首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
3.
4.
Posttranslational modifications (PTMs) of proteins greatly expand proteome diversity, increase functionality, and allow for rapid responses, all at relatively low costs for the cell. PTMs play key roles in plants through their impact on signaling, gene expression, protein stability and interactions, and enzyme kinetics. Following a brief discussion of the experimental and bioinformatics challenges of PTM identification, localization, and quantification (occupancy), a concise overview is provided of the major PTMs and their (potential) functional consequences in plants, with emphasis on plant metabolism. Classic examples that illustrate the regulation of plant metabolic enzymes and pathways by PTMs and their cross talk are summarized. Recent large-scale proteomics studies mapped many PTMs to a wide range of metabolic functions. Unraveling of the PTM code, i.e. a predictive understanding of the (combinatorial) consequences of PTMs, is needed to convert this growing wealth of data into an understanding of plant metabolic regulation.The primary amino acid sequence of proteins is defined by the translated mRNA, often followed by N- or C-terminal cleavages for preprocessing, maturation, and/or activation. Proteins can undergo further reversible or irreversible posttranslational modifications (PTMs) of specific amino acid residues. Proteins are directly responsible for the production of plant metabolites because they act as enzymes or as regulators of enzymes. Ultimately, most proteins in a plant cell can affect plant metabolism (e.g. through effects on plant gene expression, cell fate and development, structural support, transport, etc.). Many metabolic enzymes and their regulators undergo a variety of PTMs, possibly resulting in changes in oligomeric state, stabilization/degradation, and (de)activation (Huber and Hardin, 2004), and PTMs can facilitate the optimization of metabolic flux. However, the direct in vivo consequence of a PTM on a metabolic enzyme or pathway is frequently not very clear, in part because it requires measurements of input and output of the reactions, including flux through the enzyme or pathway. This Update will start out with a short overview on the major PTMs observed for each amino acid residue (PTMs, including determination of the localization within proteins (i.e. the specific residues) and occupancy. Challenges in dealing with multiple PTMs per protein and cross talk between PTMs will be briefly outlined. We then describe the major physiological PTMs observed in plants as well as PTMs that are nonenzymatically induced during sample preparation (PTMs, in particular for enzymes in primary metabolism (Calvin cycle, glycolysis, and respiration) and the C4 shuttle accommodating photosynthesis in C4 plants (PTMs observed in plants
Amino Acid ResidueObserved Physiological PTM in PlantsPTMs Caused by Sample Preparation
Ala (A)Not known
Arg (R)Methylation, carbonylation
Asn (N)Deamidation, N-linked gycosylationDeamidation
Asp (D)Phosphorylation (in two-component system)
Cys (C)Glutathionylation (SSG), disulfide bonded (S-S), sulfenylation (-SOH), sulfonylation (-SO3H), acylation, lipidation, acetylation, nitrosylation (SNO), methylation, palmitoylation, phosphorylation (rare)Propionamide
Glu (E)Carboxylation, methylationPyro-Glu
Gln (Q)DeamidationDeamidation, pyro-Glu
Gly (G)N-Myristoylation (N-terminal Gly residue)
His (H)Phosphorylation (infrequent)Oxidation
Ile (I)Not known
Leu (L)Not known
Lys (K)N-ε-Acetylation, methylation, hydroxylation, ubiquitination, sumoylation, deamination, O-glycosylation, carbamylation, carbonylation, formylation
Met (M)(De)formylation, excision (NME), (reversible) oxidation, sulfonation (-SO2), sulfoxation (-SO)Oxidation, 2-oxidation, formylation, carbamylation
Phe (F)Not known
Pro (P)CarbonylationOxidation
Ser (S)Phosphorylation, O-linked glycosylation, O-linked GlcNAc (O-GlcNAc)Formylation
Thr (T)Phosphorylation, O-linked glycosylation, O-linked GlcNAc (O-GlcNAc), carbonylationFormylation
Trp (W)Glycosylation (C-mannosylation)Oxidation
Tyr (Y)Phosphorylation, nitration
Val (V)Not known
Free NH2 of protein N terminiPreprotein processing, Met excision, formylation, pyro-Glu, N-myristoylation, N-acylation (i.e. palmitoylation), N-terminal α-amine acetylation, ubiquitinationFormylation (Met), pyro-Glu (Gln)
Open in a separate window

Table II.

