首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coupling anticancer drugs to synthetic polymers is a promising approach of enhancing the antitumor efficacy and reducing the side-effects of these agents. Doxorubicin maleimide derivatives containing an amide or acid-sensitive hydrazone linker were therefore coupled to alpha-methoxy-poly(ethylene glycol)-thiopropionic acid amide (MW 20000 Da), alpha,omega-bis-thiopropionic acid amide poly(ethylene glycol) (MW 20000 Da) or alpha-tert-butoxy-poly(ethylene glycol)-thiopropionic acid amide (MW 70000 Da) and the resulting polyethylene glycol (PEG) conjugates isolated through size-exclusion chromatography. The polymer drug derivatives were designed as to release doxorubicin inside the tumor cell by acid-cleavage of the hydrazone bond after uptake of the conjugate by endocytosis. The acid-sensitive PEG conjugates containing the carboxylic hydrazone bonds exhibited in vitro activity against human BXF T24 bladder carcinoma and LXFL 529L lung cancer cells with IC70 values in the range 0.02-1.5 microm (cell culture assay: propidium iodide fluorescence or colony forming assay). In contrast, PEG doxorubicin conjugates containing an amide bond between the drug and the polymer showed no in vitro activity. Fluorescence microscopy studies in LXFL 529 lung cancer cells revealed that free doxorubicin accumulates in the cell nucleus whereas doxorubicin of the acid-sensitive PEG doxorubicin conjugates is primarily localized in the cytoplasm. Nevertheless, the acid-sensitive PEG doxorubicin conjugates retain their ability to bind to calf thymus DNA as shown by fluorescence and visible spectroscopy studies. Results regarding the effect of an acid-sensitive PEG conjugate of molecular weight 20000 in the chorioallantoic membrane (CAM) assay indicate that this conjugate is significantly less embryotoxic than free doxorubicin although antiangiogenic effects were not observed.  相似文献   

2.
Antibiotic resistance among bacterial pathogens is a serious problem for human and veterinary medicine, which necessitates the development of novel therapeutics and antimicrobial strategies. Some plant-derived compounds, e.g. pentacyclic triterpenoids such as oleanolic acid (OA) and ursolic acid (UA), have potential as a new class of antibacterial agents as they are active against many bacterial species, both Gram-positive and Gram-negative, and specifically target the cell envelope. The aim of the present study was to investigate the influence of OA and UA on the susceptibility of four bacterial pathogens (Pseudomonas aeruginosa, Listeria monocytogenes, Staphylococcus aureus and Staphylococcus epidermidis) to the β-lactam antibiotics ampicillin (Ap) and oxacillin (Ox). Antimicrobial assays were conducted with bacteria growing in liquid suspension cultures (planktonic cells) or as biofilms. Using FICI value estimation and the time-kill method it was demonstrated that in some combinations, the tested compounds acted in synergy to lower the susceptibility of S. aureus, S. epidermidis and L. monocytogenes to ampicillin and oxacillin, but no synergy was observed for P. aeruginosa. These results indicate that OA and UA may be useful when administered in combination with β-lactam antibiotics to combat bacterial infections caused by some Gram-positive pathogens.  相似文献   

