首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein classification with imbalanced data   总被引:1,自引:0,他引:1  
Zhao XM  Li X  Chen L  Aihara K 《Proteins》2008,70(4):1125-1132
Generally, protein classification is a multi-class classification problem and can be reduced to a set of binary classification problems, where one classifier is designed for each class. The proteins in one class are seen as positive examples while those outside the class are seen as negative examples. However, the imbalanced problem will arise in this case because the number of proteins in one class is usually much smaller than that of the proteins outside the class. As a result, the imbalanced data cause classifiers to tend to overfit and to perform poorly in particular on the minority class. This article presents a new technique for protein classification with imbalanced data. First, we propose a new algorithm to overcome the imbalanced problem in protein classification with a new sampling technique and a committee of classifiers. Then, classifiers trained in different feature spaces are combined together to further improve the accuracy of protein classification. The numerical experiments on benchmark datasets show promising results, which confirms the effectiveness of the proposed method in terms of accuracy. The Matlab code and supplementary materials are available at http://eserver2.sat.iis.u-tokyo.ac.jp/ approximately xmzhao/proteins.html.  相似文献   

2.

Background  

Generally speaking, different classifiers tend to work well for certain types of data and conversely, it is usually not known a priori which algorithm will be optimal in any given classification application. In addition, for most classification problems, selecting the best performing classification algorithm amongst a number of competing algorithms is a difficult task for various reasons. As for example, the order of performance may depend on the performance measure employed for such a comparison. In this work, we present a novel adaptive ensemble classifier constructed by combining bagging and rank aggregation that is capable of adaptively changing its performance depending on the type of data that is being classified. The attractive feature of the proposed classifier is its multi-objective nature where the classification results can be simultaneously optimized with respect to several performance measures, for example, accuracy, sensitivity and specificity. We also show that our somewhat complex strategy has better predictive performance as judged on test samples than a more naive approach that attempts to directly identify the optimal classifier based on the training data performances of the individual classifiers.  相似文献   

3.
The process of knowledge discovery from big and high dimensional datasets has become a popular research topic. The classification problem is a key task in bioinformatics, business intelligence, decision science, astronomy, physics, etc. Building associative classifiers has been a notable research interest in recent years because of their superior accuracy. In associative classifiers, using under-sampling or over-sampling methods for imbalanced big datasets reduces accuracy or increases running time, respectively. Hence, there is a significant need to create efficient associative classifiers for imbalanced big data problems. These classifiers should be able to handle challenges such as memory usage, running time and efficiently exploring the search space. To this end, efficient calculation of measures is a primary objective for associative classifiers. In this paper, we propose a new efficient associative classifier for big imbalanced datasets. The proposed method is based on Rare-PEARs (a multi-objective evolutionary algorithm that efficiently discovers rare and reliable association rules) and is able to evaluate rules in a distributed manner by using a new storing data format. This format simplifies measures calculation and is fully compatible with the MapReduce programming model. We have applied the proposed method (RPII) on a well-known big dataset (ECBDL’14) and have compared our results with seven other learning methods. The experimental results show that RPII outperform other methods in sensitivity and final score measures (the values of sensitivity and final score measures were approximately 0.74 and 0.54 respectively). The results demonstrate that the proposed method is a good candidate for large-scale classification problems; furthermore, it achieves reasonable execution time when the target platform is a typical computer clusters.  相似文献   

4.
Classification of datasets with imbalanced sample distributions has always been a challenge. In general, a popular approach for enhancing classification performance is the construction of an ensemble of classifiers. However, the performance of an ensemble is dependent on the choice of constituent base classifiers. Therefore, we propose a genetic algorithm-based search method for finding the optimum combination from a pool of base classifiers to form a heterogeneous ensemble. The algorithm, called GA-EoC, utilises 10 fold-cross validation on training data for evaluating the quality of each candidate ensembles. In order to combine the base classifiers decision into ensemble’s output, we used the simple and widely used majority voting approach. The proposed algorithm, along with the random sub-sampling approach to balance the class distribution, has been used for classifying class-imbalanced datasets. Additionally, if a feature set was not available, we used the (α, β) − k Feature Set method to select a better subset of features for classification. We have tested GA-EoC with three benchmarking datasets from the UCI-Machine Learning repository, one Alzheimer’s disease dataset and a subset of the PubFig database of Columbia University. In general, the performance of the proposed method on the chosen datasets is robust and better than that of the constituent base classifiers and many other well-known ensembles. Based on our empirical study we claim that a genetic algorithm is a superior and reliable approach to heterogeneous ensemble construction and we expect that the proposed GA-EoC would perform consistently in other cases.  相似文献   