Most significant and/or frequent PTMs observed in plants
Type of PTM (Reversible, Except if Marked with an Asterisk)Spontaneous (S; Nonenzymatic) or Enzymatic (E)Comment on Subcellular Location and Frequency
Phosphorylation (Ser, Thr, Tyr, His, Asp)EHis and Asp phosphorylation have low frequency
S-Nitrosylation (Cys) and nitration* (Tyr)S (RNS), but reversal is enzymatic for Cys by thioredoxinsThroughout the cell
Acetylation (N-terminal α-amine, Lys ε-amine)EIn mitochondria, very little N-terminal acetylation, but high Lys acetylation; Lys acetylation correlates to [acetyl-CoA]
Deamidation (Gln, Asn)S, but reversal of isoAsp is enzymatic by isoAsp methyltransferaseThroughout the cell
Lipidation (S-acetylation, N-meristoylation*, prenylation*; Cys, Gly, Lys, Trp, N terminal)ENot (or rarely) within plastids, mitochondria, peroxisomes
N-Linked glycosylation (Asp); O linked (Lys, Ser, Thr, Trp)EOnly proteins passing through the secretory system; O linked in the cell wall
Ubiquination (Lys, N terminal)ENot within plastids, mitochondria, peroxisomes
Sumoylation (Lys)ENot within plastids, mitochondria, peroxisomes
Carbonylation* (Pro, Lys, Arg, Thr)S (ROS)High levels in mitochondria and chloroplast
Methylation (Arg, Lys, N terminal)EHistones (nucleus) and chloroplasts; still underexplored
Glutathionylation (Cys)EHigh levels in chloroplasts
Oxidation (Met, Cys)S (ROS) and E (by PCOs; see Fig. 1B), but reversal is enzymatic by Met sulfoxide reductases, glutaredoxins, and thioredoxins, except if double oxidizedHigh levels in mitochondria and chloroplast
Peptidase* (cleavage peptidyl bond)EThroughout the cell
S-Guanylation (Cys)S (RNS)Rare; 8-nitro-cGMP is signaling molecule in guard cells
Formylation (Met)S, but deformylation is enzymatic by peptide deformylaseAll chloroplasts and mitochondria-encoded proteins are synthesized with initiating formylated Met
Open in a separate window

Table III.

Regulation by PTMs in plant metabolism and classic examples of well-studied enzymes and pathwaysMany of these enzymes also undergo allosteric regulation through cellular metabolites. GAPDH, Glyceraldehyde-3-phosphate dehydrogenase; PRK, phosphoribulokinase.
ProcessEnzymesPTMs, Protein Modifiers, LocalizationReferences
Calvin-Benson cycle (chloroplasts)Many enzymesOxidoreduction of S-S bonds, reversible nitrosylation, glutathionylation; through ferredoxin/ferredoxin-thioredoxin reductase/thioredoxins (mostly f and m) and glutaredoxins; proteomics studies in Arabidopsis and C. reinhardtiiMichelet et al. (2013)
RubiscoMethylation, carbamylation, acetylation, N-terminal processing, oligomerization; classical studies in pea (Pisum sativum), spinach (Spinacia oleracea), and ArabidopsisHoutz and Portis (2003); Houtz et al. (2008)
GAPDH/CP12/PRK supercomplexDynamic heterooligomerization through reversible S-S bond formation controlled by thioredoxinsGraciet et al. (2004); Michelet et al. (2013); López-Calcagno et al. (2014)
GlycolysisCytosolic PEPCPhosphorylation (S, T), monoubiquitinationO’Leary et al. (2011)
PhotorespirationSeven enzymes are phosphorylatedPhosphorylation from meta-analysis of public phosphoproteomics data for Arabidopsis; located in chloroplasts, peroxisomes, mitochondriaHodges et al. (2013)
Maize glycerate kinaseRedox-regulated S-S bond; thioredoxin f; studied extensively in chloroplasts of C4 maizeBartsch et al. (2010)
Respiration (mitochondria)Potentially many enzymes, but functional/biochemical consequences are relatively unexploredRecent studies suggested PTMs for many tricarboxylic acid cycle enzymes, including Lys acetylation and thioredoxin-driven S-S formation; in particular, succinate dehydrogenase and fumarase are inactivated by thioredoxinsLázaro et al. (2013); Schmidtmann et al. (2014); Daloso et al. (2015)