3.
Penicillin G acylase (PGA) catalyzed acylation of 7-aminocephalosporanic acid (7-ACA) with R-mandelic acid and its derivatives gives 7-[(1-hydroxy-1-phenyl)-acetamido]-3-acetoxymethyl-Δ3-cephem-4-carboxylic acid. This compound is a useful intermediate for the synthesis of some 3′-functionalized cephalosporins. However, acylations catalyzed by PGA isolated from Escherichia coli give poor results both considering a kinetical or a thermodynamical approach. In order to improve this enzymatic acylation, polyethylene glycol (PEG 600)-ammonium sulphate aqueous two-phase systems have been studied with the aim to have, during the reaction, a continuous extraction of the acylation product outside of the enzyme environment (the ammonium sulphate phase). This strategy shifts the equilibrium in the thermodynamically controlled synthesis and prevents the hydrolysis of the synthesized antibiotic in the kinetically controlled synthesis. The best results were achieved using PEG 600 (80% in water) equilibrated with 4 M ammonium sulphate. In these conditions, the acylation product was completely partitioned in the PEG phase (K > 200), whereas the substrates maintained a suitable concentration in the enzyme environment. Both in the kinetic (88% yield) and the thermodynamic (75% yield) processes, the results obtained were sensitively improved in comparison with those achieved working in homogeneous solution (phosphate buffer). Using R-mandelic acid methyl ester, the yield increased from 65% (monophasic system) to 88%. The PEG solution, without isolation of the acylation product, was successfully used for the synthesis of Cefamandole and Cefonicid.  相似文献   

4.
In this study, various additives including organic acids, alcohols, vegetable oils, surfactants and polymers were added in the cultural medium to investigate their stimulatory effects on Grifola umbellate mycelia growth and exopolysaccharide (EPS) production. It was found that the commonly used stimulatory additives, effective in other mushrooms’ cultures, exhibited negative results in Grifola umbellata submerged culture. In contrast, the polymer additive, polyethylene glycol (PEG), displayed an effective stimulatory effect on both biomass and EPS productions. With the addition of PEG8 (molecular weight: 8,000 Da), the mycelial biomass production at day 12 was increased from 4.69 to 6.30 g/L, accounting for a 34% increase. Meanwhile, the EPS production was enhanced from 0.478 to 0.767 g/L, accounting for 60% increase.  相似文献   

5.
Cholinesterases are efficient scavengers of organophosphates and are currently being developed as drugs for treatment against poisoning by such compounds. Recombinant ChE bioscavengers have very short circular longevity, a limitation that can be overcome by complex post-translation manipulations or by chemical modification such as polyethylene glycol conjugation. Series of multiple Lys-Ala mutants of human acetylcholinesterase were prepared allowing the generation of homogenous and well defined polyethylene-glycol conjugated AChEs with either one, two, three, four, or five appended polyethylene glycol (PEG) moieties/molecule. The rank order of circulatory longevity of these molecules was dependent on the number of PEG appendages up to a certain threshold: 5 = 4 > 3 > 2 > 1 > 0. Hypolysine acetylcholinesterases (AChEs) carrying the same number of PEGs, and therefore with identical masses, allowed us to demonstrate that circulatory longevity correlates with the predicted extent of concealment of the AChE surface. Furthermore, circulatory profiles of high number and low number PEG-AChEs differing in their sialic acid contents demonstrate a direct relationship between PEG loading and the effective seclusion of AChE from the hepatic asialoglycoprotein receptor clearance system. Finally, an inverse relationship is found between the extent of PEG loading and the ability of the human acetylcholinesterase to elicit specific anti-HuAChE antibodies. In conclusion, these findings suggest that for the extension of circulatory longevity, protein surface domain concealment exerted by polyethylene glycol attachment is at least as important as its effect on size enlargement and highlights the role of PEG attachment in masking interactions between biomolecules and their cognate receptors.  相似文献   