5.
Han  Li  Liang  Zhang  Jiacai  Zhang  Changming  Wang  Li  Yao  Xia  Wu  Xiaojuan  Guo 《Cognitive neurodynamics》2015,9(2):103-112
A reactive brain-computer interface using electroencephalography (EEG) relies on the classification of evoked ERP responses. As the trial-to-trial variation is evitable in EEG signals, it is a challenge to capture the consistent classification features distribution. Clustering EEG trials with similar features and utilizing a specific classifier adjusted to each cluster can improve EEG classification. In this paper, instead of measuring the similarity of ERP features, the brain states during image stimuli presentation that evoked N1 responses were used to group EEG trials. The correlation between momentary phases of pre-stimulus EEG oscillations and N1 amplitudes was analyzed. The results demonstrated that the phases of time–frequency points about 5.3 Hz and 0.3 s before the stimulus onset have significant effect on the ERP classification accuracy. Our findings revealed that N1 components in ERP fluctuated with momentary phases of EEG. We also further studied the influence of pre-stimulus momentary phases on classification of N1 features. Results showed that linear classifiers demonstrated outstanding classification performance when training and testing trials have close momentary phases. Therefore, this gave us a new direction to improve EEG classification by grouping EEG trials with similar pre-stimulus phases and using each to train unit classifiers respectively.  相似文献   

6.
We propose a novel technique for automatically generating the SCOP classification of a protein structure with high accuracy. We achieve accurate classification by combining the decisions of multiple methods using the consensus of a committee (or an ensemble) classifier. Our technique, based on decision trees, is rooted in machine learning which shows that by judicially employing component classifiers, an ensemble classifier can be constructed to outperform its components. We use two sequence- and three structure-comparison tools as component classifiers. Given a protein structure and using the joint hypothesis, we first determine if the protein belongs to an existing category (family, superfamily, fold) in the SCOP hierarchy. For the proteins that are predicted as members of the existing categories, we compute their family-, superfamily-, and fold-level classifications using the consensus classifier. We show that we can significantly improve the classification accuracy compared to the individual component classifiers. In particular, we achieve error rates that are 3-12 times less than the individual classifiers' error rates at the family level, 1.5-4.5 times less at the superfamily level, and 1.1-2.4 times less at the fold level.  相似文献   

7.
《Genomics》2022,114(2):110264
Cancer is one of the major causes of human death per year. In recent years, cancer identification and classification using machine learning have gained momentum due to the availability of high throughput sequencing data. Using RNA-seq, cancer research is blooming day by day and new insights of cancer and related treatments are coming into light. In this paper, we propose PanClassif, a method that requires a very few and effective genes to detect cancer from RNA-seq data and is able to provide performance gain in several wide range machine learning classifiers. We have taken 22 types of cancer samples from The Cancer Genome Atlas (TCGA) having 8287 cancer samples and 680 normal samples. Firstly, PanClassif uses k-Nearest Neighbour (k-NN) smoothing to smooth the samples to handle noise in the data. Then effective genes are selected by Anova based test. For balancing the train data, PanClassif applies an oversampling method, SMOTE. We have performed comprehensive experiments on the datasets using several classification algorithms. Experimental results shows that PanClassif outperform existing state-of-the-art methods available and shows consistent performance for two single cell RNA-seq datasets taken from Gene Expression Omnibus (GEO). PanClassif improves performances of a wide variety of classifiers for both binary cancer prediction and multi-class cancer classification. PanClassif is available as a python package (https://pypi.org/project/panclassif/). All the source code and materials of PanClassif are available at https://github.com/Zwei-inc/panclassif.  相似文献   

8.

