首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apolipoprotein ε allele 4 (APOE4) influences the metabolism of polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA). The entorhinal cortex (EC) in the brain is affected early in Alzheimer's disease and is rich in DHA. The purpose of this study is to identify the effect of APOE4 and DHA lipid species on the EC. Plasma and cerebrospinal fluid (CSF) lipidomic measurements were obtained from the DHA Brain Delivery Pilot, a randomized clinical trial of DHA supplementation (n = 10) versus placebo (n = 12) for six months in nondemented older adults stratified by APOE4 status. Wild-type C57B6/J mice were fed a high or low DHA diet for 6 months followed by plasma and brain lipidomic analysis. Levels of phosphatidylcholine DHA (PC 38:6) and cholesterol ester DHA (CE 22:6) had the largest increases in CSF following supplementation (P < 0.001). DHA within triglyceride (TG) lipids in CSF strongly correlated with corresponding plasma TG lipids, and differed by APOE4, with carriers having a lower increase than noncarriers. Changes in plasma PC DHA had the strongest association with changes in EC thickness in millimeters, independent of APOE4 status (P = 0.007). In mice, a high DHA diet increased PUFAs within brain lipids. Our findings demonstrate an exchange of DHA at the CSF-blood barrier and into the brain within all lipid species with APOE having the strongest effect on DHA-containing TGs. The correlation of PC DHA with EC suggests a functional consequence of DHA accretion in high density lipoprotein for the brain.  相似文献   

2.
Ceramides (CERs) are key intermediate sphingolipids implicated in contributing to mitochondrial dysfunction and the development of multiple metabolic conditions. Despite the growing evidence of CER role in disease risk, kinetic methods to measure CER turnover are lacking, particularly using in vivo models. The utility of orally administered 13C3, 15N l-serine, dissolved in drinking water, was tested to quantify CER 18:1/16:0 synthesis in 10-week-old male and female C57Bl/6 mice. To generate isotopic labeling curves, animals consumed either a control diet or high-fat diet (HFD; n = 24/diet) for 2 weeks and varied in the duration of the consumption of serine-labeled water (0, 1, 2, 4, 7, or 12 days; n = 4 animals/day/diet). Unlabeled and labeled hepatic and mitochondrial CERs were quantified using liquid chromatography tandem MS. Total hepatic CER content did not differ between the two diet groups, whereas total mitochondrial CERs increased with HFD feeding (60%, P < 0.001). Within hepatic and mitochondrial pools, HFD induced greater saturated CER concentrations (P < 0.05) and significantly elevated absolute turnover of 16:0 mitochondrial CER (mitochondria: 59%, P < 0.001 vs. liver: 15%, P = 0.256). The data suggest cellular redistribution of CERs because of the HFD. These data demonstrate that a 2-week HFD alters the turnover and content of mitochondrial CERs. Given the growing data on CERs contributing to hepatic mitochondrial dysfunction and the progression of multiple metabolic diseases, this method may now be used to investigate how CER turnover is altered in these conditions.  相似文献   

3.
Oral and gut Bacteroidetes produce unique classes of serine-glycine lipodipeptides and glycine aminolipids that signal through host Toll-like receptor 2. These glycine lipids have also been detected in human arteries, but their effects on atherosclerosis are unknown. Here, we sought to investigate the bioactivity of bacterial glycine lipids in mouse models of atherosclerosis. Lipid 654 (L654), a serine-glycine lipodipeptide species, was first tested in a high-fat diet (HFD)-fed Ldlr?/? model of atherosclerosis. Intraperitoneal administration of L654 over 7 weeks to HFD-fed Ldlr?/? mice resulted in hypocholesterolemic effects and significantly attenuated the progression of atherosclerosis. We found that L654 also reduced liver inflammatory and extracellular matrix gene expression, which may be related to inhibition of macrophage activation as demonstrated in vivo by lower major histocompatibility complex class II gene expression and confirmed in cell experiments. In addition, L654 and other bacterial glycine lipids in feces, liver, and serum were markedly reduced alongside changes in Bacteroidetes relative abundance in HFD-fed mice. Finally, we tested the bioactivities of L654 and related lipid 567 in chow-fed Apoe?/? mice, which displayed much higher fecal glycine lipids relative to HFD-fed Ldlr?/? mice. Administration of L654 or lipid 567 for 7 weeks to these mice reduced the liver injury marker alanine aminotransferase, but other effects seen in Ldlr?/? were not observed. Therefore, we conclude that conditions in which gut microbiome-derived glycine lipids are lost, such as HFD, may exacerbate the development of atherosclerosis and liver injury, whereas correction of such depletion may protect from these disorders.  相似文献   