6.
H. H. Zahran  J. I. Sprent 《Planta》1986,167(3):303-309
The effects of sodium chloride and polyethylene glycol (PEG) on the interaction between Rhizobium leguminosarum strain 29d and root hairs of field bean (Vicia faba L. cv. Maris Bead) plants were investigated. Two levels each of NaCl (50 and 100 mol·m–3) and PEG (100 and 200 mol·m–3) were given at the time of root-hair formation. Scanning electron microscopy showed rhizobial attachment and colonization on root-hair tips. Adhesion of rhizobia in both lateral and polar orientation, sometimes associated with microfibrils, occurred mainly in crooks at the root-hair tips; most of the infections also occurred here. Bacterial colonization and root-hair curling were both reduced by stress treatments. Polyethylene glycol but not NaCl significantly reduced root-hair diameter. The proportion of root hairs containing infection threads was reduced by 30% under NaCl and by 52% under PEG. The structure of some of the root hairs, epidermal and hypodermal cells, as seen by light microscopy in ultrasections, was distorted as a result of NaCl and PEG treatments; cells showed plasmolysis and folded membranes. After three weeks of treatment, both NaCl and PEG inhibited nodule number by about 50% and nodule weight by more than 60%. It is concluded that the root-hair infection process in Vicia faba is impaired by NaCl and PEG treatments and this in turn results in fewer nodules being produced.Abbreviation PEG polyethylene glycol  相似文献   

7.
Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR) bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, was tested against Camellia sinensis and Juglans regia extracts. Minimum inhibitory concentrations (MICs) were determined by agar dilution and microbroth dilution assays. Plant extracts were tested for synergistic antimicrobial activity with different antimicrobial agents by checkerboard titration, Etest/agar incorporation assays, and time kill kinetics. Extract treated and untreated bacteria were subjected to transmission electron microscopy to see the effect on bacterial cell morphology. Camellia sinensis extract showed higher antibacterial activity against MDR S. Typhi, alone and in combination with nalidixic acid, than to susceptible isolates.” We further explore anti-staphylococcal activity of Juglans regia that lead to the changes in bacterial cell morphology indicating the cell wall of Gram-positive bacteria as possible target of action. The synergistic combination of Juglans regia and oxacillin reverted oxacillin resistance of methicillin resistant Staphylococcus aureus (MRSA) strains in vitro. This study provides novel information about antimicrobial and synergistic activity of Camellia sinensis and Juglans regia against MDR pathogens  相似文献   

8.
The biocontrol fungi Trichoderma harzianum, used to control soilborne plant pathogens, and Beauveria bassiana, used to control insect pests, were formulated as mycelial biomass in alginate pellets with wheat bran added. After drying for 0, 4, or 16 h, pellets were placed in water or in aqueous solutions of polyethylene glycol (PEG) 8000 for 4 to 24 h and then allowed to continue drying. PEG-treated pellets containing T. harzianum showed significantly greater proliferation of hyphae in soil than untreated pellets or pellets treated with water. Production of conidia of T. harzianum from PEG-treated pellets was lower than production from untreated pellets after 4 days, although rates were equivalent after 7 days. In contrast, production of conidia of B. bassiana was significantly more rapid from PEG-treated pellets than from untreated pellets. Biocontrol of soilborne plant pathogens or insect pests may be enhanced by rapid hyphal growth of T. harzianum in soil or rapid sporulation of B. bassiana on foliage, respectively. Therefore, PEG treatment may improve the efficacy of these biocontrol agents.  相似文献   

9.
Ultraviolet–visible, emission and circular dichroism spectroscopic methods were used in transfer RNA (tRNA) interaction studies performed for polyethyleneimine–copper(II) complexes [Cu(phen)(l ‐Tyr)BPEI]ClO4 (where phen =1,10‐phenanthroline, l ‐Tyr = l ‐tyrosine and BPEI = branched polyethyleneimine) with various degrees of coordination (x = 0.059, 0.149, 0.182) in the polymer chain. The results indicated that polyethyleneimine–copper(II) complexes bind with tRNA mostly through surface binding, although other binding modes, such as hydrogen bonding and van der Waals interactions, might also be present. Dye‐exclusion, sulforhodamine B and 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assays of a polyethyleneimine–copper(II) complex with a higher degree of coordination against different cancer cell lines proved that the complex exhibited cytotoxic specificity and a significant cancer cell inhibition rate. Antimicrobial screening showed activity against some human pathogens.  相似文献   

