PX in neutrophil extracts. Pure actin interacted with both p40phox and with p40PX suggesting it is a direct interaction. Disruption of the actin cytoskeleton with cytochalasin D resulted in actin rearrangement and concomitantly the localisation of full length p40phox proteins and that of p40PX changed. Thus p40PX is a dual F-actin/lipid-binding module and F-actin interactions with the PX domain dictate at least in part the intracellular localisation of the cytosolic p40phox subunit of the NADPH oxidase.  相似文献   

12.
The leukocyte NADPH oxidase of neutrophils is a membrane-bound enzyme that catalyzes the reduction of oxygen to O 2 at the expense of NADPH. During activation, the cytosolic oxidase components p47phox and p67phox, each containing two Src homology 3 (SH3) domains, migrate to the plasma membrane. p47phox and p67phox associate with cytochrome b558, a membrane-integrated flavohemoprotein, to assemble the active oxidase. Oxidase activation can be mimicked in a cell-free system using an anionic amphiphile, such as sodium dodecyl sulfate or arachidonic acid, as an activating agent. Activators of the oxidase in vitro cause exposure of the SH3 domains of p47phox, which has probably been masked by the C-terminal region of this protein in a resting state. We show here that the fluorescence exhibited by the covalently labeled N,N-di-methyl-N(iodoacetyl)-N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) ethyleneamine (IANBD) was increased when N-terminal-truncated p47phox-(SH3)2-C was treated with anionic amphiphiles. This finding was similar to the results obtained with the full-length p47phox. However, the fluorescence of C-terminal-truncated p47phox-N-(SH3)2 and that of both C-terminal and N-terminal truncated p47phox-(SH3)2 were not altered by the activators. These results indicate that the C-terminal region of p47phox is a primary target of the conformational change during the activation of NADPH oxidase.  相似文献   

13.
NOXO1 (Nox Organizer 1) is a homolog of the NAPDH oxidase protein p47 phox . NADPH oxidases transfer electrons from NADPH to molecular oxygen, generating the superoxide anion. NOXO1 contains an N-terminal PX (phox homology) domain and is one of several PX domain-containing proteins found in the cytosolic subunits of the NADPH oxidase complex. These PX domains bind to membrane lipids and target the protein to membranes, recruiting other cytosolic components to the membrane bound components and aiding formation of a active enzyme complex. This recruitment represents a level of regulation of these oxidases. Here we report the backbone assignments of NOXO1β PX.  相似文献   

14.
The p47phox cytosolic factor from neutrophilic NADPH oxidase has always been resistant to crystallogenesis trials due to its modular organization leading to relative flexibility. Hydrogen/deuterium exchange coupled to mass spectrometry was used to obtain structural information on the conformational mechanism that underlies p47phox activation. We confirmed a relative opening of the protein with exposure of the SH3 Src loops that are known to bind p22phox upon activation. A new surface was shown to be unmasked after activation, representing a potential autoinhibitory surface that may block the interaction of the PX domain with the membrane in the resting state. Within this surface, we identified 2 residues involved in the interaction with the PX domain. The double mutant R162A/D166A showed a higher affinity for specific phospholipids but none for the C-terminal part of p22phox, reflecting an intermediate conformation between the autoinhibited and activated forms.  相似文献   

15.
Reactive oxygen species (ROS) are known to play an important role in glutamate-induced neuronal cell death. In the present study, we examined whether NADPH oxidase serves as a source of ROS production and plays a role in glutamate-induced cell death in SH-SY5Y human neuroblastoma cells. Stimulation of the cells with glutamate (100 mM) induced apoptotic cell death and increase in the level of ROS, and these effects of glutamate were significantly suppressed by the inhibitors of the NADPH oxidase, diphenylene iodonium, apocynin, and neopterine. In addition, RT-PCR revealed that SH-SY5Y cells expressed mRNA of gp91phox, p22phox and cytosolic p47phox, p67phox and p40phox, the components of the plasma membrane NADPH oxidase. Treatment with glutamate also resulted in activation and translocation of Rac1 to the plasma membrane. Moreover, the expression of Rac1N17, a dominant negative mutant of Rac1, significantly blocked the glutamate-induced ROS generation and cell death. Collectively, these results suggest that the plasma membrane-bound NADPH oxidase complex may play an essential role in the glutamate-induced apoptotic cell death through increased production of ROS.  相似文献   

