首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
ABSTRACT: BACKGROUND: Conventional diagnosis and identification of bacteria requires shipment of samples to a laboratory for genetic and biochemical analysis. This process can take days and imposes significant delay to action in situations where timely intervention can save lives and reduce associated costs. To enable faster response to an outbreak, a low-cost, small-footprint, portable microbial-identification instrument using forward scatterometry has been developed. RESULTS: This device, weighing 9 lb and measuring 12 [MULTIPLICATION SIGN] 6 [MULTIPLICATION SIGN] 10.5 in., utilizes elastic light scatter (ELS) patterns to accurately capture bacterial colony characteristics and delivers the classification results via (non-italic form) wireless access. The overall system consists of two CCD cameras, one rotational and one translational stage, and a 635-nm laser diode. Various software algorithms such as Hough transform, 2-D geometric moments, and the traveling salesman problem (TSP) have been implemented to provide colony count and circularity, centering process, and minimized travel time among colonies. CONCLUSIONS: Experiments were conducted with four bacteria genera using pure and mixed plate and as proof of principle a field test was conducted in four different locations where the average classification rate ranged between 95 and 100%.  相似文献   

2.
3.
In purple bacteria, photosynthesis is carried out on large indentations of the bacterial plasma membrane termed chromatophores. Acting as primitive organelles, chromatophores are densely packed with the membrane proteins necessary for photosynthesis, including light harvesting complexes LH1 and LH2, reaction center (RC), and cytochrome bc1. The shape of chromatophores is primarily dependent on species, and is typically spherical or flat. How these shapes arise from the protein-protein and protein-membrane interactions is still unknown. Now, using molecular dynamics simulations, we have observed the dynamic curvature of membranes caused by proteins in the chromatophore. A membrane-embedded array of LH2s was found to relax to a curved state, both for LH2 from Rps. acidophila and a homology-modeled LH2 from Rb. sphaeroides. A modeled LH1-RC-PufX dimer was found to develop a bend at the dimerizing interface resulting in a curved shape as well. In contrast, the bc1 complex, which has not been imaged yet in native chromatophores, did not induce a preferred membrane curvature in simulation. Based on these results, a model for how the different photosynthetic proteins influence chromatophore shape is presented.  相似文献   

4.
《BBA》1986,851(2):276-282
Photosynthetic formation of inorganic pyrophosphate (PPi) in Rhodospirillum rubrum chromatophores has been studied utilizing a new and sensitive method for continuous monitoring of PPi synthesis. Studies of the reaction kinetics under a variety of conditions, e.g., at different substrate concentrations and different electron-transport rates, have been performed. At very low light intensities the rate of PPi synthesis is twice the rate of ATP synthesis. Antimycin A, at a concentration which strongly inhibited the photosynthetic ATP formation, inhibited the PPi synthesis much less. Even at low rates of electron transport a significant rate of PPi synthesis is obtained. The rate of photosynthetic ATP formation is stimulated up to 20% when PPi synthesis is inhibited. It is shown that PPi synthesis and ATP synthesis compete with each other. No inhibition of pyrophosphatase activity is observed at high carbonyl cyanide p-trifluoromethoxyhydrazone concentration while ATPase activity is strongly inhibited under the same conditions.  相似文献   

5.
The dichroism was measured in films of air-dried and, consequently, flattened chromatophores of Chromatium vinosum, Rhodopseudomonas sphaeroides and Rhodospirillum rubrum. The values (deltaA/A) of dichroism in C. vinosum were found to be -1.05 at 590 nm and 0.75 in the near infrared region. The values of dichroism in R. sphaeroides were -0.70 at 590 nm and 0.80 at 870 nm. The values of dichroism in R. rubrum were -1.45 at 590 nm and 0.97 at 870 nm.  相似文献   

6.
7.
The core of the photosynthetic reaction center from the purple non-sulfur bacterium Rhodobacter sphaeroides is a quasi-symmetric heterodimer, providing two potential pathways for transmembrane electron transfer. Past measurements have demonstrated that only one of the two pathways (the A-side) is used to any significant extent upon excitation with red or near-infrared light. Here, it is shown that excitation with blue light into the Soret band of the reaction center gives rise to electron transfer along the alternate or B-side pathway, resulting in a charge-separated state involving the anion of the B-side bacteriopheophytin. This electron transfer is much faster than normal A-side transfer, apparently occurring within a few hundred femtoseconds. At low temperatures, the B-side charge-separated state is stable for at least 1 ns, but at room temperature, the B-side bacteriopheophytin anion is short-lived, decaying within approximately 15 ps. One possible physiological role for B-side electron transfer is photoprotection, rapidly quenching higher excited states of the reaction center.  相似文献   