10.
BackgroundThe worldwide emergence of antibiotic resistance represents a serious medical threat. The ability of these resistant pathogens to form biofilms that are highly tolerant to antibiotics further aggravates the situation and leads to recurring infections. Thus, new therapeutic approaches that adopt novel mechanisms of action are urgently needed. To address this significant problem, we conjugated the antibiotic kanamycin with a novel antimicrobial peptide (P14LRR) to develop a kanamycin peptide conjugate (P14KanS).MethodsAntibacterial activities were evaluated in vitro and in vivo using a Caenorhabditis elegans model. Additionally, the mechanism of action, antibiofilm activity and anti-inflammatory effect of P14KanS were investigated.ResultsP14KanS exhibited potent antimicrobial activity against ESKAPE pathogens. P14KanS demonstrated a ≥ 128-fold improvement in MIC relative to kanamycin against kanamycin-resistant strains. Mechanistic studies confirmed that P14KanS exerts its antibacterial effect by selectively disrupting the bacterial cell membrane. Unlike many antibiotics, P14KanS demonstrated rapid bactericidal activity against stationary phases of both Gram-positive and Gram-negative pathogens. Moreover, P14KanS was superior in disrupting adherent bacterial biofilms and in killing intracellular pathogens as compared to conventional antibiotics. Furthermore, P14KanS demonstrated potent anti-inflammatory activity via the suppression of LPS-induced proinflammatory cytokines. Finally, P14KanS protected C. elegans from lethal infections of both Gram-positive and Gram-negative pathogens.ConclusionsThe potent in vitro and in vivo activity of P14KanS warrants further investigation as a potential therapeutic agent for bacterial infections.General significanceThis study demonstrates that equipping kanamycin with an antimicrobial peptide is a promising method to tackle bacterial biofilms and address bacterial resistance to aminoglycosides.  相似文献   

11.
We describe an alternative polyethylene glycol (PEG) embedding procedure which utilizes PEG 200 for dehydration and PEG 600 for infiltration and embedding of perfusion-fixed rat liver. PEG 600 has a melting point of 22 degrees C, enabling infiltration of fixed tissue to be performed at room temperature. Sections (2 microM) cut in a cryostat at -20 degrees C and immobilized in agarose were readily labeled by immunoperoxidase protocols with monoclonal antibodies to hepatocyte membrane antigens. Subsequent examination by light microscopy or by electron microscopy after re-embedding in resin and ultra-thin sectioning showed excellent preservation of morphology, with minimal impairment of antigenicity.  相似文献   

12.
A strictly anaerobic, homoacetogenic bacterium was enriched and isolated from anoxic sewage sludge with polyethylene glycol (PEG) 1000 as sole source of carbon and energy, and was assigned to the genus Acetobacterium on the basis of morphological and physiological properties. The new isolate fermented ethylene glycol and PEG's with molecular masses of 106 to 1000 to acetate and small amounts of ethanol. The PEG-degrading activity was not destroyed by proteinase K treatment of whole cells. In cell-free extracts, a diol dehydratase and a PEG-degrading (ether-cleaving) enzyme activity were detected which both formed acetaldehyde as reaction product. The diol dehydratase enzyme was oxygen-sensitive and was stimulated 10–14 fold by added adenosylcobalamine. This enzyme was found mainly in the cytoplasmic fraction (65%) and to some extent (35%) in the membrane fraction. The ether-cleaving enzyme activity reacted with PEG's of molecular masses of 106 to more than 20000. The enzyme was measurable optimally in buffers of high ionic strength (4.0), was extremely oxygen-sensitive, and was inhibited by various corrinoids (adenosylcobalamine, cyanocobalamine, hydroxocobalamine, methylcobalamine). This enzyme was found exclusively in the cytoplasmic fraction. It is concluded that PEG is degraded by this bacterium inside the cytoplasm by a hydroxyl shift reaction, analogous to a diol dehydratase reaction, to form an unstable hemiacetal intermediate. The name polyethylene glycol acetaldehyde lyase is suggested for the responsible enzyme.Abbreviations EG ethylene glycol - DiEG diethylene glycol - TriEG triethylene glycol - TeEG tetraethylene glycol - PEG polyethylene glycol (molecular mass indicated)  相似文献   