Background  

The goal of class prediction studies is to develop rules to accurately predict the class membership of new samples. The rules are derived using the values of the variables available for each subject: the main characteristic of high-dimensional data is that the number of variables greatly exceeds the number of samples. Frequently the classifiers are developed using class-imbalanced data, i.e., data sets where the number of samples in each class is not equal. Standard classification methods used on class-imbalanced data often produce classifiers that do not accurately predict the minority class; the prediction is biased towards the majority class. In this paper we investigate if the high-dimensionality poses additional challenges when dealing with class-imbalanced prediction. We evaluate the performance of six types of classifiers on class-imbalanced data, using simulated data and a publicly available data set from a breast cancer gene-expression microarray study. We also investigate the effectiveness of some strategies that are available to overcome the effect of class imbalance.  相似文献   

9.
An ensemble performs well when the component classifiers are diverse yet accurate, so that the failure of one is compensated for by others. A number of methods have been investigated for constructing ensemble in which some of them train classifiers with the generated patterns. This study investigates a new technique of training pattern generation. The method alters input feature values of some patterns using the values of other patterns to generate different patterns for different classifiers. The effectiveness of neural network ensemble based on the proposed technique was evaluated using a suite of 25 benchmark classification problems, and was found to achieve performance better than or competitive with related conventional methods. Experimental investigation of different input values alteration techniques finds that alteration with pattern values in the same class is better for generalization, although other alteration techniques may offer more diversity.  相似文献   

10.
DNA microarrays (gene chips), frequently used in biological and medical studies, measure the expressions of thousands of genes per sample. Using microarray data to build accurate classifiers for diseases is an important task. This paper introduces an algorithm, called Committee of Decision Trees by Attribute Behavior Diversity (CABD), to build highly accurate ensembles of decision trees for such data. Since a committee's accuracy is greatly influenced by the diversity among its member classifiers, CABD uses two new ideas to "optimize" that diversity, namely (1) the concept of attribute behavior-based similarity between attributes, and (2) the concept of attribute usage diversity among trees. The ideas are effective for microarray data, since such data have many features and behavior similarity between genes can be high. Experiments on microarray data for six cancers show that CABD outperforms previous ensemble methods significantly and outperforms SVM, and show that the diversified features used by CABD's decision tree committee can be used to improve performance of other classifiers such as SVM. CABD has potential for other high-dimensional data, and its ideas may apply to ensembles of other classifier types.  相似文献   

11.
Liu Z  Tan M 《Biometrics》2008,64(4):1155-1161
SUMMARY: In medical diagnosis, the diseased and nondiseased classes are usually unbalanced and one class may be more important than the other depending on the diagnosis purpose. Most standard classification methods, however, are designed to maximize the overall accuracy and cannot incorporate different costs to different classes explicitly. In this article, we propose a novel nonparametric method to directly maximize the weighted specificity and sensitivity of the receiver operating characteristic curve. Combining advances in machine learning, optimization theory, and statistics, the proposed method has excellent generalization property and assigns different error costs to different classes explicitly. We present experiments that compare the proposed algorithms with support vector machines and regularized logistic regression using data from a study on HIV-1 protease as well as six public available datasets. Our main conclusion is that the performance of proposed algorithm is significantly better in most cases than the other classifiers tested. Software package in MATLAB is available upon request.  相似文献   

12.
Huang HL  Lee CC  Ho SY 《Bio Systems》2007,90(1):78-86
It is essential to select a minimal number of relevant genes from microarray data while maximizing classification accuracy for the development of inexpensive diagnostic tests. However, it is intractable to simultaneously optimize gene selection and classification accuracy that is a large parameter optimization problem. We propose an efficient evolutionary approach to gene selection from microarray data which can be combined with the optimal design of various multiclass classifiers. The proposed method (named GeneSelect) consists of three parts which are fully cooperated: an efficient encoding scheme of candidate solutions, a generalized fitness function, and an intelligent genetic algorithm (IGA). An existing hybrid approach based on genetic algorithm and maximum likelihood classification (GA/MLHD) is proposed to select a small number of relevant genes for accurate classification of samples. To evaluate the performance of GeneSelect, the gene selection is combined with the same maximum likelihood classification (named IGA/MLHD) for convenient comparisons. The performance of IGA/MLHD is applied to 11 cancer-related human gene expression datasets. The simulation results show that IGA/MLHD is superior to GA/MLHD in terms of the number of selected genes, classification accuracy, and robustness of selected genes and accuracy.  相似文献   