4.
IntroductionThe aim of this study was to assess the efficacy of choline and DHA or exposure to environmental enrichment in obese adult and aging rats on alterations in body mass index, serum lipid profile and arterial wall changes, despite stopping high fat diet consumption and interventions during adulthood.Methods21 day old male Sprague Dawley rats were assigned as Experiment-1 & 2 - PND rats were divided into 4 groups with interventions for 7 months (n = 8/group). NC– Normal control fed normal chow diet; OB- Obese group, fed high fat diet; OB + CHO + DHA- fed high fat diet and oral supplementation of choline, DHA. OB + EE- fed high fat diet along with exposure to enriched environment .Experiment-2 had similar groups and interventions as experiment 1 but for next 5 months were fed normal chow diet without any interventions. Body mass index was assessed and blood was analyzed for serum lipid profile. Common Carotid Artery (CCA) was processed for Haematoxylin and eosin, Verhoff Vangeison stains. Images of tissue sections were analyzed and quantified using image J and tissue quant software.ResultsIn experiment.1, mean body mass index (p < 0.001), serum lipid profile (p < 0.01), thickness of tunica intima (p < 0.05), tunica media (p < 0.01) and percentage of collagen fibers (p < 0.01) of CCA were significantly increased in OB compared to NC. These were significantly attenuated in OB + CHO + DHA and OB + EE compared to OB. In experiment.2, mean body mass index (p < 0.01), serum lipid profile (p < 0.05) and thickness of tunica media of CCA (p < 0.01) were significantly increased in OB compared to NC. In OB + CHO + DHA and OB + EE, significant attenuation was observed in mean body mass index and mean thickness of tunica media compared to same in OB.ConclusionAdult obesity has negative impact on body mass index, serum lipid profile and arterial wall structure that persists through aging. Supplementation of choline and DHA or exposure to enriched environment during obesity attenuates these negative impacts through aging.  相似文献   

5.
This study was conducted to examine the effects of dietary taurine supplementation on productive performance, nutrient digestibility, antioxidant status, and the gene expression of ileal nutrient transporters in laying quails reared under heat stress (HS). One hundred and eighty laying Japanese quails (Coturnix coturnix japonica) were fed a basal diet or basal diet supplemented with either 2.5 or 5 g of taurine per kg of diet, and reared at either 22 ± 2 °C for 24 h/d (thermoneutral, TN) or 34 ± 2 °C for 8 h/d (HS) for 12 weeks. The quails reared under HS consumed less feed, produced less egg, and had lower dry matter, organic matter and crude protein apparent digestibilities compared with the quails reared under the TN condition (P = 0.001). However, increasing taurine concentrations in the diet improved feed intake and egg production (P = 0.001), but also the apparent digestibilities (P ≤ 0.027) in quails reared under HS. The greater doses (5 g/kg) of taurine resulted in more responses. The quails reared under HS had greater serum and liver MDA concentrations (P = 0.0001) which decreased with dietary taurine supplementations, particularly greater doses. The gene expressions of ileal PEPT1, EAAT3, CAT1, CAT2, SGLT1, SGLT5, GLUT2, and GLUT5 decreased under HS conditions (P = 0.001). However, supplementing taurine, in a dose-dependent fashion, to the diet of quails reared under HS resulted in increases in the gene expressions of the transporters (P < 0.05) except for CAT1. The results of the present work showed that taurine supplementation, particularly with greater doses (5 g/kg), to the diet of laying quails kept under HS acts as alleviating negative effects of HS, resulting in improvements in productive performance and nutrient digestion, and also upregulation of ileal nutrient transporters.  相似文献   