8.
9.
Chromatophores from photosynthetic bacteria were excited with flashes lasting approx. 15 ns. Transient optical absorbance changes not associated with the photochemical electron-transfer reactions were interpreted as reflecting the conversion of bacteriochlorophyll or carotenoids into triplet states. Triplet states of various carotenoids were detected in five strains of bacteria; triplet states of bacteriochlorophyll, in two strains that lack carotenoids. Triplet states of antenna pigments could be distinguished from those of pigments specifically associated with the photochemical reaction centers. Antenna pigments were converted into their triplet states if the photochemical apparatus was oversaturated with light, if the primary photochemical reaction was blocked by prior chemical oxidation of P-870 or reduction of the primary electron acceptor, or if the bacteria were genetically devoid of reaction centers. Only the reduction of the electron acceptor appeared to lead to the formation of triplet states in the reaction centers.In the antenna bacteriochlorophyll, triplet states probably arise from excited singlet states by intersystem crossing. The antenna carotenoid triplets probably are formed by energy transfer from triplet antenna bacteriochlorophyll. The energy transfer process has a half time of approx. 20 ns, and is about 1 × 103 times more rapid than the reaction of the bacteriochlorophyll triplet states with O2. This is consistent with a role of carotenoids in preventing the formation of singlet O2 in vivo. In the absence of carotenoids and O2, the decay half times of the triplet states are 70 μs for the antenna bacteriochlorophyll and 6–10 μs for the reaction center bacteriochlorophyll. The carotenoid triplets decay with half times of 2–8 μs.With weak flashes, the quantum yields of the antenna triplet states are in the order of 0.02. The quantum yields decline severely after approximately one triplet state is formed per photosynthetic unit, so that even extremely strong flashes convert only a very small fraction of the antenna pigments into triplet states. The yield of fluorescence from the antenna bacteriochlorophyll declines similarly. These observations can be explained by the proposal that singlet-triplet fusion causes rapid quenching of excited singlet states in the antenna bacteriochlorophyll.  相似文献   

10.
11.
The immobilization of Rhodospirillum rubrum chromatophores was successfully performed by entrapping them in polyacrylamide. Their photophosphorylating activity was about 40% of native chromatophores. The temperature and pH optima for immobilized chromatophores were similar to the native photosynthetic apparatus and kinetic parameters showed that the rate of photophosphorylation in polyacrylamide particles was diffusion controlled. Light penetration of the gel particles was not a limiting parameter. Immobilization considerably increased the stability of the chromatophores towards denaturation.  相似文献   

12.
Models describing the light response of photosynthetic electron transport rate (ETR) are routinely used to determine how light absorption influences energy, reducing power and yields of primary productivity; however, no single model is currently able to provide insight into the fundamental processes that implicitly govern the variability of light absorption. Here we present development and application of a new mechanistic model of ETR for photosystem II based on the light harvesting (absorption and transfer to the core ‘reaction centres’) characteristics of photosynthetic pigment molecules. Within this model a series of equations are used to describe novel biophysical and biochemical characteristics of photosynthetic pigment molecules and in turn light harvesting; specifically, the eigen-absorption cross-section and the minimum average lifetime of photosynthetic pigment molecules in the excited state, which describe the ability of light absorption of photosynthetic pigment molecules and retention time of excitons in the excited state but are difficult to be measured directly. We applied this model to a series of previously collected fluorescence data and demonstrated that our model described well the light response curves of ETR, regardless of whether dynamic down-regulation of PSII occurs, for a range of photosynthetic organisms (Abies alba, Picea abies, Pinus mugo and Emiliania huxleyi). Inherent estimated parameters (e.g. maximum ETR and the saturation irradiance) by our model are in very close agreement with the measured data. Overall, our mechanistic model potentially provides novel insights into the regulation of ETR by light harvesting properties as well as dynamical down-regulation of PSII.  相似文献   

13.
14.
The midpoint potentials of the primary electron acceptors in chromatophores from Rhodopseudomonas spheroides and Chromatium have been studied by titrating the laser-induced P605 and cytochrome c oxidations, respectively. Both midpoint potentials are pH dependent (60 mV/pH unit).o-Phenanthroline shifts the midpoint potentials of the primary acceptors, by +40 mV in Rps spheroides and +135 mV in Chromatium. A similar though less extensive change in midpoint potential was observed in the presence of batho-phenanthroline, but not with 8-hydroxyquinoline. The shifted midpoints retain the same dependence on pH.Some of the effects of o-phenanthroline can be explained by assuming that it chelates the reduced form of the primary electron acceptor. This suggests the presence in the primary electron acceptor of a metal chelated by o- and batho-phenanthroline.In Rps spheroides chromatophores o-phenanthroline inhibits the laser- and flash-induced carotenoid shift at all redox potentials, stimulates the laser-induced P605 oxidation at redox potentials between +350 and +420 mV and slows the decay of the laser-induced cytochrome c oxidation below +180 mV. These effects show that o-phenanthroline may have more than one site of action.  相似文献   