13.
Microarrays have thousands to tens-of-thousands of gene features, but only a few hundred patient samples are available. The fundamental problem in microarray data analysis is identifying genes whose disruption causes congenital or acquired disease in humans. In this paper, we propose a new evolutionary method that can efficiently select a subset of potentially informative genes for support vector machine (SVM) classifiers. The proposed evolutionary method uses SVM with a given subset of gene features to evaluate the fitness function, and new subsets of features are selected based on the estimates of generalization error of SVMs and frequency of occurrence of the features in the evolutionary approach. Thus, in theory, selected genes reflect to some extent the generalization performance of SVM classifiers. We compare our proposed method with several existing methods and find that the proposed method can obtain better classification accuracy with a smaller number of selected genes than the existing methods.  相似文献   

14.
The safety of human–machine systems can be indirectly evaluated based on operator’s cognitive load levels at each temporal instant. However, relevant features of cognitive states are hidden behind in multiple sources of cortical neural responses. In this study, we developed a novel neural network ensemble, SE-SDAE, based on stacked denoising autoencoders (SDAEs) which identify different levels of cognitive load by electroencephalography (EEG) signals. To improve the generalization capability of the ensemble framework, a stacking-based approach is adopted to fuse the abstracted EEG features from activations of deep-structured hidden layers. In particular, we also combine multiple K-nearest neighbor and naive Bayesian classifiers with SDAEs to generate a heterogeneous classification committee to enhance ensemble’s diversity. Finally, we validate the proposed SE-SDAE by comparing its performance with mainstream pattern classifiers for cognitive load evaluation to show its effectiveness.  相似文献   

15.
ObjectivesThe subtype classification of lung adenocarcinoma is important for treatment decision. This study aimed to investigate the deep learning and radiomics networks for predicting histologic subtype classification and survival of lung adenocarcinoma diagnosed through computed tomography (CT) images.MethodsA dataset of 1222 patients with lung adenocarcinoma were retrospectively enrolled from three medical institutions. The anonymised preoperative CT images and pathological labels of atypical adenomatous hyperplasia, adenocarcinoma in situ, minimally invasive adenocarcinoma, invasive adenocarcinoma (IAC) with five predominant components were obtained. These pathological labels were divided into 2-category classification (IAC; non-IAC), 3-category and 8-category. We modeled the classification task of histological subtypes based on modified ResNet-34 deep learning network, radiomics strategies and deep radiomics combined algorithm. Then we established the prognostic models in lung adenocarcinoma patients with survival outcomes. The accuracy (ACC), area under ROC curves (AUCs) and C-index were primarily performed to evaluate the algorithms.ResultsThis study included a training set (n = 802) and two validation cohorts (internal, n = 196; external, n = 224). The ACC of deep radiomics algorithm in internal validation achieved 0.8776, 0.8061 in the 2-category, 3-category classification, respectively. Even in 8 classifications, the AUC ranged from 0.739 to 0.940 in internal set. Further, we constructed a prognosis model that C-index was 0.892(95% CI: 0.846–0.937) in internal validation set.ConclusionsThe automated deep radiomics based triage system has achieved the great performance in the subtype classification and survival predictability in patients with CT-detected lung adenocarcinoma nodules, providing the clinical guide for treatment strategies.  相似文献   

16.