6.
Changes in the abundance of individual proteins in the proteome can be elicited by modulation of protein synthesis (the rate of input of newly synthesized proteins into the protein pool) or degradation (the rate of removal of protein molecules from the pool). A full understanding of proteome changes therefore requires a definition of the roles of these two processes in proteostasis, collectively known as protein turnover. Because protein turnover occurs even in the absence of overt changes in pool abundance, turnover measurements necessitate monitoring the flux of stable isotope–labeled precursors through the protein pool such as labeled amino acids or metabolic precursors such as ammonium chloride or heavy water. In cells in culture, the ability to manipulate precursor pools by rapid medium changes is simple, but for more complex systems such as intact animals, the approach becomes more convoluted. Individual methods bring specific complications, and the suitability of different methods has not been comprehensively explored. In this study, we compare the turnover rates of proteins across four mouse tissues, obtained from the same inbred mouse strain maintained under identical husbandry conditions, measured using either [13C6]lysine or [2H2]O as the labeling precursor. We show that for long-lived proteins, the two approaches yield essentially identical measures of the first-order rate constant for degradation. For short-lived proteins, there is a need to compensate for the slower equilibration of lysine through the precursor pools. We evaluate different approaches to provide that compensation. We conclude that both labels are suitable, but careful determination of precursor enrichment kinetics in amino acid labeling is critical and has a considerable influence on the numerical values of the derived protein turnover rates.  相似文献   

7.
In order to investigate the effects of dietary ginger extract (GE) enriched in gingerols on broilers under heat stress (HS) from 21 to 42 days of age, a total of 144 Ross 308 male broilers were randomly allocated to three groups with six replicates of eight broilers per replicate. Broilers in the control group were raised at 22 °C and fed a basal diet, and broilers in the other two groups were raised under cyclic HS (34 °C from 9:00 to 17:00 and at 22 °C for the rest of the time) and fed the basal diet with or without 1000 mg/kg GE. Supplementation of GE improved (P < 0.05) final body weight, average daily gain and feed conversion ratio of broilers under HS, and tended (P < 0.1) to increase breast muscle yield. The alterations of serum total protein, albumin, total cholesterol levels and aspartate aminotransferase activity under HS were reversed (P < 0.05) by GE, which also decreased (P < 0.05) serum triglyceride level and alanine aminotransferase activity. The decreased redness (a* value) and increased drip loss of breast muscle induced by HS were restored (P < 0.05) by GE. Moreover, GE supplementation increased (P < 0.05) total antioxidant capacity and decreased (P < 0.05) malondialdehyde content in liver and breast muscle, and increased (P < 0.05) glutathione peroxidase activity in serum and breast muscle. In conclusion, dietary GE supplementation restored growth performance, serum metabolites and meat quality of broilers under HS possibly by improving antioxidant activity.  相似文献   

8.
Reducing dietary saturated fatty acids (SFA) intake results in a clinically significant lowering of low-density lipoprotein cholesterol (LDL-C) across ethnicities. In contrast, dietary SFA’s role in modulating emerging cardiovascular risk factors in different ethnicities remains poorly understood. Elevated levels of lipoprotein(a) [Lp(a)], an independent cardiovascular risk factor, disproportionally affect individuals of African descent. Here, we assessed the responses in Lp(a) levels to dietary SFA reduction in 166 African Americans enrolled in GET-READI (The Gene-Environment Trial on Response in African Americans to Dietary Intervention), a randomized controlled feeding trial. Participants were fed two diets in random order for 5 weeks each: 1) an average American diet (AAD) (37% total fat: 16% SFA), and 2) a diet similar to the Dietary Approaches to Stop Hypertension (DASH) diet (25% total fat: 6% SFA). The participants’ mean age was 35 years, 70% were women, the mean BMI was 28 kg/m2, and the mean LDL-C was 116 mg/dl. Compared to the AAD diet, LDL-C was reduced by the DASH-type diet (mean change: −12 mg/dl) as were total cholesterol (−16 mg/dl), HDL-C (−5 mg/dl), apoA-1 (−9 mg/dl) and apoB-100 (−5 mg/dl) (all P < 0.0001). In contrast, Lp(a) levels increased following the DASH-type diet compared with AAD (median: 58 vs. 44 mg/dl, P < 0.0001). In conclusion, in a large cohort of African Americans, reductions in SFA intake significantly increased Lp(a) levels while reducing LDL-C. Future studies are warranted to elucidate the mechanism(s) underlying the SFA reduction-induced increase in Lp(a) levels and its role in cardiovascular risk across populations.  相似文献   