13.
This paper summarizes studies on microbial degradation of polyethers. Polyethers are aerobically metabolized through common mechanisms (oxidation of terminal alcohol groups followed by terminal ether cleavage), well-characterized examples being found with polyethylene glycol (PEG). First the polymer is oxidized to carboxylated PEG by alcohol and aldehyde dehydrogenases and then the terminal ether bond is cleaved to yield the depolymerized PEG by one glycol unit. Most probably PEG is anaerobically metabolized through one step which is catalyzed by PEG acetaldehyde lyase, analogous to diol dehydratase. Whether aerobically or anaerobically, the free OH group is necessary for metabolization of PEG. PEG with a molecular weight of up to 20,000 was metabolized either in the periplasmic space (Pseudomonas stutzeri and sphingomonads) or in the cytoplasm (anaerobic bacteria), which suggests the transport of large PEG through the outer and inner membranes of Gram-negative bacterial cells. Membrane-bound PEG dehydrogenase (PEG-DH) with high activity towards PEG 6,000 and 20,000 was purified from PEG-utilizing sphingomonads. Sequencing of PEG-DH revealed that the enzyme belongs to the group of GMC flavoproteins, FAD being the cofactor for the enzyme. On the other hand, alcohol dehydrogenases purified from other bacteria that cannot grow on PEG oxidized PEG. Cytoplasmic NAD-dependent alcohol dehydrogenases with high specificity towards ether-alcohol compound, either crude or purified, showed appreciable activity towards PEG 400 or 600. Liver alcohol dehydrogenase (equine) also oxidized PEG homologs, which might cause fatal toxic syndrome in vivo by carboxylating PEG together with aldehyde dehydrogenase when PEG was absorbed. An ether bond-cleaving enzyme was detected in PEG-utilizing bacteria and purified as diglycolic acid (DGA) dehydrogenase from a PEG-utilizing consortium. The enzyme oxidized glycolic acid, glyoxylic acid, as well as PEG-carboxylic acid and DGA. Similarly, dehydrogenation on polypropylene glycol (PPG) and polytetramethylene glycol (PTMG) was suggested with cell-free extracts of PPG and PTMG-utilizing bacteria, respectively. PPG commercially available is atactic and includes many structural (primary and secondary alcohol groups) and optical (derived from pendant methyl groups on the carbon backbone) isomers. Whether PPG dehydrogenase (PPG-DH) has wide stereo- and enantioselective substrate specificity towards PPG isomers or not must await further purification. Preliminary research on PPG-DH revealed that the enzyme was inducibly formed by PPG in the periplasmic, membrane and cytoplasm fractions of a PPG-utilizing bacterium Stenotrophomonas maltophilia. This finding indicated the intracellular metabolism of PPG is the same as that of PEG. Besides metabolization of polyethers, a biological Fenton mechanism was proposed for degradation of PEG, which was caused by extracellular oxidants produced by a brown-rot fungus in the presence of a reductant and Fe3+, although the metabolism of fragmented PEG has not yet been well elucidated.  相似文献   

14.
Enzymatic production of cyclodextrins (CDs) from soluble starch was studied using either Bacillus macerans or Bacillus ohbensis cyclomaltodextrin glucanotransferase (CGTase). The production yield of CDs was found to be increased up to 1.5–2 times by the addition of low molecular weight polyethylene glycol (PEG 400) or polypropylene glycol (PPG 425) to the reaction medium. Such results were interpreted as being due to a conformational change of the substrate as well as reduction of hydrolytic activity of the enzyme in the presence of these additives.  相似文献   