16.
Phosphatidic acid generated by the activation of phospholipase D (PLD) functions as a second messenger and plays a vital role in cell signaling. Here we demonstrate that PLD-dependent generation of phosphatidic acid is critical for Rac1/IQGAP1 signal transduction, translocation of p47phox to cell periphery, and ROS production. Exposure of [32P]orthophosphate-labeled human pulmonary artery endothelial cells (HPAECs) to hyperoxia (95% O2 and 5% CO2) in the presence of 0.05% 1-butanol, but not tertiary-butanol, stimulated PLD as evidenced by accumulation of [32P]phosphatidylbutanol. Infection of HPAECs with adenoviral constructs of PLD1 and PLD2 wild-type potentiated hyperoxia-induced PLD activation and accumulation of /reactive oxygen species (ROS). Conversely, overexpression of catalytically inactive mutants of PLD (hPLD1-K898R or mPLD2-K758R) or down-regulation of expression of PLD with PLD1 or PLD2 siRNA did not augment hyperoxia-induced [32P]phosphatidylbutanol accumulation and ROS generation. Hyperoxia caused rapid activation and redistribution of Rac1, and IQGAP1 to cell periphery, and down-regulation of Rac1, and IQGAP1 attenuated hyperoxia-induced tyrosine phosphorylation of Src and cortactin and ROS generation. Further, hyperoxia-mediated redistribution of Rac1, and IQGAP1 to membrane ruffles, was attenuated by PLD1 or PLD2 small interference RNA, suggesting that PLD is upstream of the Rac1/IQGAP1 signaling cascade. Finally, small interference RNA for PLD1 or PLD2 attenuated hyperoxia-induced cortactin tyrosine phosphorylation and abolished Src, cortactin, and p47phox redistribution to cell periphery. These results demonstrate a role of PLD in hyperoxia-mediated IQGAP1 activation through Rac1 in tyrosine phosphorylation of Src and cortactin, as well as in p47phox translocation and ROS formation in human lung endothelial cells.Phagocytic cells of the immune system (neutrophils, eosinophils, monocytes, and macrophages) generate superoxide ()2 instrumental in the killing of invading pathogens solely by NADPH oxidase (1-3). Deficiency of results in the genetically inherited disorder chronic granulomatous disease, a condition in which the affected individuals are susceptible to infection (4). Phagocytic NADPH oxidase is activated when cytosolic p47phox, p67phox, and Rac2 translocate to the phagosomes and plasma membrane and form a complex with integral membrane cytochrome b558, which, in turn, is a Nox2 (gp91phox)/p22phox heterodimer (5, 6). Assembly of phagocytic NADPH oxidase is initiated by two signals. The first is the phosphorylation of multiple serine and tyrosine residues in the p47phox domain, which leads to unmasking of p47phox SH3 domains that bind to a proline-rich target in the C terminus of p22phox (7-10). The interaction between p47phox and p22phox seems to be an essential requirement for the translocation of other cytosolic components of the oxidase. The second signal is the binding of GTP to Rac2, which leads to the dissociation of Rac from Rho-GDI and binding to p67phox, followed by translocation of p67phox/GTP-Rac2 to the membrane (11). Nonphagocytic cells express predominantly Rac1, Tiam1 (a GEF involved in Rac1 activation), Nox1-5, and most of the other cytosolic phagocytic oxidase components (12); however, the oxidative output of non-phagocytes is much smaller compared with the phagocytes. A recent study indicates that IQGAP1, an effector of Rac1, may link Nox2 to actin, thereby enhancing ROS production and contributing to cell motility in ECs (13). The one or more mechanisms responsible for differences in the oxidative burst between the phagocytic and non-phagocytic cells are yet to be defined.We have demonstrated previously that hyperoxia activates lung endothelial NADPH oxidase, which in part is mediated by ERK, p38 MAPK (14, 15), and Src (16), and hyperoxia-induced p47phox tyrosine phosphorylation and translocation to cell periphery is dependent on Src (16). Further, tyrosine phosphorylation of cortactin mediated by Src is essential for hyperoxia-induced p47phox translocation and /ROS generation in HPAECs (17). In addition to Src, phosphatidic acid (PA) or diacylglycerol also stimulated phosphorylation of p47phox and p22phox in neutrophils both in vivo and in vitro (18-20). PA is generated in mammalian cells via de novo biosynthesis or hydrolysis of membrane phospholipids catalyzed by phospholipase D (PLD) (21-25). Activation of polymorphonuclear leukocytes with formyl-Met-Leu-Phe enhanced the oxidative burst that correlated with PA accumulation, and inclusion of short-chain primary alcohols attenuated the NADPH oxidase mediated /ROS generation, suggesting a potential role for PLD in the regulation of NADPH oxidase (12, 26, 27). However, the downstream targets of PLD that signal NADPH oxidase activation have not been fully characterized.Here, we identify for the first time that activation of IQGAP1 by Rac1 is downstream of PLD in hyperoxia-induced ROS generation. In addition, we show that activation of Rac1/IQGAP1 by PLD also regulates Src-dependent tyrosine phosphorylation of cortactin and p47phox translocation to cell periphery. Thus, our results define a novel molecular mechanism for hyperoxia-induced NADPH oxidase activation by PLD/PA-mediated p47phox membrane translocation via Rac1/IQGAP1/Src/cortactin signaling cascade.  相似文献   