9.
10.
CYP46A1 is a CNS-specific enzyme, which eliminates cholesterol from the brain and retina by metabolism to 24-hydroxycholesterol, thus contributing to cholesterol homeostasis in both organs. 2-Hydroxypropyl-β-cyclodextrin (HPCD), a Food and Drug Administration-approved formulation vehicle, is currently being investigated off-label for treatment of various diseases, including retinal diseases. HPCD was shown to lower retinal cholesterol content in mice but had not yet been evaluated for its therapeutic benefits. Herein, we put Cyp46a1?/? mice on high fat cholesterol-enriched diet from 1 to 14 months of age (control group) and at 12 months of age, started to treat a group of these animals with HPCD until the age of 14 months. We found that as compared with mature and regular chow-fed Cyp46a1?/? mice, control group had about 6-fold increase in the retinal total cholesterol content, focal cholesterol and lipid deposition in the photoreceptor-Bruch’s membrane region, and retinal macrophage activation. In addition, aged animals had cholesterol crystals at the photoreceptor-retinal pigment epithelium interface and changes in the Bruch’s membrane ultrastructure. HPCD treatment mitigated all these manifestations of retinal cholesterol dyshomeostasis and altered the abundance of six groups of proteins (genetic information transfer, vesicular transport, and cytoskeletal organization, endocytosis and lysosomal processing, unfolded protein removal, lipid homeostasis, and Wnt signaling). Thus, aged Cyp46a1?/? mice on high fat cholesterol-enriched diet revealed pathological changes secondary to retinal cholesterol overload and supported further studies of HPCD as a potential therapeutic for age-related macular degeneration and diabetic retinopathy associated with retinal cholesterol dyshomeostasis.  相似文献   

11.
FXR regulates bile acid metabolism, and FXR null (Fxr?/?) mice have elevated bile acid levels and progressive liver injury. The inositol-requiring enzyme 1α/X-box binding protein 1 (XBP1) pathway is a protective unfolded protein response pathway activated in response to endoplasmic reticulum stress. Here, we sought to determine the role of the inositol-requiring enzyme 1α/XBP1 pathway in hepatic bile acid toxicity using the Fxr?/? mouse model. Western blotting and quantitative PCR analysis demonstrated that hepatic XBP1 and other unfolded protein response pathways were activated in 24-week-old Fxr?/? compared with 10-week-old Fxr?/? mice but not in WT mice. To further determine the role of the liver XBP1 activation in older Fxr?/? mice, we generated mice with whole-body FXR and liver-specific XBP1 double KO (DKO, Fxr?/?Xbp1LKO) and Fxr?/?Xbp1fl/fl single KO (SKO) mice and characterized the role of hepatic XBP1 in cholestatic liver injury. Histologic staining demonstrated increased liver injury and fibrosis in DKO compared with SKO mice. RNA sequencing revealed increased gene expression in apoptosis, inflammation, and cell proliferation pathways in DKO mice. The proapoptotic C/EBP-homologous protein pathway and cell cycle marker cyclin D1 were also activated in DKO mice. Furthermore, we found that total hepatic bile acid levels were similar between the two genotypes. At age 60 weeks, all DKO mice and no SKO mice spontaneously developed liver tumors. In conclusion, the hepatic XBP1 pathway is activated in older Fxr?/? mice and has a protective role. The potential interaction between XBP1 and FXR signaling may be important in modulating the hepatocellular cholestatic stress responses.  相似文献   

12.
Human and animal model data show that maternal obesity promotes nonalcoholic fatty liver disease in offspring and alters bile acid (BA) homeostasis. Here we investigated whether offspring exposed to maternal obesogenic diets exhibited greater cholestatic injury. We fed female C57Bl6 mice conventional chow (CON) or high fat/high sucrose (HF/HS) diet and then bred them with lean males. Offspring were fed 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) for 2 weeks to induce cholestasis, and a subgroup was then fed CON for an additional 10 days. Additionally, to evaluate the role of the gut microbiome, we fed antibiotic-treated mice cecal contents from CON or HF/HS offspring, followed by DDC for 2 weeks. We found that HF/HS offspring fed DDC exhibited increased fine branching of the bile duct (ductular reaction) and fibrosis but did not differ in BA pool size or intrahepatic BA profile compared to offspring of mice fed CON. We also found that after 10 days recovery, HF/HS offspring exhibited sustained ductular reaction and periportal fibrosis, while lesions in CON offspring were resolved. In addition, cecal microbiome transplant from HF/HS offspring donors worsened ductular reaction, inflammation, and fibrosis in mice fed DDC. Finally, transfer of the microbiome from HF/HS offspring replicated the cholestatic liver injury phenotype. Taken together, we conclude that maternal HF/HS diet predisposes offspring to increased cholestatic injury after DDC feeding and delays recovery after returning to CON diets. These findings highlight the impact of maternal obesogenic diet on hepatobiliary injury and repair pathways during experimental cholestasis.  相似文献   