PDHSer (de)phosphorylation by intrinsic kinase and phosphatase; ammonia and pyruvate control PDH kinase activity; see Figure 1BThelen et al. (2000); Tovar-Méndez et al. (2003)
C4 cycle (C3 and C4 homologs also involved in glycolysis and/or gluconeogenesis)Pyruvate orthophosphate dikinasePhosphorylation by pyruvate orthophosphate dikinase-RP, an S/T bifunctional kinase-phosphatase; in chloroplastsChastain et al. (2011); Chen et al. (2014)
PEPCPhosphorylation; allosteric regulation by malate and Glc-6-P; in cytosol in mesophyll cells in C4 species (e.g. Panicum maximum); see Figure 1AIzui et al. (2004); Bailey et al. (2007)
PEPC kinaseUbiquitination resulting in degradation (note also diurnal mRNA levels and linkage to activity level; very low protein level); in cytosol in mesophyll cells in C4 species (e.g. Flaveria spp. and maize)Agetsuma et al. (2005)
PEPC kinasePhosphorylation in cytosol in bundle sheath cellsBailey et al. (2007)
Starch metabolism (chloroplasts)ADP-Glc pyrophosphorylaseRedox-regulated disulfide bonds and dynamic oligomerization; thioredoxins; see Figure 1CGeigenberger et al. (2005); Geigenberger (2011)
Starch-branching enzyme IIPhosphorylation by Ca2+-dependent protein kinase; P-driven heterooligomerizationGrimaud et al. (2008); Tetlow and Emes (2014)
Suc metabolism (cytosol)SPS (synthesis of Suc)(De)phosphorylation; SPS kinase and SPS phosphatase; 14-3-3 proteins; cytosol (maize and others)Huber (2007)
Suc synthase (breakdown of Suc)Phosphorylation; Ca2+-dependent protein kinase; correlations to activity, localization, and turnoverDuncan and Huber (2007); Fedosejevs et al. (2014)
Photosynthetic electron transport (chloroplast thylakoid membranes)PSII core and light-harvesting complex proteins(De)phosphorylation by state-transition kinases (STN7/8) and PP2C phosphatases (PBCP and PPH1/TAP38)Pesaresi et al. (2011); Tikkanen et al. (2012); Rochaix (2014)
Nitrogen assimilationNitrate reductase(De)phosphorylation; 14-3-3 proteinsLillo et al. (2004); Huber (2007)
Open in a separate windowThere are many recent reviews focusing on specific PTMs in plant biology, many of which are cited in this Update. However, the last general review on plant PTMs is from 2010 (Ytterberg and Jensen, 2010); given the enormous progress in PTM research in plants over the last 5 years, a comprehensive overview is overdue. Finally, this Update does not review allosteric regulation by metabolites or other types of metabolic feedback and flux control, even if this is extremely important in the regulation of metabolism and (de)activation of enzymes. Recent reviews for specific pathways, such as isoprenoid metabolism (Kötting et al., 2010; Banerjee and Sharkey, 2014; Rodríguez-Concepción and Boronat, 2015), tetrapyrrole metabolism (Brzezowski et al., 2015), the Calvin-Benson cycle (Michelet et al., 2013), starch metabolism (Kötting et al., 2010; Geigenberger, 2011; Tetlow and Emes, 2014), and photorespiration (Hodges et al., 2013) provide more in-depth discussions of metabolic regulation through various posttranslational mechanisms. Many of the PTMs that have been discovered in the last decade through large-scale proteomics approaches have not yet been integrated in such pathway-specific reviews, because these data are not always easily accessible and because the biological significance of many PTMs is simply not yet understood. We hope that this Update will increase the general awareness of the existence of these PTM data sets, such that their biological significance can be tested and incorporated in metabolic pathways.  相似文献   

5.