15.
The present study explores the impact of the molecular size on the permeation of low-molecular-weight polyethylene glycols (PEG200-1500) through the plasma membrane of Jurkat cells under iso- and hypotonic conditions. To this end, we analyzed the cell volume responses to PEG-substituted solutions of different osmolalities (100-300 mOsm) using video microscopy. In parallel experiments, the osmotically induced changes in the membrane capacitance and cytosolic conductivity were measured by electrorotation (ROT). Upon moderate swelling in slightly hypotonic solutions (200 mOsm), the lymphocyte membrane remained impermeable to PEG300-1500, which allowed the cells to accomplish regulatory volume decrease (RVD). During RVD, lymphocytes released intracellular electrolytes through the swelling-activated pathways, as proved by a decrease of the cytosolic conductivity measured by electrorotation. RVD also occurred in strongly hypotonic solutions (100 mOsm) of PEG600-1500, whereas 100 mOsm solutions of PEG300-400 inhibited RVD in Jurkat cells. These findings suggest that extensive hypotonic swelling rendered the cell membrane highly permeable to PEG300-400, but not to PEG600-1500. The swelling-activated channels conducting PEG300-400 were inserted into the plasma membrane from cytosolic vesicles via swelling-mediated exocytosis, as suggested by an increase of the whole cell capacitance. Using the hydrodynamic radii Rh of PEGs (determined by viscosimetry), the observed size-selectivity of membrane permeation yielded an estimate of ∼ 0.74 nm for the cut-off radius of the swelling-activated channel for organic osmolytes. Unlike PEG300-1500, the smallest PEG (PEG200, Rh = 0.5 nm) permeated the lymphocyte membrane under isotonic conditions thus leading to a continuous isotonic swelling. The results are of interest for biotechnology and biomedicine, where PEGs are widely used for cryopreservation of cells and tissues.  相似文献   

16.
2, 6-Dichlorophenolindophenol (DCIP)-dependent polyethylene glycol (PEG) dehydrogenase activity was found in the particulate fractions of cell-free extracts prepared from PEG-utilizing bacteria (Pseudomonas and Flavobacterium species). This result suggested that PEG dehydrogenase is linked to the respiratory chain of each bacterium and that the enzyme plays a major role in the aerobic metabolism of PEG. Enzyme activities were strongly inhibited by 1, 4-benzoquinone. No metal ion was indispensable for the enzyme activities. Enzyme activities of PEG-utilizing bacteria were induced by PEG except for the activity of PEG 4000-utilizing Flavobacterium sp. no. 203 which had a constitutive enzyme. Although PEG-utilizing bacteria had different growth substrate specificities toward PEGs 200–20,000, their PEG dehydrogenases oxidized the same molecular wt. range of PEGs (dimer-20,000). Cell-free extracts of PEG 400-, 1000- or 4000-utilizing bacteria oxidized PEG 6000 and 20,000 though these bigger PEGs could not be utilized as the sole carbon and energy sources by the bacteria. Methanol, ethylene glycol and glycerol were not or only barely dehydrogenated by all the enzyme preparations.  相似文献   

17.
The topical application of all-trans retinoic acid (ATRA) is an effective treatment for several skin disorders, including photo-aging. Unfortunately, ATRA is susceptible to light, heat, and oxidizing agents. Thus, this study aimed to investigate the ability of polymeric micelles prepared from polyethylene glycol conjugated phosphatidylethanolamine (PEG-PE) to stabilize ATRA under various storage conditions. ATRA entrapped in polymeric micelles with various PEG and PE structures was prepared. The critical micelle concentrations were 97–243 μM, depending on the structures of the PEG and PE molecules. All of the micelles had particle diameters of 6–20 nm and neutral charges. The highest entrapment efficiency (82.7%) of the tested micelles was exhibited by ATRA in PEG with a molecular weight of 750 Da conjugated to dipalmitoyl phosphatidylethanolamine (PEG750-DPPE) micelles. The PEG750-DPPE micelle could significantly retard ATRA oxidation compared to ATRA in 75% methanol/HBS solution. Up to 87% of ATRA remained in the PEG750-DPPE micelle solution after storage in ambient air for 28 days. This result suggests that PEG750-DPPE micelle can improve ATRA stability. Therefore, ATRA in PEG750-DPPE micelle is an interesting alternative structure for the development of cosmeceutical formulations.  相似文献   