13.
The Δ-6 desaturase (D6D) enzyme is not only critical for the synthesis of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from α-linolenic acid (ALA), but recent evidence suggests that it also plays a role in adipocyte lipid metabolism and body weight; however, the mechanisms remain largely unexplored. The goal of this study was to investigate if a D6D deficiency would inhibit triacylglycerol storage and alter lipolytic and lipogenic pathways in mouse white adipose tissue (WAT) depots due to a disruption in EPA and DHA production. Male C57BL/6J D6D knockout (KO) and wild-type (WT) mice were fed either a 7% w/w lard or flax (ALA rich) diet for 21 weeks. Energy expenditure, physical activity, and substrate utilization were measured with metabolic caging. Inguinal and epididymal WAT depots were analyzed for changes in tissue weight, fatty acid composition, adipocyte size, and markers of lipogenesis, lipolysis, and insulin signaling. KO mice had lower body weight, higher serum nonesterified fatty acids, smaller WAT depots, and reduced adipocyte size compared to WT mice without altered food intake, energy expenditure, or physical activity, regardless of the diet. Markers of lipogenesis and lipolysis were more highly expressed in KO mice compared to WT mice in both depots, regardless of the diet. These changes were concomitant with lower basal insulin signaling in WAT. Collectively, a D6D deficiency alters triacylglycerol/fatty acid cycling in WAT by promoting lipolysis and reducing fatty acid re-esterification, which may be partially attributed to a reduction in WAT insulin signaling.  相似文献   

14.
Duckweed is recognized as a phytoremediation aquatic plant due to the production of large biomass and a high level of tolerance in stressed conditions. A laboratory experiment was conducted to investigate antioxidant response and mechanism of copper and mercury tolerance of S. polyrhiza (L.) Schleid. To understand the changes in chlorophyll content, MDA, proline, and activities of ROS-scavenging enzymes (SOD, CAT, GPOD) during the accumulation of Cu+2 and Hg+2, S. polyrhiza were exposed to various concentrations of Cu+2 (0.0–40 μM) and Hg+2 (0.0–0.4 μM). antioxidant activity initially indicated enhancing trend with application of 10 μM Cu+2; 0.2 μM Hg+2 (SOD), of 20 μM Cu+2; 0.2 μM Hg+2 (CAT) and of 10 μM Cu+2;0.2 μM Hg+2 (GPOD) and then decreased consistently up to 40 μM Cu+2 and 0.4 μM Hg+2. In the experiment chlorophyll and frond multiplication initially showed increasing tendency and decreased gradually with the application of increased metal concentration. Application of heavy metal has constantly enhanced proline and MDA content while the maximum increase was observed with the application of 40 μM Cu; 0.4 μM Hg for proline and MDA respectively. The upregulation of antioxidant enzymes and proline reveals that S. polyrhiza has strong biochemical strategies to deal with the heavy metal toxicity induced by the accumulation of Cu+2 and Hg+2.  相似文献   