Maximum lifespan greatly varies among species, and it is not strictly determined; it can change with species evolution. Clonal growth is a major factor governing maximum lifespan. In the plant kingdom, the maximum lifespans described for clonal and nonclonal plants vary by an order of magnitude, with 43,600 and 5,062 years for Lomatia tasmanica and Pinus longaeva, respectively. Nonclonal perennial plants (those plants exclusively using sexual reproduction) also present a huge diversity in maximum lifespans (from a few to thousands of years) and even more interestingly, contrasting differences in aging patterns. Some plants show a clear physiological deterioration with aging, whereas others do not. Indeed, some plants can even improve their physiological performance as they age (a phenomenon called negative senescence). This diversity in aging patterns responds to species-specific life history traits and mechanisms evolved by each species to adapt to its habitat. Particularities of roots in perennial plants, such as meristem indeterminacy, modular growth, stress resistance, and patterns of senescence, are crucial in establishing perenniality and understanding adaptation of perennial plants to their habitats. Here, the key role of roots for perennial plant longevity will be discussed, taking into account current knowledge and highlighting additional aspects that still require investigation.There is enormous diversity among the types of perennial plants and among their patterns of aging (Jones et al., 2014). Perennial plants can be divided into herbaceous (or perennial herbs) and woody perennials (trees and shrubs), and therefore, they represent very diverse organisms in size and complexity from some herbs that weigh a few grams to huge trees like sequoias (Sequoia sempervirens). Among perennial herbs, the slowest growing species described thus far, Borderea pyrenaica (a small geophyte growing in the Central Pyrenees of northeastern Spain), is also the one with the longest maximum lifespan (350 years; Fig. 1). Interestingly, fecundity of this species increases with aging, representing a case of negative senescence (Garcia et al., 2011; Morales et al., 2013). If mortality falls as size increases and if size increases with age, then mortality will fall with age, and negative senescence occurs (Vaupel et al., 2004). Negative senescence is not common in the tree of life, but it seems to occur in not only some perennial herbs, such as B. pyrenaica (Garcia et al., 2011) and Plantago lanceolata (Roach and Gampe, 2004), but also, other phylogenetically distant organisms, such as turtles (Jones et al., 2014). Other perennial herbs with higher biomass production rates and consequently, larger sizes, such as stinging nettle (Urtica dioica), are much shorter-lived (a few years only). In this case, however, perenniality is achieved by allocating an important part of their energy to asexual reproduction (production of stolons; i.e. clonal propagation), giving rise to new entire clonal plants (Koskela, 2002). Indeed, this process happens in several other plant species with rapid growth that we commonly find in gardens, such as strawberries (Fragaria × ananassa) or raspberries (Rubus idaeus). Stolons can be produced aboveground or underground (in the latter case, forming rhizomes). Van Dijk (2009) elegantly reviewed the direct and indirect methods currently used to estimate plant age in clonal and nonclonal plants, showing several examples of plant species using clonal propagation with maximum lifespans of thousands of years, with the most notable example, King’s Lomatia (Lomatia tasmanica), being dated at 43,600 years (Lynch et al., 1998). Only one wild-living clone of this species is known. Clonal propagation is the only means for propagation, because it is a sterile ancient clone. When a branch falls, that branch produces new roots, establishing a new plant that is genetically identical to its parent (Lynch et al., 1998). Here, the production of new roots becomes essential for achieving potential immortality. Another example of extreme longevity is the bristlecone pine (Pinus longaeva), with a maximum lifespan of 5,062 years. It holds the record of longevity of a single individual within the plant kingdom, which was observed by Tom Harlan during 2012 in a living individual of this species in the White Mountains (the location has not been reported; Earle, 2013).Open in a separate windowFigure 1.Examples of extreme longevity in perennial plants. A, B. pyrenaica, the perennial herb with the longest lifespan described to date. B, A cross section of the tuber of B. pyrenaica showing the scars left by the five meristematic points in the spiral. C, P. longaeva, the species with the individual with the longest lifespan ever recorded (not using clonal propagation). D, C. nodosa meadow, with a detail of the rhizomes (E) that allow clonal propagation and potential immortality in this species. [See online article for color version of this figure.]The enormous diversity in lifespans within a species responds to specific life history traits and mechanisms evolved by each individual to adapt to its habitat. Particularities of roots in perennial plants, such as meristem indeterminacy, modular growth, stress resistance, and patterns of senescence, are crucial in understanding adaptation of perennial plants to their habitats, explaining differences in longevity. Here, the key role of roots in providing long lifespans in perennial plants will be discussed, taking into account current knowledge and highlighting additional aspects that still require investigation.  相似文献   

6.