15.
Dibromothymoquinone has been shown to inhibit light-induced cytochrome b reduction, and oxidation of succinate and NADH by chromatophores of Rhodopseudomonas capsulata. The half-inhibitory concentration of light-induced reactions and NADH oxidation is 2.5 M, but of succinate oxidation is 16 M. Hexane extraction inhibited oxidation of NADH and succinate equally. The results are interpreted to suggest that ubiquinone is concerned in all three processes described, but that the pools associated with NADH and succinate oxidation are not equally accessible to dibromothymoquinone.Abbreviations DBMIB Dibromothymoquinone - NADH Reduced nicotinamide adenine dinucleotide - Bchl Bacteriochlorophyll  相似文献   

16.
Three photosynthetic membranes, called intra-cytoplasmic membranes (ICMs), from wild-type and the ?pucBAabce mutant of the purple phototrophic bacterium Rps. palustris were investigated using optical spectroscopy. The ICMs contain identical light-harvesting complex 1–reaction centers (LH1–RC) but have various spectral forms of light-harvesting complex 2 (LH2). Spectroscopic studies involving steady-state absorption, fluorescence, and femtosecond time-resolved absorption at room temperature and at 77 K focused on inter-protein excitation energy transfer. The studies investigated how energy transfer is affected by altered spectral features of the LH2 complexes as those develop under growth at different light conditions. The study shows that LH1 → LH2 excitation energy transfer is strongly affected if the LH2 complex alters its spectroscopic signature. The LH1 → LH2 excitation energy transfer rate modeled with the Förster mechanism and kinetic simulations of transient absorption of the ICMs demonstrated that the transfer rate will be 2–3 times larger for ICMs accumulating LH2 complexes with the classical B800–850 spectral signature (grown in high light) compared to the ICMs from the same strain grown in low light. For the ICMs from the ?pucBAabce mutant, in which the B850 band of the LH2 complex is blue-shifted and almost degenerate with the B800 band, the LH1 → LH2 excitation energy transfer was not observed nor predicted by calculations.  相似文献   

17.
Incubation of isolated rat hepatocytes under conditions which support maximal autophagy (amino acid-free medium) caused a marked alteration in the density distribution of lysosomes in continuous metrizamide gradients (mean peak density reduced from 1.14 to 1.09 g/ml). The autophagic sequestration inhibitor 3-methyladenine (3MA) partially prevented the density shift, presumably by stopping the formation of light autophagosomes which otherwise fuse with dense lysosomes and thereby alter the lysosomal density.  相似文献   

18.
19.
The nature of the light-induced absorbance change of carotenoid,spheroidene, was investigated with the chromatophores of Rhodopseudomonasspheroides. The experimental results indicate that the changedoes not represent an oxidation-reduction reaction of the carotenoid,but is caused by a change in the state of the chromatophoresclosely related to the high energy state of the photophosphorylation.Since the change almost vanishes at liquid nitrogen temperature,it probably does not represent a primary photochemical reactionin the chromatophores. The values of the quantum yield for thechange of carotenoid were above unity ; 2.5 on an avera (Received November 20, 1969; )  相似文献   

20.
Biological energy-conversion systems are attractive in terms of their self-sustaining and self-organizing nature and are expected to be applied to low-cost and environment-friendly processes. Here we show a biofilm-based light/electricity-conversion system that was self-organized from a natural microbial community. A bioreactor equipped with an air cathode and graphite-felt anode was inoculated with a green hot-spring microbial mat. When the reactor was irradiated with light, electric current was generated between the anode and cathode in accordance with the formation of green biofilm on the anode. Fluorescence microscopy of the green biofilm revealed the presence of chlorophyll-containing microbes of ∼10 μm in size, and these cells were abundant close to the surface of the biofilm. The biofilm community was also analyzed by sequencing of polymerase chain reaction-amplified small-subunit rRNA gene fragments, showing that sequence types affiliated with Chlorophyta, Betaproteobacteria, and Bacteroidetes were abundantly detected. These results suggest that green algae and heterotrophic bacteria cooperatively converted light energy into electricity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号