15.
A spiral-shaped, highly motile bacterium was isolated from freshwater sulfidic sediment. Strain J10T is a facultative autotroph utilizing sulfide, thiosulfate, and sulfur as the electron donors in microoxic conditions. Despite high 16S rRNA gene sequence sequence identity to Magnetospirillum gryphiswaldense MSR-1 T (99.6 %), digital DNA-DNA hybridisation homology and average nucleotide identity between the two strains was of the different species level (25 % and 83 %, respectively). Strain J10T is not magnetotactic. The DNA G + C content of strain J10T is 61.9 %. The predominant phospholipid ester-linked fatty acids are C18:1ω7, C16:1ω7, and C16:0. Strain J10T (=DSM 23205 T = VKM B-3486 T) is the first strain of the genus Magnetospirillum showing lithoautotrophic growth and is proposed here as a novel species, Magnetospirillum sulfuroxidans sp. nov. In addition, we propose to establish a framework for distinguishing genera and families within the order Rhodospirillales based on phylogenomic analysis using the threshold values for average amino acid identity at ̴ 72 % for genera and ̴ 60 % for families. According to this, we propose to divide the existing genus Magnetospirillum into three genera: Magnetospirillum, Paramagnetospirillum, and Phaeospirillum, constituting a separate family Magnetospirillaceae fam. nov. in the order Rhodospirillales. Furthermore, phylogenomic data suggest that this order should accomodate six more new family level groups including Magnetospiraceae fam. nov., Magnetovibrionaceae fam. nov., Dongiaceae fam. nov., Niveispirillaceae fam. nov., Fodinicurvataceae fam. nov., and Oceanibaculaceae fam. nov.  相似文献   

16.
BackgroundAmong many drugs that hold potential in COVID-19 pandemic, chloroquine (CQ), and its derivative hydroxychloroquine (HCQ) have generated unusual interest. With increasing usage, there has been growing concern about the prolongation of QTc interval and Torsades de Pointes (TdP) with HCQ, especially in combination with azithromycin.AimsThis meta-analysis is planned to study the risk of QTc prolongation and Torsades de pointes (TdP) by a well-defined criterion for HCQ, CQ alone, and in combination with Azithromycin in patients with COVID-19.MethodsA comprehensive literature search was made in two databases (PubMed, Embase). Three outcomes explored in the included studies were frequency of QTc > 500 ms (ms) or ΔQTc > 60 ms (Outcome 1), frequency of QTc > 500 ms (Outcome 2) and frequency of TdP (Outcome 3). Random effects method with inverse variance approach was used for computation of pooled summary and risk ratio.ResultsA total of 13 studies comprising of 2138 patients were included in the final analysis. The pooled prevalence of outcome 1, outcome 2 and outcome 3 for HCQ, CQ with or without Azithromycin were 10.18% (5.59–17.82%, I2 – 92%), 10.22% (6.01–16.85%, I2 – 79%), and 0.72% (0.34–1.51, I2 – 0%) respectively. The prevalence of outcome 2 in subgroup analysis for HCQ and HCQ + Azithromycin was 7.25% (3.22–15.52, I2 – 59%) and 8.61% (4.52–15.79, I2 – 76%), respectively. The risk ratio (RR) for outcome 1 and outcome 2 between HCQ + Azithromycin and HCQ was 1.22 (0.77–1.93, I2 – 0%) & 1.51 (0.79–2.87, I2 – 13%), respectively and was not significant. Heterogeneity was noted statistically as well clinically (regimen types, patient numbers, study design, and outcome definition).ConclusionThe use of HCQ/CQ is associated with a high prevalence of QTc prolongation. However, it is not associated with a high risk of TdP.  相似文献   

17.
18.
《Endocrine practice》2023,29(1):33-39
ObjectiveNonalcoholic fatty liver disease (NAFLD) affects much of the worldwide population and poses a significant burden to the global healthcare. The rising numbers of individuals with NAFLD and instances of mortality point toward the importance of understanding the association causes of mortality in NAFLD. This meta-analysis aimed to seek the associations of NAFLD with all-cause, cardiovascular disease (CVD)-related, liver-related, and cancer-related mortality.MethodsMEDLINE and Embase were searched for articles relating to causes of mortality between NAFLD and non-NAFLD. The DerSimonian and Laird random-effects model was used to analyze adjusted hazard ratios (HR), and a sensitivity analysis was conducted to reduce heterogeneity through a graphical display of study heterogeneity.ResultsFifteen studies involving 10 286 490 patients were included. Individuals with NAFLD exhibited an increased risk of all-cause mortality (HR, 1.32; 95% CI, 1.09-1.59; P < .01; I2 = 96.00%), CVD-related mortality (HR, 1.22; 95% CI, 1.06-1.41; P < .01; I2 = 81.00%), and cancer-related mortality (HR, 1.67; 95% CI, 1.15-2.41; P < .01; I2 = 95.00%). However, no significant association was found between liver-related mortality and NAFLD (HR, 3.58; 95% CI, 0.69-18.46; P =.13; I2 = 96.00%). The sensitivity analysis conducted with graphic display of heterogeneity and only population-based studies found similar results.ConclusionNAFLD was associated with an increased risk of all-cause, CVD-related, and cancer-related mortality but not liver-related mortality. The finding is likely because of low fibrosis prevalence in the community. However, the significant burden in other causes of mortality beyond the liver points to a need for multidisciplinary efforts to reduce the mortality risks.  相似文献   