7.
8.
During a plant''s lifecycle, the availability of nutrients in the soil is mostly heterogeneous in space and time. Plants are able to adapt to nutrient shortage or localized nutrient availability by altering their root system architecture to efficiently explore soil zones containing the limited nutrient. It has been shown that the deficiency of different nutrients induces root architectural and morphological changes that are, at least to some extent, nutrient specific. Here, we highlight what is known about the importance of individual root system components for nutrient acquisition and how developmental and physiological responses can be coupled to increase nutrient foraging by roots. In addition, we review prominent molecular mechanisms involved in altering the root system in response to local nutrient availability or to the plant''s nutritional status.In natural and agricultural soils, the ability of plants to quickly and efficiently acquire nutrients may determine their competitive success and productivity. Because mineral elements interact differently with themselves and other soil constituents or are carried by water out of the rooted soil volume, their availability to plants may decrease and lead to nutrient deficiency. Under these conditions, plants activate foraging responses that include morphological changes, such as the modulation of root system architecture (RSA) or root hair formation, and physiological changes, such as the release of nutrient-mobilizing root exudates or the expression of nutrient transporters (Gojon et al., 2009; Hinsinger et al., 2009; Gruber et al., 2013). These responses are often spatially coupled to increase the root-soil interaction zone and improve the ability of the plant to intercept immobile nutrients. Noteworthy, although not discussed herein, symbiosis or associative rhizosphere microorganisms can also alter the RSA and enhance the foraging capacity of the plant (Gutjahr and Paszkowski, 2013). Here, we provide an update on the morphological responses induced by plants to forage sparingly available nutrients and some of the underlying molecular mechanisms known to date to be involved in RSA adaptations to nutrient availabilities.  相似文献   

9.
10.
11.
12.
13.
Plants in nature, which are continuously challenged by diverse insect herbivores, produce constitutive and inducible defenses to reduce insect damage and preserve their own fitness. In addition to inducing pathways that are directly responsible for the production of toxic and deterrent compounds, insect herbivory causes numerous changes in plant primary metabolism. Whereas the functions of defensive metabolites such as alkaloids, terpenes, and glucosinolates have been studied extensively, the fitness benefits of changes in photosynthesis, carbon transport, and nitrogen allocation remain less well understood. Adding to the complexity of the observed responses, the feeding habits of different insect herbivores can significantly influence the induced changes in plant primary metabolism. In this review, we summarize experimental data addressing the significance of insect feeding habits, as related to herbivore-induced changes in plant primary metabolism. Where possible, we link these physiological changes with current understanding of their underlying molecular mechanisms. Finally, we discuss the potential fitness benefits that host plants receive from altering their primary metabolism in response to insect herbivory.Plants in nature are subject to attack by a wide variety of phytophagous insects. Nevertheless, the world is green, and most plants are resistant to most individual species of insect herbivores. To a large extent, this resistance is due to an array of toxic and deterrent small molecules and proteins that can prevent nonadapted insects from feeding. Although many plant defenses are produced constitutively, others are inducible (i.e. defense-related metabolites and proteins that are normally present at low levels become more abundant in response to insect feeding). Inducible defense systems, which allow more energy to be directed toward growth and reproduction in the absence of insect herbivory, represent a form of resource conservation. Well-studied examples of inducible plant defenses include the production of nicotine in tobacco (Nicotiana tabacum; Baldwin et al., 1998), protease inhibitors in tomato (Solanum lycopersicum; Ryan, 2000), benzoxazinoids in maize (Zea mays; Oikawa et al., 2004), and glucosinolates in Arabidopsis (Arabidopsis thaliana; Mewis et al., 2005). Additionally, herbivore-induced plant responses can include the production of physical defenses such as trichomes or thickened cell walls that can make insect feeding more difficult. Some plant defensive metabolites are highly abundant, suggesting that their biosynthesis can have a significant effect on overall plant metabolism. For instance, benzoxazinoids can constitute 1% to 2% of the total dry matter of some Poaceae (Zúñiga et al., 1983), and up to 6% of the nitrogen in herbivore-induced Nicotiana attenuata can be devoted to nicotine production (Baldwin et al., 1998).In addition to the herbivore-induced production of physical and chemical defenses, numerous changes in plant primary metabolism occur in response