Background  

Multiclass classification of microarray data samples with a reduced number of genes is a rich and challenging problem in Bioinformatics research. The problem gets harder as the number of classes is increased. In addition, the performance of most classifiers is tightly linked to the effectiveness of mandatory gene selection methods. Critical to gene selection is the availability of estimates about the maximum number of genes that can be handled by any classification algorithm. Lack of such estimates may lead to either computationally demanding explorations of a search space with thousands of dimensions or classification models based on gene sets of unrestricted size. In the former case, unbiased but possibly overfitted classification models may arise. In the latter case, biased classification models unable to support statistically significant findings may be obtained.  相似文献   

17.
For medical classification problems, it is often desirable to have a probability associated with each class. Probabilistic classifiers have received relatively little attention for small n large p classification problems despite of their importance in medical decision making. In this paper, we introduce 2 criteria for assessment of probabilistic classifiers: well-calibratedness and refinement and develop corresponding evaluation measures. We evaluated several published high-dimensional probabilistic classifiers and developed 2 extensions of the Bayesian compound covariate classifier. Based on simulation studies and analysis of gene expression microarray data, we found that proper probabilistic classification is more difficult than deterministic classification. It is important to ensure that a probabilistic classifier is well calibrated or at least not "anticonservative" using the methods developed here. We provide this evaluation for several probabilistic classifiers and also evaluate their refinement as a function of sample size under weak and strong signal conditions. We also present a cross-validation method for evaluating the calibration and refinement of any probabilistic classifier on any data set.  相似文献   

18.
MOTIVATION: An important application of microarrays is to discover genomic biomarkers, among tens of thousands of genes assayed, for disease classification. Thus there is a need for developing statistical methods that can efficiently use such high-throughput genomic data, select biomarkers with discriminant power and construct classification rules. The ROC (receiver operator characteristic) technique has been widely used in disease classification with low-dimensional biomarkers because (1) it does not assume a parametric form of the class probability as required for example in the logistic regression method; (2) it accommodates case-control designs and (3) it allows treating false positives and false negatives differently. However, due to computational difficulties, the ROC-based classification has not been used with microarray data. Moreover, the standard ROC technique does not incorporate built-in biomarker selection. RESULTS: We propose a novel method for biomarker selection and classification using the ROC technique for microarray data. The proposed method uses a sigmoid approximation to the area under the ROC curve as the objective function for classification and the threshold gradient descent regularization method for estimation and biomarker selection. Tuning parameter selection based on the V-fold cross validation and predictive performance evaluation are also investigated. The proposed approach is demonstrated with a simulation study, the Colon data and the Estrogen data. The proposed approach yields parsimonious models with excellent classification performance.  相似文献   

19.
Dabney AR  Storey JD 《PloS one》2007,2(10):e1002
Nearest-centroid classifiers have recently been successfully employed in high-dimensional applications, such as in genomics. A necessary step when building a classifier for high-dimensional data is feature selection. Feature selection is frequently carried out by computing univariate scores for each feature individually, without consideration for how a subset of features performs as a whole. We introduce a new feature selection approach for high-dimensional nearest centroid classifiers that instead is based on the theoretically optimal choice of a given number of features, which we determine directly here. This allows us to develop a new greedy algorithm to estimate this optimal nearest-centroid classifier with a given number of features. In addition, whereas the centroids are usually formed from maximum likelihood estimates, we investigate the applicability of high-dimensional shrinkage estimates of centroids. We apply the proposed method to clinical classification based on gene-expression microarrays, demonstrating that the proposed method can outperform existing nearest centroid classifiers.  相似文献   

20.
Ho SY  Hsieh CH  Chen HM  Huang HL 《Bio Systems》2006,85(3):165-176
An accurate classifier with linguistic interpretability using a small number of relevant genes is beneficial to microarray data analysis and development of inexpensive diagnostic tests. Several frequently used techniques for designing classifiers of microarray data, such as support vector machine, neural networks, k-nearest neighbor, and logistic regression model, suffer from low interpretabilities. This paper proposes an interpretable gene expression classifier (named iGEC) with an accurate and compact fuzzy rule base for microarray data analysis. The design of iGEC has three objectives to be simultaneously optimized: maximal classification accuracy, minimal number of rules, and minimal number of used genes. An "intelligent" genetic algorithm IGA is used to efficiently solve the design problem with a large number of tuning parameters. The performance of iGEC is evaluated using eight commonly-used data sets. It is shown that iGEC has an accurate, concise, and interpretable rule base (1.1 rules per class) on average in terms of test classification accuracy (87.9%), rule number (3.9), and used gene number (5.0). Moreover, iGEC not only has better performance than the existing fuzzy rule-based classifier in terms of the above-mentioned objectives, but also is more accurate than some existing non-rule-based classifiers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号