19.
Bacteria within the phylum Planctomycetota are biologically relevant due to unique characteristics among prokaryotes. Members of the genus Rhodopirellula can be abundant in marine habitats, however, only six species are currently validly described. In this study, we expand the explored genus diversity by formally describing a novel species. The pink-coloured strain ICT_H3.1T was isolated from brackish sediments collected in the Tagus estuary (Portugal) and a 16S rRNA gene sequence-based analysis placed this strain into the genus Rhodopirellula (family Pirellulaceae). The closest type strain is Rhodopirellula rubra LF2T, suggested by a similarity of 98.4% of the 16S rRNA gene sequence. Strain ICT_H3.1T is heterotrophic, aerobic and able to grow under microaerobic conditions. The strain grows between 15 and 37 °C, over a range of pH 6.5 to 11.0 and from 1 to 8% (w/v) NaCl. Several nitrogen and carbon sources were utilized by the novel isolate. Cells have an elongated pear-shape with 2.0 ± 0.3 × 0.9 ± 0.2 µm in size. Cells of strain ICT_H3.1T cluster in rosettes through a holdfast structure and divide by budding. Younger cells are motile. Ultrathin cell sections show cytoplasmic membrane invaginations and polar fimbriae. The genome size is 9,072,081 base pairs with a DNA G + C content of 56.1 mol%. Genomic, physiological and morphological comparison of strain ICT_H3.1T with its relatives suggest that it belongs to a novel species within the genus Rhodopirellula. Hence, we propose the name Rhodopirellula aestuarii sp. nov., represented by ICT_H3.1T (=CECT30431T = LMG32464T) as the type strain of this novel species.16S rRNA gene accession number: GenBank = OK001858.Genome accession number: The Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession JAMQBK000000000. The version described in this paper is version JAMQBK010000000.  相似文献   

20.
Intrauterine growth restriction (IUGR) predisposes to chronic kidney disease via activation of proinflammatory pathways, and omega-3 PUFAs (n-3 PUFAs) have anti-inflammatory properties. In female rats, we investigated 1) how an elevated dietary n-3/n-6 PUFA ratio (1:1) during postnatal kidney development modifies kidney phospholipid (PL) and arachidonic acid (AA) metabolite content and 2) whether the diet counteracts adverse molecular protein signatures expected in IUGR kidneys. IUGR was induced by bilateral uterine vessel ligation or intrauterine stress through sham operation 3.5 days before term. Control (C) offspring were born after uncompromised pregnancy. On postnatal (P) days P2–P39, rats were fed control (n-3/n-6 PUFA ratio 1:20) or n-3 PUFA intervention diet (N3PUFA; ratio 1:1). Plasma parameters (P33), kidney cortex lipidomics and proteomics, as well as histology (P39) were studied. We found that the intervention diet tripled PL-DHA content (PC 40:6; P < 0.01) and lowered both PL-AA content (PC 38:4 and lyso-phosphatidylcholine 20:4; P < 0.05) and AA metabolites (HETEs, dihydroxyeicosatrienoic acids, and epoxyeicosatrienoic acids) to 25% in all offspring groups. After ligation, our network analysis of differentially expressed proteins identified an adverse molecular signature indicating inflammation and hypercoagulability. N3PUFA diet reversed 61 protein alterations (P < 0.05), thus mitigating adverse IUGR signatures. In conclusion, an elevated n-3/n-6 PUFA ratio in early diet strongly reduces proinflammatory PLs and mediators while increasing DHA-containing PLs regardless of prior intrauterine conditions. Counteracting a proinflammatory hypercoagulable protein signature in young adult IUGR individuals through early diet intervention may be a feasible strategy to prevent developmentally programmed kidney damage in later life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号