to insect herbivory. Among other observed effects, these can include either elevated or suppressed photosynthetic efficiency, remobilization of carbon and nitrogen resources, and altered plant growth rate. However, although the defensive value of induced toxins such as nicotine, terpenes, benzoxazinoids, and glucosinolates is clear, it is sometimes more difficult to elucidate the function of herbivore-induced changes in plant primary metabolism. Insects may also manipulate plant primary metabolism for their own benefit, making it challenging to determine whether the observed changes are actually a plant defensive response.Here, we describe commonly observed changes in plant primary metabolism, focusing on carbohydrates and nitrogen, and discuss their possible functions in plant defense against insect herbivory. There are large differences among published studies involving different plant-herbivore combinations, and no universal patterns in the herbivory-induced changes in plant primary metabolism. Therefore, we also discuss how the potential benefits can depend on the tissue that is being attacked, the extent of the tissue damage, and the type of insect herbivore that is involved in the interaction.  相似文献   

14.
Plants produce hundreds of thousands of small molecules known as specialized metabolites, many of which are of economic and ecological importance. This remarkable variety is a consequence of the diversity and rapid evolution of specialized metabolic pathways. These novel biosynthetic pathways originate via gene duplication or by functional divergence of existing genes, and they subsequently evolve through selection and/or drift. Studies over the past two decades revealed that diverse specialized metabolic pathways have resulted from the incorporation of primary metabolic enzymes. We discuss examples of enzyme recruitment from primary metabolism and the variety of paths taken by duplicated primary metabolic enzymes toward integration into specialized metabolism. These examples provide insight into processes by which plant specialized metabolic pathways evolve and suggest approaches to discover enzymes of previously uncharacterized metabolic networks.The plant kingdom collectively produces hundreds of thousands of low molecular weight organic molecules traditionally known as secondary metabolites, some of which have been shown to play roles in abiotic and biotic stress responses (e.g. herbivory defense), beneficial insect interactions (e.g. pollinator attraction), and communication with other plant and nonplant species (e.g. allelopathy and legume-rhizobia interactions; Saito and Matsuda, 2010; Pichersky and Lewinsohn, 2011; Wink, 2011). These metabolites have been widely used throughout the course of human history as medicines, spices, perfumes, cosmetics, and pest-control agents as well as in religious and cultural rituals. For the past 150 years, there has been a strong focus on documenting the chemical diversity of secondary metabolites in the plant kingdom, leading to the discovery of diverse classes of compounds such as terpenes, flavonoids, alkaloids, phenylpropanoids, glucosinolates, and polyketides. These secondary compounds were historically differentiated from products of primary metabolism, such as sugars, amino acids, nucleic acids, and fatty acids, as being nonessential for plant survival (Sachs, 1874; Kossel, 1891; Hartmann, 2008). However, by the 1980s, important functional roles began to be elucidated for metabolites previously classified as secondary, such as the phenolics (e.g. plant-microbe interactions and UV-B light protection; Bolton et al., 1986; Peters et al., 1986; Li et al., 1993; Landry et al., 1995), alkaloids (defense against herbivory; Steppuhn et al., 2004), and terpenes (defense against herbivory, antimicrobial activities, and volatile pollinator attractants; Papadopoulou et al., 1999; Schiestl and Ayasse, 2001; Erbilgin et al., 2006; Nieuwenhuizen et al., 2009). This change in our understanding of their roles has led to the coining of a new term, specialized metabolites, for these compounds, both to acknowledge their importance and to reflect the fact that many of them are phylogenetically restricted (Pichersky et al., 2006; Pichersky and Lewinsohn, 2011).Although the structural diversity of specialized metabolites far exceeds that of primary metabolites, all specialized metabolite classes are ultimately derived from primary metabolic precursors (Wink, 2011). For example, phenylpropanoids are derived from the amino acid Phe (Vogt, 2010), while the biosynthetic blocks of terpenes, isopentenyl diphosphate and dimethylallyl diphosphate, originate from mevalonate, a sterol precursor, and alternatively from methylerythritol phosphate, which is derived from glycolytic pathway precursors (Kirby and Keasling, 2009). Nitrogen-containing alkaloids are derived from a variety of primary metabolites, including amino acids and purine nucleosides (Facchini, 2001). Over the past 20 years, an increasing number of specialized metabolic enzymes have also been found to have their origins in primary metabolic pathways (Weng, 2014). Such shifts in enzyme function are made possible primarily by the process of gene duplication, which is very common in plants.  相似文献   

15.