17.
In this study, the translocation of the NADPH oxidase components p67(phox) and Rac2 was studied during phagocytosis in living cells. For this purpose, green fluorescent protein (GFP)-tagged versions of these proteins were expressed in the myeloid cell line PLB-985. First, the correct localization of p67GFP and GFP-Rac2 was shown during phagocytosis of serum-treated zymosan by wild-type PLB-985 cells and PLB-985 X-CGD (chronic granulomatous disease) cells, which lack expression of flavocytochrome b(558). Subsequently, these constructs were used for fluorescence recovery after photobleaching studies to elucidate the turnover of these proteins on the phagosomal membrane. The turnover of p67GFP and GFP-Rac2 proved to be very high, indicating a continuous exchange of flavocytochrome b(558)-bound p67GFP and GFP-Rac2 for cytosolic, free p67GFP and GFP-Rac2. Furthermore, the importance of an intact actin cytoskeleton for correct localization of these proteins was investigated by disrupting the actin cytoskeleton with cytochalasin B. However, cytochalasin B treatment of PLB-985 cells did not alter the localization of p67GFP and GFP-Rac2 once phagocytosis was initiated. In addition, the continuous exchange of flavocytochrome b(558)-bound p67GFP and GFP-Rac2 for cytosolic p67GFP and GFP-Rac2 was still intact in cytochalasin B-treated cells, indicating that the translocation of these proteins does not depend on a rearrangement of the actin cytoskeleton.  相似文献   

18.
The phagocyte NADPH oxidase Nox2, heterodimerized with p22phox in the membrane, is dormant in resting cells but becomes activated upon cell stimulation to produce superoxide, a precursor of microbicidal oxidants. Nox2 activation requires two switches to be turned on simultaneously: a conformational change of the cytosolic protein p47phox and GDP/GTP exchange on the small GTPase Rac. These proteins, in an active form, bind to their respective targets, p22phox and p67phox, leading to productive oxidase assembly at the membrane. Although arachidonic acid (AA) efficiently activates Nox2 both in vivo and in vitro, the mechanism has not been fully understood, except that AA induces p47phox conformational change. Here we show that AA elicits GDP-to-GTP exchange on Rac at the cellular level, consistent with its role as a potent Nox2 activator. However, even when constitutively active forms of p47phox and Rac1 are both expressed in HeLa cells, superoxide production by Nox2 is scarcely induced in the absence of AA. These active proteins also fail to effectively activate Nox2 in a cell-free reconstituted system without AA. Without affecting Rac-GTP binding to p67phox, AA induces the direct interaction of Rac-GTP-bound p67phox with the C-terminal cytosolic region of Nox2. p67phox-Rac-Nox2 assembly and superoxide production are both abrogated by alanine substitution for Tyr-198, Leu-199, and Val-204 in the p67phox activation domain that localizes the C-terminal to the Rac-binding domain. Thus the “third” switch (AA-inducible interaction of p67phox·Rac-GTP with Nox2) is required to be turned on at the same time for Nox2 activation.  相似文献   