18.
Expanded polytetrafluoroethylene (ePTFE) was chemically modified to retard the growth of Staphylococcus aureus bacteria. This was accomplished by microwave plasma reactions in the presence of maleic anhydride (MA) to create acid functional groups on ePTFE surfaces, followed by esterification reactions with 200 and 600 molecular weight linear polyethylene glycol (PEG). Such surfaces were utilized for further reactions with penicillin (PEN) through etherification reactions to create anti-microbial surfaces. These reactions resulted in surface morphological changes, and spectroscopic analysis using attenuated total reflectance Fourier transform infrared spectroscopy (ATR FT-IR) revealed the formation of ester linkages resulting from reactions between PEN and PEG functionalities. Antibacterial activities were evaluated by a series of experiments where PEN-modified ePTFE specimens were immersed in a liquid aureus culture, and the bacteria growth was quantified by measuring % absorbance of the suspension at 600 nm wavelength. The lowest absorbance was observed for the solution containing PEN-PEG-MA-ePTFE specimens, thus showing highly effective anti-bacterial activity toward gram-positive Staphylococcus aureus bacteria. To our best knowledge, this is the first study that shows PEN-ePTFE surface modifications that are effective against gram-positive aureus bacteria.  相似文献   

19.
Partitioning of 15 proteins in polyethylene glycol (PEG)–sodium sulfate aqueous two-phase systems (ATPS) formed by PEG of two different molecular weights, PEG-600 and PEG-8000 in the presence of different buffers at pH 7.4 was studied. The effect of two salt additives (NaCl and NaSCN) on the protein partition behavior was examined. The salt effects on protein partitioning were analyzed by using the Collander solvent regression relationship between the proteins partition coefficients in ATPS with and without salt additives. The results obtained show that the concentration of buffer as well as the presence and concentration of salt additives affects the protein partition behavior. Analysis of ATPS in terms of the differences between the relative hydrophobicity and electrostatic properties of the phases does not explain the protein partition behavior. The differences between protein partitioning in PEG-600–salt and PEG-8000–salt ATPS cannot be explained by the protein size or polymer excluded volume effect. It is suggested that the protein–ion and protein–solvent interactions in the phases of ATPS are primarily important for protein partitioning.  相似文献   

20.
Dextranases catalyze the hydrolysis of the α-l,6-glucosidic bond of the polysaccharide dextran. Dextranases have been isolated from bacteria, yeast and fungi. Purified dextranase enzyme from Penicillium sp. was PEGylated (polyethylene glycol modification) with mPEG (5000 Da) and showed an increase in the dextranase protein molecular weight as estimated by Superose 12 (23 ml) column and this increment in the molecular weight is directly proportional to mPEG (5000 Da) concentration until a complete dextranase enzyme PEGylation (disappearance of dextranase peak). The residual activity of partially PEGylated dextranase (mPEG 5000 of 5.8 mg/ml) was 33.8% and for the completely PEGylated dextranase (mPEG 5000 of 29 mg/ml) it was 25.75%. Dextranase PEGylated with mPEG (30,000 Da) showed a little PEGylation at mPEG concentration of 5.8 mg/ml but at a concentration of 29 mg/ml several PEGylated peaks were produced with a difference in dextranase activity toward dextran T500, retardation in the activity with the increasing in the molecular weight was clearly appeared with Sephadex G75 but for Sephadex G200 a little retardation than Sephadex G75 has been appeared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号