Root branching is critical for plants to secure anchorage and ensure the supply of water, minerals, and nutrients. To date, research on root branching has focused on lateral root development in young seedlings. However, many other programs of postembryonic root organogenesis exist in angiosperms. In cereal crops, the majority of the mature root system is composed of several classes of adventitious roots that include crown roots and brace roots. In this Update, we initially describe the diversity of postembryonic root forms. Next, we review recent advances in our understanding of the genes, signals, and mechanisms regulating lateral root and adventitious root branching in the plant models Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and rice (Oryza sativa). While many common signals, regulatory components, and mechanisms have been identified that control the initiation, morphogenesis, and emergence of new lateral and adventitious root organs, much more remains to be done. We conclude by discussing the challenges and opportunities facing root branching research.Branching through lateral and adventitious root formation represents an important element of the adaptability of the root system to its environment. Both are regulated by nutrient and hormonal signals (Bellini et al., 2014; Giehl and von Wirén, 2014), which act locally to induce or inhibit root branching. The net effect of these adaptive responses is to increase the surface area of the plant root system in the most important region of the soil matrix for resource capture (e.g. surface layers for phosphorus uptake and deeper layers for nitrate uptake) or to secure anchorage. Different species use different combinations of lateral or adventitious roots to achieve this, with lateral roots dominating the root system of eudicots while adventitious (crown and brace) roots dominate the root system of monocots, including in cereal crops.Our understanding of the mechanisms controlling lateral and adventitious root development has accelerated in recent years, primarily through research on model plants. The simple anatomy and the wealth of genetic resources in Arabidopsis (Arabidopsis thaliana) have greatly aided embryonic and postembryonic root developmental studies (De Smet et al., 2007; Péret et al., 2009a; Fig. 1, A and E). Nevertheless, impressive recent progress has been made studying root branching in other crop species, notably cereals such as maize (Zea mays) and rice (Oryza sativa).Open in a separate windowFigure 1.A to D, Schematics showing diversity in root system architecture at both seedling (left) and mature (right) stages in eudicots (A and C) and monocots (B and D). A, Arabidopsis root system. B, Maize root system. C, Tomato root system (for clarity, stem-derived adventitious roots are only shown in the labeled region). D, Wheat root system. E and F, Cross sections of emerging lateral root primordia in Arabidopsis (E) and rice (F). E and F are adapted from Péret et al. (2009b).In this Update, we initially describe the diversity of postembryonic root forms in eudicots and monocots (Fig. 1). Next, we highlight recent advances in our understanding of the genes, signals, and mechanisms regulating lateral root and adventitious root branching in Arabidopsis, rice, and maize. Due to space limits, we cannot provide an exhaustive review of this subject area, focusing instead on recent research advances. However, we direct readers to several recent in-depth reviews on lateral root (Lavenus et al., 2013; Orman-Ligeza et al., 2013) and adventitious root development (Bellini et al., 2014).  相似文献   

16.
17.
18.
19.
20.
Abstract

Math and Science Across Culture: Activities and Investigations from the Exploratorium. Maurice Bazin, Modesto, and the Exploratorium Teacher Institute. New York: The New Press, 2002. 176 pp. $19.95 (paperback). ISBN 1-56584-541-2

History Beneath the Sea—Nautical Archaeology in the Classroom. K. C. Smith and Amy Douglass (Editors). Washington, D.C.: Society for American Archaeology, 2001. 28 pp. $5.95 (paperback). ISBN 0-932839-17-7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号