19.
The phagocyte NADPH oxidase, dormant in resting cells, is activated during phagocytosis to produce superoxide, a precursor of microbicidal oxidants. The membrane-integrated protein gp91phox serves as the catalytic core, because it contains a complete electron-transporting apparatus from NADPH to molecular oxygen for superoxide production. Activation of gp91phox requires the cytosolic proteins p67phox, p47phox, and Rac (a small GTPase). p67phox, comprising 526 amino acids, moves upon cell stimulation to the membrane together with p47phox and there interacts with Rac; these processes are prerequisite for gp91phox activation. Here we show that a region of p67phox (amino acids 190–200) C-terminal to the Rac-binding domain is evolutionarily well conserved and participates in oxidase activation at a later stage in conjunction with an activation domain. Alanine substitution for Tyr-198, Leu-199, or Val-204 abrogates the ability of p67phox to support superoxide production by gp91phox-based oxidase as well as its related oxidases Nox1 and Nox3; the activation also involves other invariant residues such as Leu-193, Asp-197, and Gly-200. Intriguingly, replacement of Gln-192 by alanine or that of Tyr-198 by phenylalanine or tryptophan rather enhances superoxide production by gp91phox-based oxidase, suggesting a tuning role for these residues. Furthermore, the Y198A/V204A or L199A/V204A substitution leads to not only a complete loss of the activity of the reconstituted oxidase system but also a significant decrease in p67phox interaction with the gp91phox NADPH-binding domain, although these mutations affect neither the protein integrity nor the Rac binding activity. Thus the extended activation domain of p67phox (amino acids 190–210) containing the D(Y/F)LGK motif plays an essential role in oxidase activation probably by interacting with gp91phox.  相似文献   

20.
Activity of phagocyte NADPH-oxidase relies on the assembly of five proteins, among them the transmembrane flavocytochrome b558 (Cytb558) which consists of a heterodimer of the gp91phox and p22phox subunits. The Cytb558 is the catalytic core of the NADPH-oxidase that generates a superoxide anion from oxygen by using a reducing equivalent provided by NADPH via FAD and two hemes. We report a novel strategy to engineer and produce the stable and functional recombinant Cytb558 (rCytb558). We expressed the gp91phox and p22phox subunits using the baculovirus insect cell and, for the first time, the highly inducible Pichia pastoris system. In both hosts, the expression of the full-length proteins reproduced native electrophoretic patterns demonstrating that the two polypeptides are present and, that gp91phox undergoes co-translational glycosylation. Spectroscopic analyses showed that the rCytb558 displayed comparable spectral properties to neutrophil Cytb558. In contrast to rCytb558 produced in the insect cells with higher yield, the enzyme expressed in yeast displayed a superoxide dismutase-sensitive NADPH-oxidase activity, indicating a superoxide generation activity. It was also blocked by an inhibitor of the respiratory burst oxidase, diphenylene iodonium (DPI). As in neutrophil NADPH-oxidase, activation occurred by the interactions with the soluble regulatory subunits suggesting comparable protein-protein contact patterns. We focus on the stability and function of the protein during solubilisation and reconstitution into liposomes. By comparing oxidase activities in different membrane types, we confirm that the lipid-protein environment plays a key role in the protein function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号